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Abstract 
The multivariate two-sample problem is one of continued interest in statistics. Approaches 
to this problem normally require a dissimilarity measure on the observation sample space; 
such measures are typically restricted to numeric variables. In order to accommodate both 
categorical and numeric variables, we use a new dissimilarity measure based on a set of 
classification and regression trees. We briefly discuss this new measure and then 
incorporate it into a recently developed graph-based multivariate test. The test statistic 
counts the number of intergroup edges in a minimum-weight regular spanning subgraph; 
unequal distributions will tend to result in fewer edges in this count. Test performance is 
examined via simulation study, and test efficacy investigated using real-world data. 
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1. Introduction 

 
Testing whether two samples can be considered as a random sample from a common 
distribution is a central problem in statistics.  We consider the multivariate problem of 
testing for a difference between two groups when each group member has many measured 
attributes other than its group label.  Ruth (2014) proposed the Mean Cross-Count (MCC) 
test as a graph-theoretic approach to the multivariate two-sample test: 𝑁 observations are 
considered as vertices on a complete graph, interpoint differences are assigned as edge 
weights, and a test statistic is computed by counting the number of cross-group edges 
included in a minimum-weight regular subgraph of the complete graph.  This method 
demonstrates impressive power when the vertex degrees in the minimum-weight subgraph 
are near 𝑁/2.  The MCC test carries with it very few assumptions, but it does require the 
specification of a dissimilarity measure on the observation space. 
 
While the context of a problem in some cases suggests a reasonable choice of dissimilarity 
measure, it may be unclear how best to specify what it means for two observations to be 
“close.”  Distance measures such as Euclidean, Mahalanobis, Manahattan, and others are 
widely used for data that include quantitative variables only.  Several dissimilarity 
measures have been proposed for purely categorical variables; see Boriah, Chandola, and 
Kumar (2008) for a summary of many of these.  Options are more limited for mixed data.  
This paper highlights a new approach to measuring dissimilarity on mixed data using 
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classification and regression tree (CART) analysis, introduced by Buttrey and Whitaker 
(2015).  Using that measure, we apply the MCC test to detect a difference between two 
groups involving mixed data.  Additionally, we present a useful known combinatorial 
optimization result which greatly simplifies some of the computational difficulties that can 
affect graph-theoretic tests such as MCC. 
 
 

2. Background 

 
2.1 Dissimilarity measures for mixed data 

2.1.1 Gower dissimilarity 
A typical standard of measure for dissimilarity in mixed data is Gower distance  (Gower, 
1971); this is the standard to which we will compare alternative methods.  Consider 𝑁  
𝑝-variate observations 𝑋1, 𝑋2, … , 𝑋𝑁 with possibly quantitative and categorical covariates.  
The dissimilarity 𝑑𝑖𝑗,𝑘 between observations 𝑋𝑖 and 𝑋𝑗 on covariate 𝑘 is given by 
 

𝑑𝑖𝑗,𝑘 =

{
 
 

 
 

0 if covariate 𝑘 is categorical and 𝑥𝑖𝑘 = 𝑥𝑗𝑘  ,

1 if covariate 𝑘 is categorical and 𝑥𝑖𝑘 ≠ 𝑥𝑗𝑘  ,

|𝑥𝑖𝑘 − 𝑥𝑗𝑘|

𝑅𝑘
if covariate 𝑘 is quantitative,                         

 

  
where 𝑥𝑖𝑘  and 𝑥𝑗𝑘  are the 𝑖  and 𝑗  entries, respectively, in the column associated with 
covariate 𝑘 , and 𝑅𝑘  is the range of covariate 𝑘 .  Gower’s dissimilarity measure is a 
weighted average of these covariate-wise dissimilarities, given by 
 

𝑑Gower(𝑋𝑖, 𝑋𝑗) =
∑ 𝜕𝑖𝑗,𝑘𝑑𝑖𝑗,𝑘
𝑝
𝑘=1

∑ 𝜕𝑖𝑗,𝑘
𝑝
𝑘=1

 , 

 
where weights 𝜕𝑖𝑗,𝑘 = 1 in except in special cases such as that of missing values.  In some 
implementations, other weighting values may be chosen. 
  
