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Abstract 
Wet Chemistry Laboratory (WCL) on board the Phoenix Lander performed the first 
comprehensive wet chemical analysis of the Martian soil in 2008 [1 – 4]. The WCL has 
provided data to estimate concentration of the soluble ions in Martian soil, such as Na+, 
K+, Ca2+, Mg2+, Cl-, ClO4

-, and Li+. The WCL data is very precious, it is the first and the 
only wet chemistry lab data available so far. Due to unexpected high level of noise, the 
data cleaning is extremely important. Different data cleaning method may result in 
significantly different ion concentration estimations.  
 

Previous WCL data analyses have processed the data one signal measurement at 
a time without considering the associations among all signals. This paper proposes a new 
method that utilizes all signal measurements simultaneously to find the hidden common 
factors that drive all measurements to vary simultaneously. These common factors 
represent the errors and variations caused by the complicated sources. We clean the data 
by removing the effects of these common factors. In this paper, we reanalyze the WCL 
data used in Kounaves et al paper [2] with our proposed common-factor data cleaning 
method to show the resulting differences. The statistical contribution of this paper is to 
provide a new data cleaning method. 
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Figure 1. Left: Schematic diagram of the WCL cell interior with various components (not 
to scale); middle: The WCL (4 identitical cells) on Mars after the first analysis [2]; right: 
relative locations and depth of the sampled Martian soils 
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 1. Introduction 

 
Data quality is fundamentally important for any data modeling and analysis. In real world 
applications, it is unrealistic to require data collection to be perfect. Our motivating 
application is to recover the true chemical analysis data from the Wet Chemistry 
Laboratory (WCL) on the 2008 Phoenix Mars Lander (Fig. 1 & [1]). The WCL collected 
over three-million data points and performed the first comprehensive wet chemical 
analysis of the soil on Mars. The WCL data has provided new scientific insights into the 
history of Mars, its potential for supporting microbial life, and even its atmospheric 
chemistry, with resulting publications in [2] to [4].  

The Wet Chemistry experiments used four identical WCL cells, cell 0, 1, 2 and 3, 
to analyze the soluble contents of the 
Martian regolith. The analyses 
sampled Martian regolith from four 
separate locations on four separate 
Martian solar days (sols).  Cell 0 
analyzed the sample “Rosy Red” 
taken from the surface of the Burn 
Alive trench; and Cells 1 and 2 
analyzed samples “Sorceress 1” and 
“Sorceress 2”, respectively, both 
taken from adjacent locations at a 
depth of ~5cm, in contact with the 
ice table of the Snow White trench 
(Fig. 1).  Sample delivery to Cell 3 is 
failed, and we will ignore it here. 
Figure 1 shows a schematic diagram 
of a WCL cell and how the four cells 
looked outside after the first-day 
analysis on Mars. Each cell consisted 
of (1) an upper actuator assembly 
with a drawer for adding soil, 
‘‘leaching solution’’, five crucibles 
with reagents used for the WCL 
calibration, and a stirrer; and (2) a 
lower beaker lined with an array of 
sensors including ion selective 
electrodes (ISE) for measuring K+, 
Na+, Mg2+, Ca2+, NH4+, Ba2+ (for 
SO42-), Cl-, Br-, I-, NO3-/ClO4-, 
H+(pH), Li+; and electrodes for 
measuring conductivity, redox 
potential, cyclic voltammetry (CV), 
chronopotentiometry (CP), and an 
IrO2 pH electrode. These data are 
publicly available at the NASA 
Planetary Data System [6, 7]. 

WCL data is the first and the 
only wet chemistry lab data available 
so far. Due to unexpected high level 
of noise, the data cleaning is 

 

 
 

