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Revised Abstract. Defining "good" histograms often has focused on asymptotic results 
about bin width, and various integrated measures of error, among them mean integrated 
squared error, “MISE.”  MISE leads to a statistical objective function to optimize with 
data leading to a "best" histogram density and equivalent frequency histogram.  MISE 
optimal histograms have been approximations, not exactly correct MISE histograms. 

Now an exact calculating procedure using histogram shape level sets shows that 
bin edge discontinuity significantly interferes with achieving useful approximations.  
Exact MISE and other kinds of good histograms can be obtained so that error in 
approximated MISE histograms for small to moderate samples size can be assessed. 

Apparently little thought has been given to exact calculation of histograms, for 
example, MISE minimizing histograms, because histograms often are so easy to 
construct.  However exact calculations show that reasonable approximations are very far 
from exact, even from the perspective of just shape. If there is any interest in histograms 
that really correspond to various statistical criteria, then, exact - correct - procedures 
should be used for calculating histograms that are optimal for various statistical criteria 
such as MISE, maximum likelihood, method of moments, shape stability, other least 
squares and some model parameter estimates using uniformly grouped data, for example 
min chi-squared estimates of normal parameters. (K. Smith, 1916.) 

 

 
1. Introduction  

Histograms are widely used for teaching, exploratory data analysis, looking at residuals, 
and reports of all kinds.  But what is a good histogram?  
 
For roughly the last 66 years the focus in finding “good” histograms has been on bin 
width.  D. W. Scott (1992) and several of Scott’s cited sources explain why.  In this 
environment, although not a bin width rule, (actually a bin width and location rule), 
MISE histograms often have often been considered.  Also maximum likelihood, ML, has 
been considered, although not extensively and not in comparison with MISE. 
 
 “ ‘Exact’ Calculation…” in the title of my JSM 2016 contributed paper may not have 
been the best word, although it is not far off the mark: Replace “Exact” with “Correct.”  
Many decimal places in computer calculations suggest that calculated numbers usually 
are connected sufficiently to initial values to be considered exact*.  Reasonable, sensible 
histogram calculation procedures lead to results that are exact in this sense and expected 
to be good-enough approximations. But in fact they are not good enough because of bin 
edge discontinuity and arbitrary restrictions of domains of optimization that exclude true 
optima.  (*Ensuring that bin edges do not equal data values ensures this kind of 
exactness.)  
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1.1 Whatever the question? …Exact..? or …Correct..? – What are the answers? 
 
●          In the absence of a maximum bin width restriction, MISE can over smooth –  
             sometimes only one bin  
●          ML for prescribed max number of bins seems to work pretty well, does not over   
             smooth 
●          For some data, MISE and ML histogram densities are identical – densities, not    
              just shape, and global, not local 
●          (Almost all shape-local MISE and ML histogram densities are identical.  
             Rank orders differ, so global optimized MISE and ML densities often, but not  
             always, differ.)  
●          Half-open bin structure and bin edge discontinuity matter.  Minimum bin width  
             does not exist.  Focus on infimum bin width, inf MISE obj ftn value, sup ML. 
●          Can’t omit optimal points from domains of optimization. Current practice does. 
●          Other answers not included in JSM 2016 presentation include elegant, exact  
              shape stability analysis of bin widths for a range of bin width values, not                   
              approximate grid search and polynomial model of stability, as presented by  
              Simonoff, J. and Udina, 1997.   
●           Many kinds of good histograms can be calculated exactly via shape level sets:                           
              i MISE, ii ML, iii Method of moments, iv shape stability. Uniform bin width      
              histogram shape reversal relates to data symmetry.  Mode inversion can result  
              from different uniform bin width and location. (Table 2b)   
●          Do other data aggregating graphic optimizations overlook boundary  
             discontinuity similar to bin edge discontinuity?  Are there other arbitrary  
             restrictions of optimization domains? How should data aggregating graphics  
             be compared and correctness assessed? 
 
1.2 Three red flag DEFICIENCIES in current practice: 

1. Search domain for h ≤ range of data excludes some optima. 
2. Bin edges ≠ any data values, so some optima are not found. 
3. All shapes not considered. 

Too often these lead to approximations that are not even close to exact correct values.  
 
1.3 MISE and ML objective functions.  
Histogram shape: Consider data xi, uniform bin width, h, location anchor point, to      
(xmin – h < to ≤ xmin) histogram half-open bins, [to + (k– 1)h, to + kh), k = 1 to K, with xmax 
< to + Kh.  The shape of the resulting histogram is the list of bin counts, νk, k = 1 to K, 
beginning with the first positive bin count, ν1, and ending with νK.  For a shape, νk, k = 1 
to K, and bin width, h, an MISE histogram objective function is given by (1), Scott 
(1992), p. 77, (3.52), as well as others.   
 