2.1.2 treeClust dissimilarity 
Buttrey and Whitaker (2015) present a novel and robust approach to measuring 
dissimilarity in mixed data.  For each covariate 𝑘 ∈ {1,… , 𝑝}, construct a classification tree 
(if covariate 𝑘 is categorical) or a regression tree (if covariate 𝑘 is quantitative), modeling 
covariate 𝑘 as the response variable and including all other covariates as predictor variables 
in the tree.  Trees may be pruned to avoid overfitting, and those that are pruned back to the 
root are discarded.  Call the remaining trees 𝑇𝑘, 𝑘 ∈ {1,… , 𝐾;  𝐾 ≤ 𝑝}.  Each observation 
gets assigned to one leaf in each tree.  The key idea then is that observations are considered 

dissimilar with respect to 𝑇𝑘 when they fall in different leaves of 𝑇𝑘. 

 
Over the collection of all 𝐾  resulting trees, a variety of options exist to measure the 
dissimilarity between observations.  For example, let 𝐼𝑘(𝑖, 𝑗) be the indicator function that 
observations 𝑖 and 𝑗 fall in different leaves of 𝑇𝑘.  Then a natural dissimilarity measure is 
 

𝑑treeClust(𝑋𝑖, 𝑋𝑗) =
1

𝐾
∑ 𝐼𝑘(𝑖, 𝑗)

𝐾

𝑘=1

 ; 
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that is, 𝑑treeClust(𝑋𝑖, 𝑋𝑗) is the proportion of trees in which 𝑋𝑖  and 𝑋𝑗  fall in different 
leaves.  Variations on this measure include weighting trees based on goodness of fit, 
pruning trees back to maximal trees in which 𝑋𝑖  and 𝑋𝑗  fall in the same leaf and then 
computing appropriate ratios of differences in deviances, and other approaches; see Buttrey 
and Whitaker (2015) for details.  In particular, the treeClust approach demonstrates an 
appealing resistance to noise, a feature we will exploit later in this paper.  
 

2.2 The Mean Cross-Count (MCC) test 

2.2.1 Description 
Graph-theoretic approaches offer robust and sometimes powerful tests for sample 
heterogeneity in the multivariate setting; see, for example, Friedman and Rafsky (1979), 
Rosenbaum (2005), Ruth and Koyak (2011), and Chen and Freidman (2016).  Given a 
dissimilarity measure, such approaches consider observations as vertices in a graph, with 
an edge between each pair of points weighted by interpoint dissimilarity.  An optimal 
subgraph is computed, where optimality is determined by including only certain low-
weight edges.  The edges in the optimal subgraph contain information regarding whether 
two samples are drawn from different populations. 
 
The MCC test is one of this type.  Consider 𝑁 = 𝑛 +𝑚  independent observations 
𝑋1, 𝑋2, … , 𝑋𝑚  and 𝑋𝑚+1, 𝑋𝑚+2, … , 𝑋𝑚+𝑛  where each 𝑋𝑖  is assumed to be drawn from 
distribution 𝐹 for 1 ≤ 𝑖 ≤ 𝑚 and from distribution 𝐺 for 𝑚+ 1 ≤ 𝑖 ≤ 𝑁.  The goal is to 
test the null hypothesis 𝐹 = 𝐺.  Given some interpoint dissimilarity measure 𝑑, let 𝒢 be the 
complete graph with each observation 𝑋𝑖  constituting a vertex and each pair of 
observations (𝑋𝑖 , 𝑋𝑗) constituting an undirected edge with weight 𝑑(𝑋𝑖, 𝑋𝑗).  We assume 
𝑁 is even for this discussion, but odd 𝑁 can be easily accommodated.  Pick an integer  
𝑟 ∈ {1,… ,𝑁/2} and find a minimum-weight 𝑟-regular spanning subgraph, 𝒢𝑟

∗.  Note that 
𝒢𝑟
∗ does not depend on group labels.  Count the number of edges in 𝒢𝑟∗ that have one vertex 

in the first group and the other in the second group; call this count 𝐴𝑟.  The Mean Cross 
Count statistic is defined as 𝑇𝑟 =

𝐴𝑟

𝑟
.  Since unequal distributions will tend to result in fewer 

edges that connect vertices between different groups, 𝑇𝑟 will tend to be small when 𝐹 ≠ 𝐺.  
Approximate p-values for 𝑇𝑟  may be computed easily using a permutation test on the 
observation group labels.  The MCC test has been shown to have impressive power over a 
broad range of alternatives; see Ruth (2014) for details. 
 