Figure 2. K+, Na+, Mg2+, Ca2+, NH4
+, Cl-, and 

CIO4
- sensor data (better viewed in color). The 

two solid vertical lines indicate the addition of 
the calibrant crucible and the soil sample. First 
pair of dashed vertical lines marks the Calibrant 
Interval and second pair marks the Soil Sample 
Interval. Time is spacecraft clock (SCLK) time 
in seconds. Top: Cell 0 data on Martian Solar 
Day sol 30, Middle: Cell 1 data on sol 41, 
Bottom: Cell 2 data on sol 107. 
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extremely important. Different data cleaning method resulted in significantly different 
ion concentration estimations as shown in previous studies [2] and [3]. There is a need to 
seek a better data cleaning method. Previous analysis of the WCL data has employed 
manual cleaning plus Fourier filtering [2] or Kalman smoothing [3] techniques to reduce 
the outliers and noises associated with the data sets. The cleaning is done for each ISE 
measurements one by one.  However, through inspection of the data, we observe that for 
much of the data, the measurements of the different ISEs vary simultaneously in a similar 
manner, although to varying degrees. This apparently systematic variation among sensors 
within the same beaker, and therefore subject to the same environmental conditions, lead 
us to believe that these deviations could be isolated and removed from the signal in order 
to reduce the uncertainty in the measurements. For WCL ISE data, we propose a new 
common-factor removal method that utilizes multiple sensor measurements 
simultaneously to find the hidden shared factors which drive all measurements to vary 
simultaneously. These common factors represent the errors and variations caused by the 
combined and complicated influence of common sources. We iteratively estimate the 
common factors by minimizing the sum of squared errors of all the sensor data. We then 
clean the data by removing the effects of these common factors (details in Section 2). We 
compare our proposed method with other data denoising methods using simulated data 
(details in Section 3).  We reanalyze the WCL data used in the leading effort by 
Kounaves et al. [2] with our proposed method to show the data quality improvement 
(details in Section 4).  

The existing denoising methods, including Fourier filtering [8], Kalman 
smoothing [9] [12], Gaussian smoothing [10], and Hidden Markov Model denoising [11], 
do not work well for this type of problem because they are designed to cope with a single 
data measurement, ignoring the associated shared behavior among multiple 
measurements. In [13-16], the principles of identifying common-mode regularities were 
discussed to identify a simplified structure, shared trends in financial data and co-
variance selection in biological data, but not for the data cleaning using common factors 
which is a quite different problem.  A recent paper [17], proposed using other values 
measured in the same environment of the target to estimate and remove systematic errors 
of common sources in data processing of Kepler space observatory’s exoplanet search. 
Our proposed method explores the similar idea but our common factor based algorithm is 
totally different approach from theirs. 

The contribution of this paper is that we address an interdisciplinary challenge to 
provide a new and physically meaningful data cleaning method to improve data quality in 
scientific data. The proposed common-factor data cleaning approach is designed for a 
scenario when multiple data measurements are impacted together by complex, unknown 
or hard-to-reproduce error sources. In the Martian data analysis, we demonstrate that this 
new common-factor method can help reduce systematic noise without definitive 
understanding of the source and without degrading the physical meaning of the signal. 
 

2. METHODOLOGY 
Let us assume that there are I signal sensors to collect data simultaneously. In the WCL 
data, these are the I Ion Selective Electrode (ISE) sensors in the same beaker measuring 
potential of various ions of interest over some time periods (Fig. 2). Let 𝐸𝑡

(𝑖) denote the 
measured value for signal 𝑖 ∈ {1, … , 𝐼} at time 𝑡 ∈ {𝑡1, … , 𝑡𝑛}. So the observed data are 

{𝑡, 𝐸𝑡
(1)

, … , 𝐸𝑡
(𝐼)

}
𝑡=𝑡1

𝑡𝑛
. In an ideal world of data collection, assuming fixed environments 

over time, each signal data measurements over time should be a constant plus a random 
measurement error, i.e.  
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                 𝐸𝑡
(𝑖)

= 𝜇(𝑖) + 𝜀𝑡
(𝑖)

,                                           (1) 
where 𝜀𝑡

(𝑖) denotes the measurement error for signal i at time t, 𝜇(𝑖) denotes the real value 
for signal i. The 𝜇(𝑖) does not change with time, and 𝜀𝑡

(𝑖) is a random white noise so its 
value at different times or for different signals are independent, it follows  
 

 
corr (𝜀𝑡1

(𝑖1)
, 𝜀𝑡2

(𝑖2)
) = 0   for  𝑖1 ≠ 𝑖2  or  𝑡1 ≠ 𝑡2

𝑉𝑎𝑟 (𝜀𝑡
(𝑖)

) = 𝜎𝑖
2 > 0                                             

        (2) 

 
This is simply the repeated measurements situation. Our goal is to estimate the true 

value 𝜇(𝑖) . The best estimate and associated error would simply be data mean 𝜇̂(𝑖) =