         UCV (h) ≡                                                                                               MISE       (1) 
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Almost always (1) is negative and UCV(h) would be minimized by minimum bin width if 
minimum bin width existed. Due to bin edge discontinuity and right open bins, for all 
shapes, minimum bin width, hmin, does not exist. So (1) is infimized by infimum h, hinf. 
(See Appendix B.2.) (Sometimes it is helpful explicitly to emphasize all dependencies in 
(1) by UCV(to, h; xi) and νk(to, h; xi).) 
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Elementary likelihood, (3), is the familiar product of density evaluations, (2), at each 
sample point.  In (2) )[ ixkv  is the bin count for the bin that contains xi.  For some bins,        
νk

νk = 00 ≡ 1. 
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For a shape, likelihood, (3), is positive.  Like MISE, L(xi; to, h) would be optimized 
(maximized) for each shape by minimum bin width, if minimum h existed. Instead, 
infimum h, hinf, leads to supremum L(xi; to, h). 
 
Notice that infimum bin width for a shape is achieved for uniform width bin edges that 
equal at least two data values. To see this, note that if bin edges equal at most one data 
value, then there exist smaller width uniform width bins leading to the same bin counts. 
Current practice often excludes or fails to include explicitly bin edges that equal any data 
values. Hence optimizing values are missing from the domain of optimization.  And this 
has consequences: Reasonable approximation methods that often work don’t work here 
and are not even close.   
 
1.4 Estimation error, Calculation error 
Before explaining exact – correct - calculation via shape level sets, we give examples to 
motivate pursuing exact correct calculations. First we review ideas about error and how 
to compare approximations of optimal MISE (and ML) histograms with exact optimum 
infimum for (1) (and supremum for (3)). 
 
To be very clear, first distinguish between estimation error and calculation error.  
Estimation error relates to estimator variability and associated or assumed distribution, or 
some understanding of estimator variability and connection to a sampling distribution.  
Estimation error can lead to estimators, such as MISE histograms, for example. 
 
In contrast, calculation error often is assumed, apparently, to be insignificant on account 
of many decimal places of computer accuracy, or intractable, or one way or another not 
worth considering for calculating histograms.  A remainder term or some numerical 
analysis handle on calculating error is missing.  However now, using uniform bin width 
histogram shape level sets, MISE, ML, MOM and shape stability histograms can be 
calculated correctly, exactly. (I.e. Correct calculations should be done exactly, whereas 
exact calculations are not necessarily correct.) 
 
1.5 Assessing calculation error via shape and density rank  
Approximate histogram density and frequency histograms may be compared with exact  
by ranking histogram densities via values for objective functions for MISE, (1), and 
maximum likelihood (3).  Consider a list of histogram density shapes, bin location, width 
values, and data: (νk

q/nh q), (to
q, h q), q = 1 to Q, xi, i = 1 to n. Calculate objective function 

values (1)q, (3)q and then sort histogram densities νk
q/nh 

q, according to (1)q, (3)q.  For 
MISE smaller (1)q, more negative is better; for ML larger (3)q, more positive is better. 
 
 

Each shape corresponds to many bin location and width values, namely, a shape level set. 
Since (1), (3) are strictly monotone in h, they lead to optimal density limiting values, 
(to

hinf, hinf), for each shape. Infimum bin width, hinf is associated with unique location, to
hinf.   
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Histogram approximation error can be approached primitively, simply as the number of 
shapes ranked ahead of an approximate density, leading to the exact optimal histogram 
density and shape.  There are no assumptions or knowledge about distributions of 
approximation rank error.  Error is shown as the number of shapes by which an 
approximation differs from exactly correctly determined estimates, ranked by a statistical 
objective function value.   
 
 

Rank each shape according to its best limiting value for (1) and (3).  This leads to shape 
rank.  The shape rank of a histogram density approximation is at least as good and almost 
always better than the density rank because MISE (or ML) histogram approximations 
almost never are the infimum MISE value (or sup ML value) because bin edges rarely 
equal any data values. For an approximate MISE histogram, since the optimization 
domain often is truncated arbitrarily (by excluding bin edges that equal data values), the 
optimal objective function that corresponds to only the shape will be better than the 
objective function value for the shape-sub-optimal histogram density.  That is, bin width 
for a shape MISE sub-optimal density will be greater than the infimum bin width for the 
shape. 
 
MISE shape rank of a histogram density is the rank of the infimum MISE value for the 
shape, not the rank of the MISE value.  The MISE density rank of a density is simply the 
rank among all MISE shape infimum MISE objective function values.  The MISE 
histogram for data, xi, is the density for the shape with minimum infimum MISE value (1) 
among all uniform bin width optimal histogram MISE values for various shapes. 
 