2.2.2 Illustrating example 
Figure 1a shows 20 bivariate iid observations plotted along with the minimum-weight 3-
regular spanning subgraph with respect to Euclidean distance.  The number of edges in 𝒢3∗ 
connecting observations in Group 1 to those in Group 2 is 20, so the MCC statistic is 𝑇3 =
20

3
≈ 6.67.  Figure 1b shows the same situation, except Group 1 is shifted by one unit in 

both covariates.  A new 𝒢3∗ results, and in this case the cross count is reduced to 10 and 
𝑇3 =

10

3
≈ 3.33.  This demonstrates the intuitive notion that the mean cross count goes 

down as group locations move apart.  We note here that the MCC test is not confined to 
location alternatives but it is less effective against scale alternatives, particularly in high 
dimension.  See Chen and Freidman (2016) for an attractive graph-theoretic approach to 
accommodate scale alternatives. 
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Figure 1a: Twenty bivariate iid observations consisting of two groups of equal size.  The 
minimum-weight 3-regular spanning subgraph with respect to Euclidean distance shows 
across-group pairings as solid lines and within-group pairings as dashed lines.  The cross 
count is 𝐴3 = 20, so the MCC test statistic is 𝑇𝑟 ≈ 6.67. 
 
 

 
Figure 1b: Twenty bivariate observations with a location offset between two groups of 
equal size.  The minimum-weight 3-regular spanning subgraph with respect to Euclidean 
distance shows across-group pairings as solid lines and within-group pairings as dashed 
lines.  The cross count is 𝐴3 = 10, so the MCC test statistic is 𝑇𝑟 ≈ 3.33. 
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3. Analysis and Performance 

 
This section examines the performance of the MCC test in a mixed data setting employing 
the Gower dissimilarity measure compared to that with the treeClust measure. 
 
3.1 Heart data 

3.1.1 Description 
The data used for this study are the Cleveland Heart Disease Data, consisting of test results 
of 303 patients undergoing angiography at the Cleveland Clinic in Ohio.  The data include 
76 attributes, but we use a subset of 14 of them which have been analyzed many times in 
published experiments using these data (Blake and Merz, 1998).  We group observations 
by angiographic disease status (binary); the other five quantitative and eight categorical 
explanatory variables are used to compute interpoint dissimilarities.  Table 1 shows the 
values of the response variables for six of the 303 observations. 
 

Table 1: Leading rows of response variables for Cleveland Heart Disease Data.  Age, 

trestbps, chol, thalach, and oldpeak are quantitative; all others are categorical. 
 

age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal 

63 1 1 145 233 1 2 150 0 2.3 3 0 6 
67 1 4 160 286 0 2 108 1 1.5 2 3 3 
67 1 4 120 229 0 2 129 1 2.6 2 2 7 
37 1 3 130 250 0 0 187 0 3.5 3 0 3 
41 0 2 130 204 0 2 172 0 1.4 1 0 3 
56 1 2 120 236 0 0 178 0 0.8 1 0 3 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

 
   
A first question of interest is:  Are the two diagnosis groups statistically different with 

respect to the explanatory variables?  For these data in raw form, the two groups are not 
very difficult to differentiate; in fact, a univariate two-sample t-test on trestbps (resting 
blood pressure) is sufficient to detect a difference between groups at significance level  
< 0.01.  In the interest of detecting a difference when heterogeneity is more subtle, we add 
noise to the data as described below and seek to answer a second question:  Can a statistical 

difference be found between the two diagnosis groups with respect to the explanatory 

variables in the presence of noise? 

 
3.1.2 Modifications 
In order to make group difference detection more difficult, we modify the data in the 
following ways: 

1) For the first analysis, we permute some fraction of the diagnosis labels and then 
examine estimated power of the MCC test for different permutation fractions.   

2) For the second analysis, we make the original explanatory variables “noisy” by 
randomly permuting each column 20 different times and then appending the 20 
permuted columns to the original data set.  This adds 260 columns of noise, where 
each added column has the same marginal distribution as one of the original data 
columns.  Then we permute some fraction of the diagnosis labels and examine 
estimated power of the MCC test for different permutation fractions, as in (1) 
above.  
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3.2 Performance comparison 

3.2.1 No noise added to explanatory variables 
In this case, we ran 1000 simulations under the following conditions:  Shuffle some 
fraction, 𝜆, of the diagnosis labels, then apply the MCC test at significance level 𝛼 = 0.05 
for dissimilarity measure 𝑑Gower  and then 𝑑treeClust . 1   Perform these simulations for 
values of 𝜆 decreasing from 1 down to 0.5.  Figure 2a shows the estimated power for these 
simulations plotted against 1 − 𝜆, that is, against the fraction of unshuffled labels.  When 
all labels are shuffled estimated test power is approximately equal to 𝛼, which confirms 
that both tests respect significance level.  The MCC test performs similarly under each 
dissimilarity measure, with 𝑑Gower  outperforming 𝑑treeClust  by about 7% in the mid-
power range (where approximately 75% of diagnosis labels are shuffled). 
 