𝐸(𝑖)̅̅ ̅̅ ̅ =
1

𝑛
∑ 𝐸𝑡𝑘

(𝑖)𝑛
𝑘=1  and standard deviation of mean  𝜎̂𝑖√

1

𝑛
 where 𝜎̂𝑖

2 =
1

𝑛−1
∑ (𝐸𝑡𝑘

(𝑖)
−𝑛

𝑘=1

𝐸(𝑖)̅̅ ̅̅ ̅)2.  
But in reality, complex real time environment interferes with data measurement, we 

will observe deviations from the ideal case described in (1) & (2). For example, as 
illustrated in Fig. 2 of Martian soil data, different signal measurements were correlated, 
exhibiting systematic co-fluctuations. Our data-cleaning goal, formally speaking, is to 
remove the co-fluctuations to regain the forms of Eqs. (1) and (2).  
 
2.1 Motivation  
Looking into the data, we found that the ISE measurements of different ions often moved 
up and down together. These co-movements can be seen more clearly through the spikes 
in top panels of Fig. 7 to 9.  All these ISEs were mounted on the inside walls of the same 
beaker. It is well known that temperature affects the measurements. During every stage of 
each sol’s operation, the beaker temperature was intended to be kept constant. The beaker 
temperature was frequently measured and used to trigger/stop the heating system. This 
caused the beaker temperature to change cyclically and hence affected the ISE 
measurements. It is difficult to compensate for the temperature effects on the ISE 
measurements because 1) beaker temperatures were measured at different times from the 
ISE measurements; 2) temperature cycle length changed with the Mars environments; 3) 
there were unknown complicated delayed effects of temperature on ISEs. Also there were 
other things that could affect the ISE measurements, for example, the motion of the stirrer 
in the middle of the beaker, the pressure inside the beaker that was intended to be kept the 
same as the local outside Mars pressure, the interactions among them, and device 
malfunctions. All in all, the influence from other sources is too complicated to be 
accurately accounted for. 

Fortunately all the ISE sensors are in the same beaker and they are all affected by 
the above mentioned possible causes simultaneously but with varying degrees. By 
analyzing these ISE measurements jointly, we hoped to find the hidden common factors 
impacting the ISE signals. These common factors represent a very complicated and 
combined influence of temperature, pressure, stirring motion, instrument malfunction, 
etc. The exact physical reasons of why and how these influences affect the measurements 
are complex and may never be completely understood. The point here is that we don’t 
need to know the why and the how in order to clean up the data; we will allow the ISE 
data themselves to provide the common factors. The interpretation of these factors is not 
our main concern here, even though the factors are meaningful by their own right. With 
the domain knowledge of the ideal situations as our guideline, we can assume that these 
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common factors result in the deviations from Eq. (1) & (2) and hence should be removed 
from the data. 
 
2.2 Formulation and Algorithm 
Let K denotes the number of common factors, 𝑭𝒌𝒕 the kth common factor at time t. The 
observed data can be modeled as  
 

         𝐸𝑡
(𝑖)

= 𝜇(𝑖) + 𝛽1
(𝑖)

𝐹1𝑡 + ⋯ + 𝛽𝐾
(𝑖)

𝐹𝐾𝑡 + 𝜀𝑡
(𝑖)                 (3) 

 

where 𝛽1
(𝑖)

, … , 𝛽𝐾
(𝑖) are the coefficients of the K common factors for signal i, and 𝜀𝑡

(𝑖) are 
random noise as in Eq. (2). Notice that the common factors are the same for all different 
i’s, but their influences on each signal may be different due to its different physical 
properties which is reflected in the coefficients 𝛽(𝑖)

𝑠 for that signal. We want to use 
common factors to help us reduce the variations in the data without changing the base 
mean level of the data. So we require the base mean of factors to be zero.  

Under the assumption that common factors are the contamination sources, we 
remove them to clean the data. The cleaned data to be calculated are 

        𝐸𝑡
∗(𝑖)

= 𝐸𝑡
(𝑖)

− 𝛽1
(𝑖)

𝐹1𝑡 − ⋯ − 𝛽𝐾
(𝑖)

𝐹𝐾𝑡 = 𝜇(𝑖) + 𝜀𝑡
(𝑖)      (4) 

 
2.3 Parameter Estimation 
Let observed data matrix of ISE sensor measurements be 

𝔼𝑛×𝐼 = (

𝐸𝑡1

(1)
… 𝐸𝑡1

(𝐼)

⋮ ⋱ ⋮

𝐸𝑡𝑛

(1)
… 𝐸𝑡𝑛

(𝐼)
) = (

𝑬′𝑡1

⋮
𝑬′𝑡𝑛

) = (𝑬(1), … , 𝑬(𝐼)),  

where 𝑬′𝑡𝑙
 , 𝑬(𝑖) are the lth row and ith column vectors of 𝔼. 

The model parameters are  

𝔹𝐼×𝐾 = (
𝛽1

(1)
… 𝛽𝐾

(1)

⋮ ⋱ ⋮

𝛽1
(𝐼)

… 𝛽𝐾
(𝐼)

) = (𝜷1, … , 𝜷𝐾), 

𝔽𝑛×𝐾 = (

𝐹1𝑡1
⋯ 𝐹𝐾𝑡1

⋮ ⋱ ⋮
𝐹1𝑡𝑛

⋯ 𝐹𝐾𝑡𝑛

) = (𝑭1, … , 𝑭𝐾), 

 

𝝁 = (𝜇(1), … , 𝜇(𝐼))′, 
 
Σ = diag(𝜎1

2, … , 𝜎𝐼
2), 

 
where  𝜷𝑘 and 𝑭𝑘 are the kth column vector of coefficient matrix 𝔹  and common-factor 
matrix 𝔽 respectively and Σ is the diagonal variance matrix.  

Given observed data 𝔼, our goal here is to estimate 𝔹, 𝔽, 𝝁  and Σ by minimizing sum 
of squared errors in Eq. (5) 

 𝑆 = ∑ ∑ (𝐸𝑡
(𝑖)

− 𝐸̂𝑡
(𝑖)

)
2

𝑡
𝐼
𝑖=1 = ∑ 𝑠𝑡𝑡 = ∑ 𝑆(𝑖)𝐼

𝑖=1         (5)                  
 
where 𝐸̂𝑡

(𝑖)
= 𝜇(𝑖) + 𝛽1

(𝑖)
𝐹1𝑡 + ⋯ + 𝛽𝐾

(𝑖)
𝐹𝐾𝑡, and 

 𝑠𝑡 = ∑ (𝐸𝑡
(𝑖)

− 𝐸̂𝑡
(𝑖)

)
2

𝐼
𝑖=1                                             (6) 
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 𝑆(𝑖) = ∑ (𝐸𝑡
(𝑖)

− 𝐸̂𝑡
(𝑖)

)
2

𝑡                                           (7) 
 
Starting from an initial value of 𝜽 = (𝔹, 𝝁, Σ), we will do the minimization by alternately 
performing estimate factors 𝔽 given model parameters 𝜽, and estimate 𝜽 given 𝔽. 
Algorithm 1 describes the common factor approach.  
 
Algorithm 1.  Common-factor Learning with Least Square Regression 
Step I. Initialization.  

Apply statistical factor analysis to get initial estimates for  𝜽 = (𝔹, 𝝁, Σ). 
 

Step II. Iteration: repeat 1 and 2 until converge.  

1. Estimate 𝔽 for a given 𝜽 = (𝔹, 𝝁, Σ).  
a) For each t, perform weighted least square regression of (𝑬𝑡 − 𝝁)  on 

𝜷1, … , 𝜷𝐾 to get new estimates of common factors. This gives   

𝔽′ = (𝔹′Σ−1𝔹)−1𝔹′Σ−1(𝔼 − 𝕌)′,  
 

where 𝕌 = (
𝜇(1) ⋯ 𝜇(𝐼)

⋮ ⋱ ⋮
𝜇(1) ⋯ 𝜇(𝐼)

). 

b) Set trimmed mean of each factor to zero.  
For each factor, let 

𝑭𝑘 ← 𝑭𝑘 − 𝑚𝑘, 
where 𝑚𝑘 is the trimmed mean of kth factor calculated by  

𝑚𝑘 = mean{𝐹𝑡𝑘: |𝐹𝑡𝑘 − mean(𝑭𝑘)| ≤ 𝑐 ∙ 𝜎(𝑭𝑘)} 
 

Therein 𝜎(𝑭𝑘) is the standard deviation of 𝑭𝑘, and c is a constant.  
2. Estimate 𝜽 for given 𝔽.  

For given 𝔽 , fit the model in Eq. (3) for each ion i by least square linear 
regression, i.e. regress 𝑬(𝑖) on 𝑭1, … , 𝑭𝐾. This step gives the new estimates for 
𝜽 = (𝔹, 𝝁, Σ). 