 
Figure 2a: Estimated power for the MCC test at significance level 𝛼 = 0.05 as a function 
of the fraction of diagnosis labels unshuffled, without noise columns added.  Gower 
dissimilarity is the top curve (blue); treeClust dissimilarity is the bottom curve (red).   Test 
significance level 0.05 is the horizontal line (dashed).  Zero unshuffled labels means all 
diagnosis labels are assigned randomly. 
 
3.2.2 Noise added to explanatory variables 
In this case, before finding optimal subgraphs, we add noise to the data as described in 
Section 3.1.2, and then estimate power for varying fractions of shuffled labels as in the no-
noise case.  Figure 2b shows both tests respect test level as before; however, in this case 
𝑑treeClust solidly outperforms 𝑑Gower.  In the mid-power range (with approximately 70% 
of diagnosis labels shuffled), estimated MCC test power under 𝑑treeClust exceeds power 
under 𝑑Gower by about 35%.  Additionally, comparing Figure 2b to Figure 2a we note that 
MCC test power under 𝑑treeClust suffers little degradation in the noise case relative to the 
no-noise case while under 𝑑Gower the power degradation is fairly severe. 

                                                 
1  Dissimilarities were computed using R packages “cluster” (Maechler, M., Rousseeuw, P., 
Struyf, A., Hubert, M., Hornik, K., 2015) for 𝑑Gower and  “treeClust” (Buttrey, 2016) for 
𝑑treeClust .  MCC tests were performed using R package “AcrossTic” (Ruth and Buttrey, 2016).   
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Figure 2b: Estimated power for the MCC test at significance level 𝛼 = 0.05 as a function 
of the fraction of diagnosis labels unshuffled, with noise columns added.  Gower 
dissimilarity is the bottom curve (blue); treeClust dissimilarity is the top curve (red).   Test 
significance level 0.05 is the horizontal line (dashed).  Zero unshuffled labels means all 
diagnosis labels are assigned randomly. 

 
3.3 Computational efficiencies 
Minimum-weight regular spanning subgraphs of a complete graph can found directly using 
binary integer linear programming.  In general, solutions may take a long time to obtain 
using readily-available solvers in cases of large data.  However, this particular problem 
falls into a special class of combinatorial optimization problems called “𝑏-matchings.”  A 
formulation of this problem is 
 

min
𝐲
∑𝑑(𝑋𝑖 , 𝑋𝑗)𝑦𝑖𝑗
𝑖<𝑗

 

subject to        

∑𝑦𝑗𝑖

𝑖−1

𝑗=1

+ ∑ 𝑦𝑖𝑗

𝑁

𝑗=𝑖+1

= 𝑏𝑖   ∀𝑖 ∈ {1,… ,𝑁} , 

𝑦𝑖𝑗 ∈ {0,1}  ∀𝑖, 𝑗 ∈ {1, … ,𝑁}, 𝑖 < 𝑗 , 
 
where 𝑦𝑖𝑗 = 1 if the edge connecting 𝑋𝑖 and 𝑋𝑗 is in the optimal subgraph and 𝑦𝑖𝑗 = 0 if it 
is not, and 𝑏𝑖 is the degree of vertex 𝑖 in the optimal subgraph.  In our case, 𝑏𝑖 = 𝑟  ∀𝑖. 
An appealing known result is that when the condition 𝑦𝑖𝑗 ∈ {0,1} is relaxed to 𝑦𝑖𝑗 ∈ [0,1], 
the optimal values of 𝑦𝑖𝑗 must always be 0, 1

2
, or 1 when 𝑟 is an integer and in fact 0 or 1 

when 𝑟 is even (for example, see Hirai, 2013).  So, we can remove the integrality constraint 

in this linear program and compute the MCC test statistic for bigger data sets using readily 

available solvers.  
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4. Conclusions 

 
Graph-theoretic methods can be effective at detecting differences between two groups in a 
multivariate setting.  Such methods generally require a dissimilarity measure, and tree 
clustering provides this in a novel way that is useful for mixed data, particularly when noise 
is present.  For the MCC test, which employs minimum-weight regular spanning 
subgraphs, combinatorial optimization integrality properties improve the computational 
speed of pairing algorithms.  Packages “treeClust” and “AcrossTic” enable R users to put 
these tools into practice.    
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