 

 
Step I initializes the algorithm by the statistical factor analysis [5]. It produces 

reasonably good initial values for 𝜽 before our search starts, but it doesn’t minimize the 
sum of squared errors for the ISE signals and thus cannot fulfill our goal. We need step II 
to iteratively perform the minimization.  

Step II.1 uses estimated coefficients as known to estimate factor scores by minimizing 
𝑠𝑡 in Eq. (6) for each t, which results in the weighted least square regression. Step II.2 
uses estimated factors as knowns to get a new estimate of coefficients by minimizing 𝑆(𝑖) 
in Eq. (7) for each signal i. We alternately use Step II.1 and Step II.2 until the sum of 
squared error stops decreasing.  

Step II.1.b) makes sure the trimmed mean of each factor is zero to serve the goal of 
cleaning up the variation part without changing the base mean level of the data. Without a 
good reason, the data base mean level should not be altered by any data cleaning method 
because it would change the physical meaning of the data. Common factors are capable 
of finding spikes (see factor plots in Fig. 7). We set the trimmed mean, instead of the 
regular mean, to be zero to reduce the influence of large outliers (spikes) on the base 
mean level of factors and in turn on the base mean of the data. In our calculation of the 
trimmed mean we choose c = 2.326 which corresponds to 99%-percentile of standard 
normal distribution. 
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2.4 Cleaned data: removing the common factors  
Under the assumption of model in Eq. (3), for known 𝜽 = (𝔹, 𝝁, Σ), if we estimate 
common factors by step II(a), denote the estimates by 𝐹̂𝑗𝑡, then the cleaned data would 
intuitively be  𝐸𝑡

∗(𝑖)
= 𝐸𝑡

(𝑖)
− 𝛽1

(𝑖)
𝐹̂1𝑡 − ⋯ − 𝛽𝐾

(𝑖)
𝐹̂𝐾𝑡 by Eq. (4). The mean and variance of 

cleaned data would be 
       𝐸( 𝐸𝑡

∗(𝑖)
) = 𝜇(𝑖) 

       𝑉𝑎𝑟( 𝐸𝑡
∗(𝑖)

) = (1 − ℎ𝑖𝑖)𝜎𝑖
2 

Where ℎ𝑖𝑖 is the ith diagonal element of 𝑯 = 𝔹(𝔹′Σ−1𝔹)−1𝔹′Σ−1. So  𝐸𝑡
∗(𝑖) is unbiased 

but its variance is smaller than the true 𝜎𝑖
2. How much smaller depends on 𝔹 and  Σ. We 

want the variance to be as close to 𝜎𝑖
2 as possible, so we will do the following correction, 

 𝐸𝑡
∗(𝑖)

= 𝜇(𝑖) + (𝐸𝑡
(𝑖)

− 𝜇(𝑖) − 𝛽1
(𝑖)

𝐹̂1𝑡 − ⋯ − 𝛽𝐾
(𝑖)

𝐹̂𝐾𝑡) (1 − ℎ𝑖𝑖)⁄ .           (8) 
This way, the cleaned data is unbiased and have the right variance as well. Since 𝔹 and  Σ 
are unknown, we will use their estimated values. 
 
2.5 Determination of Number of Common Factors.  
When the number of factors increases, the total sum squared error in Eq. (5) will 
decrease. In the extreme case, the errors would decrease to zero if the number of factors 
is greater than or equal to the number of variables in the observed data. Our purpose is to 
use common factors to clean the data by removing influences that are believed common 
to variations of all ISE measurements, not the random intrinsic measurement error,  𝜺𝒕

(𝒊) 
in Eq. (1), which every device independently has. The key word here is common. So if 
adding a factor only decreases error of a single ISE measurement, this is not considered a 
common factor and is not used in the method. Our strategy is to try a range of number of 
factors starting from 0 factors, and stop when no significant multiple error decreases are 
observed. For example, the search will stop if the decrease of 𝝈𝒊

𝟐 is bigger than some 
critical value only in one ion. 
 

3. COMPARATIVE STUDIES USING SYNTHETIC DATA 

 
Our method of multivariate data cleaning is to identify the common variation part in the 
multiple series and regain the original data distribution in the forms of Eqs. (1) and (2). It 
leaves the measurement errors (white noise) alone while providing good estimates of the 
true mean and standard deviation of the estimates. In order to evaluate the performance of 
the common-factor cleaning method, we compare it with previously used methods of data 
cleaning for WCL data including the Fourier filtering approach and Kalman smoother 
approach. The Fourier filtering method gives the estimate of the underlying mean but no 
associated errors. The Kalman smoother gives both mean and associated errors but needs 
a model, if the model is Eq. (1), the Kalman smoother just estimates the mean and 
prediction error by the data mean and standard deviation of the mean. 
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In the existing WCL Martian soil 
data analysis, Kounaves et al. [2] used 
Fourier filtering method to get rid of the 
high frequency variations in WCL data. 
Toner et al. [3] used Kalman smoothing 
method with random walk plus noise 
model, i. e.: 𝐸𝑡 = 𝜇𝑡 + 𝜀𝑡   &  𝜇𝑡 =
𝜇𝑡−1 + 𝜂𝑡  .  In our comparative studies, 
we keep the same settings for both 
methods. 
 
3.1 Data Generation and 

Distribution 
In our experiments, we simulate three 
independent series from model 𝜇 + 𝜀𝑡 
with 𝜀𝑡  following a standard normal 
distribution 𝜀𝑡~𝑁(0,1) and 𝜇 =  1, 5 & 
10 respectively for the three series, each 
with 100 data points (Fig. 3a). We then 
add 1 common factor 𝐹𝑡  (Fig. 3b) to 
contaminate series 1 to 3 in increasing 
degree (𝐹𝑡, 1.5𝐹𝑡 & 2𝐹𝑡) to simulate the observed series (Fig. 3c). We then apply on the 
contaminated series the Fourier filtering (Fig. 3d), Kalman smoother (Fig. 3e) and 
common-factor method (Fig. 3f) to clean the data. Fig. 3 clearly shows the difference of 
the common-factor cleaning method from the other methods, the white noises are still in 
after common-factor cleaning. Figs. 3a and 3f illustrate the strong similarity between the 
common-factor cleaned data and the original uncontaminated data, while Fourier filtering 
and Kalman smoother (Figs. 3d and 3e) methods try to recover the means, but not the 
distribution. 

 
3.2 Mean and Associated Error 
Kalman smoother gives both mean and 
associated prediction error, we compare 
the common-factor cleaning method and 
the Kalman smoother method in terms 
of finding the mean and associated 
error. To do this, we perform the above 
mentioned simulation 1,000 times and 
apply the cleaning methods and then 
calculate the mean and associated error 
for each method. Hence for each 
cleaning method we have 1,000 
estimated means and standard errors 
(distribution of these 1000 estimated 
means and standard errors are in Figs 4 
& 5). For simplicity, the associated 
error for Kalman smoother here is taken 
as the square root of the mean Kalman 
variance which is smaller than that used 
in Toner et al. [3] because they also 

 
 

Figure 3. (a) uncontaminated series, (b) 
common-factor series, (c) contaminated 
series, (d) Fourier filtering, (e) Kalman 
smoother, (f) common-factor cleaned 
series 

 
 

 

Figure 4. Histograms of series mean. (a) 
uncontaminated, (b) contaminated, (c) 
Kalman smoother cleaned, and (d) 
common-factor cleaned series. Top to 
bottom: series 1 to 3. Red vertical line is the 
true mean. 
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included the variation in mean estimates at different time points.  
  

3.3 Estimation of Mean.  
For the three uncontaminated series, their true means are 1, 5 &10 respectively. Figure 4 
shows that the Kalman smoother cleaned series (Fig. 4c) is very similar to that of the 
contaminated series (Fig. 4b) instead of the uncontaminated series (Fig. 4a). On the other 
hand, the common-factor cleaned series is more like the uncontaminated series: both 
centered on the same true mean (Figs. 4a & 4d). This shows the common-factor cleaning 
method’s ability to remove systematic 
deviations while leaving the true 
mean unaffected.  
 
3.4 Estimation of Standard 

Deviation.  
For the three uncontaminated series, 
the true standard deviations of 100 
data point means are 0.1= √1/100 . 
Figure 5 shows the distribution of the 
standard deviation of the mean. The 
contaminated series (Fig. 5b) and the 
Kalman smoother cleaned series (Fig. 
5c) are both centered on similar 
values which are much larger than the 
true value. The common-factor 
cleaned data (Fig. 5d) have a standard 
error much closer to the true value 
(Fig. 5a), but it underestimates the 
error in series with larger variations. 
 

4. ANALYSIS OF MARTIAN SOIL DATA 
In this section, we apply the common-factor cleaning method to the Wet Chemistry 
Laboratory (WCL) data from Mars Phoenix lander mission.  
 

4.1 WCL data from Phoenix lander 
In this paper we only use the potential readings from the ISEs for ions Na+, K+, Ca2+, 
Mg2+, Cl-, ClO4

-, and Li+ obtained from the experiments performed in Cell 0 on sol 30 
(the 30th Martian solar day of the 152-sol Phoenix surface mission), Cell 1 on sol 41, and 
Cell 2 on sol 107. The data, prior to application of our common-factor algorithm, from 
these cells is displayed in Fig. 2.  For each Cell two regions, confined between each pair 
of vertical dashed lines in Fig. 2, were treated with our common-factor algorithm.  The 
first region represents the calibration interval during which the ISEs were calibrated using 
a solution of known concentration, described in more detail elsewhere [2].  The second 
interval represents the sample interval and was taken after the addition of the ~1cm3 of 
Martian regolith to the WCL cells. The calibrant and soil sample intervals chosen here 
are the same as that used in Kounaves et al. [2]. It is believed that the equilibrium were 
reached and maintained in these two intervals, and they represent the most stable and 
reliable portions of the data. Same time intervals also make comparison with Kounaves et 
al. [2] easier. 

 
 

Figure 5. Histograms of standard deviation of 
the estimated mean. (a) uncontaminated, (b) 
contaminated, (c) Kalman smoother cleaned, 
and (d) common-factor cleaned series. Top to 
bottom: series 1 to 3. Red line marks the true 
standard deviation of the mean 
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Previous analysis of the WCL data has employed Fourier filtering [2] and 
Kalman smoothing [3] techniques to reduce the noise associated with the data sets. We 
will compare our results with previous results.  
 
4.2 Number of Common Factors  
The appropriate number of common 
factors to use in our algorithm is 
determined by considering the reduction 
in the standard error associated with the 
introduction of an additional common 
factor (strategy is described in Section 
2.5). Fig. 6 displays the standard error for 
each ISE on each sol as a function of the 
number of common factors applied.   

An overall reduction in standard error 
occurs for the majority of ISEs across all 
three sols with the addition of the first 
two common factors.  Yet, upon the 
addition of the third common factor only 
one ISE error reduction is observed, 
suggesting the use of two common 
factors in our method.    

The use of two common factors also make intuitive sense if we consider that the 
common variations are likely related to two primary sources: electronic factors due to 
instrument malfunction, and physical factors relating to the combined effects of the 
physical environment inside the beaker.  Therefore, we employ a two-common-factor 

algorithm to the WCL ISE data.  
4.3 Common-factor Data 

Cleaning  
The two-common-factor 

algorithm was applied to the 
calibration and sample intervals of 
the WCL ISE data from cells 0, 1, 
and 2.  The unprocessed data, the 
common-factor cleaned data, and 
the extracted common factors for 
each cell are displayed in Figures 7-
9.  The two-common-factor 
algorithm application to the WCL 
ISE measurements resulted in:  

a) A reduction in variation 
compared to the original data. The 
reduction is more obvious for 
noisier data like that in cell 2 sol 
107 in Figure 9. 

b) Removal of spikes in the 
signal that occur simultaneously in 
multiple series. 

 
 

Figure 6. Standard error vs. number of 
factors. 

 
 

Figure 7. For Cell 0 sol 30 data (better viewed in 
color). Top: ISE measured potential vs Time 
(SCLK) for original data; middle: ISE measured 
potential vs Time for common-factor cleaned 
data; bottom: the two common factors found. 
From left to right: for calibrant data, sample data. 
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c) Minimal deviation in mean 
value of potential from the original 
data. This is intentional (Algorithm 1 
step II.1.b) as we want to clean up the 
variation part, not the mean level part.  
 

Using the common-factor 
cleaned data, the total ion 
concentrations and associated 
uncertainty are calculated (Table 1 
and Figure 10) and compared with 
concentration estimates from 
previous studies. The new ion 
concentrations are determined using 
the mean of the common-factor 
cleaned data and the uncertainty was 
calculated based on the standard 
deviations for the newly cleaned data 
plus the error values using the 
standard error propagation equation as in [2]. 

The highlighted values in Table 1 are the estimated total concentrations that are 
outside of the previously calculated concentration ranges: pink highlights ion 
concentrations outside Kounaves et al.’s estimated range [2], and blue highlights values 
outside Toner et al.’s estimated range [3].  The original analysis of the WCL data by 
Kounaves et al. used asymmetric errors to address the apparent bias in the signal noise. 
We report a symmetric error for our analysis, as our common-factor algorithm 
automatically accounts for this bias allowing the use of the standard error as an estimate 
of the uncertainty. 

The concentration ranges estimated by our common-factor method overlap with the 
ranges estimated by the original 
Fourier filtering method for most 
ions in Cell 0 and Cell 1. The notable 
exception is the case of the Ca2+ ISE 
which is reported by our common-
factor method to be significantly less 
than originally determined for all 
cells.  This extreme deviation is due 
to the effect of the presence of 
ClO4

- on the Ca2+ sensor. As 
described in [2], the potential used to 
determine the concentration of Ca2+ 
is calculated based not only on the 
potential measured by the Ca2+ 
sensor, but also the concentration of 
ClO4

- and the resulting changes in 
the reported Ca2+ concentration is 
affected by altered values for both 
measurements.  

 
 

Figure 8. For Cell 1 sol 41 data. Same 
description as in Figure 7 

 
 

Figure 9. For Cell 2 sol 107 data. Same 
description as in Figure 7 
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For Cell 0, all 
three estimates agree 
primarily except 
Ca2+. For Cell 1, 
while our results are 
primarily in 
agreement with 
those reported by 
Kounaves et al., they 
differ dramatically 
from those reported 
by Toner et al.  This 
is likely due to the 
handling of 
complications that 
arose during the 
initial calibration 
period where it is 
believe that the 
calibrant crucible 
intended to deliver a 
known concentration 
of ions to the 
leaching solution did 
not fully dissolve 
[2].   

The analysis 
conducted in Cell 2 
(Sorceress 2), shows 
the opposite trend, 
wherein our new 
concentration 
estimates differ 
significantly from 
Kounaves et al, yet agree with Toner et al.  Deviation from the originally reported values 
in this case is not unexpected as the data returned from the Sorceress 2 analysis exhibited 
the largest degree of noise.  That our newly reported values agree with the results 
published by Toner, suggests that these values are reasonable recalculations based on the 
denoised data set. 

Figure 10 shows the ion concentration estimates of 3 cells/sols side by side for the 2 
cleaning methods. The 3 cells/sols represent 3 different surface and depth locations  on 
Mars. We can see that  

• Fourier filtering cleaning method: While the mean concentration of ions varied 
somewhat between samples, the large uncertainty associated with each estimate 
resulted in an interpretation of uniformity of the 3 locations.  

Table 1: Estimated total ion concentrations with associated 
errors calculated with our common-factor method, with 
Fourier filtering [2], and using Kalman smoothing [3].  
Highlighted cells fall outside of the error range reported in the 
initial analysis. 
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• Common factor cleaning method: The reduction in uncertainty revealed a 
heterogeneous distribution of ions both vertically and horizontally at the Phoenix 
landing site, with a higher concentration tendency toward the surface sample, sol 30 
(Red Rose). 

 

5. CONCLUSION AND FUTURE DEVELOPMENT 
 

In this paper, we present a new common-factor method for reducing unwanted 
variations from common causes in data signals. The method is easy to use, intuitive and 
effective as a more unified approach for cleaning WCL data. When used on WCL data, 
this new cleaning method reduces the uncertainty and reveals a heterogeneous 
distribution of ions both vertically and horizontally at the Phoenix landing site, with a 
higher concentration tendency toward the surface sample.  

To date this common-factor algorithm has been successfully applied to the WCL 
experiments, as demonstrated, and would likely prove successful in other cases of data 
interpretation where the results are linked together in a sensor array and subject to 
extensive but unknown systematic noise. Sensor arrays are commonly employed in the 
field of environmental monitoring, wherein several different measurements are obtained 
simultaneously and the combination of data is used to obtain otherwise inaccessible 
information about the system. 

When these sensor arrays are employed in extreme and remote environments, the data 
obtained may exhibit extensive noise that, while unknown in source, affects all individual 
sensors to varying degrees.  This new common-factor method can aid in reducing this 
systematic noise without a definitive understanding of the source and without degrading 
the physical meaning of the signal.  
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