Tables 1abc, 2ab show MISE and ML densities as equivalent frequency histograms, (νk) 
instead of density histograms (νk/nh).  Often this is done, is current practice.  
 
Tables 1abc focus on a sample having identical MISE and ML histogram densities.  
(Note that almost all shape-local MISE and ML histogram densities are identical.) 
 
Tables 2ab show two one-bin MISE histograms.  Beginning a search with the bin width 
at most ½ the data range is a restriction of the optimization domain that can lead to 
significantly sub-optimal MISE histograms and mislead regarding over smoothing for 
MISE histograms.  (Note that one bin histograms are the easiest situations for 
understanding that minimum bin width does not exist, only infimum.)  
 
Tables 1abc, 2ab are  easy to verify and challenge claimed superiority of MISE over ML 
histograms.  
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    Table 1a.           Identical MISE and ML uniform bin width densities  
       Shape comparisons and rankings for Rice Stats website MISE (1) 

    Scott et al (circa 2000); Shimazaki MISE (2007); Exact MISE (1) & Exact ML (3) 
  1. Silica sample, Scott 1992  p 279                          n = 22                    
        MISE   MISE    
      Histogram    Shape   Density    
  Histogram Calculator    Shape    Rank   Rank    
  A. Rice… MISE approx (1)[12] (4,0,7,2,8,1)     14   26   
  B. Shimazaki approx MISE[15] (3,1,1,6,2,1,8) 3   ≥ 3   
  C. Exact MISE (1) (1,3,0,6,3,1,8) 1   1   
  D. Exact UBW ML (3) (1,3,0,6,3,1,8) 1   1   

 
 

Scott 1992, [13] p 279, n = 22 “B.7 SILICA DATA Percentage of silica in 22 
chondrites meteors.”  20.77  22.56  22.71  22.99  26.39  27.08  27.32  27.33  27.57  
27.81 28.69  29.36  30.25  31.89  32.88  33.23  33.28  33.40  33.52  33.83 33.95  34.82   
Source Scott, D. W. 1992, from Ahrens (1965) and Good and Gaskins (1980). 
(Bold underlined values are also bin edges for exact MISE and ML bins.)  
 
 

 

  
    Table 1b.    Approximate and Exact MISE   
     Bin counts,  bin parameter values, and MISE Obj Ftn Values 

 Shape - bin counts - νk       to          h    MISE Obj ftn* val 
  A.         Rice… MISE  (4,0,7,2,8,1) 14.8734 2.807 -0.0741
  B.    Shimazaki MISE             (3,1,1,6,2,1,8) 20.77 2.00714 -0.08333
C&D Exact MISE(&ML)             (1,3,0,6,3,1,8) 20.0675 2.1075 -0.08366
     

 Note.  The objective function (1) for Rice…, [12] & Appendix C is (3.52), p 77, Scott 1992. 
 Rice… MISE shape, νk, (to, h) bin parameter values and objective function values are from 
 Appendix C, that shows a Rice Stats website display.  For Shimazaki, objective function (1) 
 Is evaluated from Shimazaki website values for νk; (to, h), and (1), not an expression in [15]. 
 Silica Data 
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    Table 1c.  Histogram shapes that rank ahead of Rice Stats website MISE shape 
                      among 435 shapes of at most seven bins for the Silica data. 
                                                     MISE         Shape 

Row  Shape  Obj ftn(1)  % #1obj ftn value   
C, D   1.  (1, 3, 0, 6, 3, 1, 8) -0.0837 100.00% EXACT MISE(1)  & M L (3)  ML #1 
           2.  (4, 0, 7, 2, 9) -0.08334 99.62%      ML #5 
    B    3.  (3, 1, 1, 6, 2, 1, 8) -0.08333 99.61% Shimazaki MISE [15]   ML #4 
           4.  (1, 3, 1, 7, 1, 8, 1) -0.08292 99.12%     ML #16 
           5.  (1, 3, 1, 6, 2, 1, 8) -0.08185 97.85%     ML #7 
           6.  (4, 0, 8, 2, 8) -0.0807 96.46%     ML #8 
           7.  (2, 2, 1, 6, 2, 1,8)* -0.08063 96.38%     ML#10* 
           8.  (4, 0, 6, 3, 1, 8) -0.08012 95.77%     ML #2 
           9.  (4, 18)  -0.07997 95.59%     ML > #21 
         10*.(2, 2, 1, 6, 2, 1,8)* -0.07964 95.20%    ML#12* 
         10.  (5, 17)  -0.0795 95.03%     ML > #21 
         11.  (5,16,1)  -0.07902 94.46%     ML > #21 
         12.  (4,17,1)  -0.079 94.43%     ML > #21 
         13.  (4, 0, 6, 2, 2, 8) -0.07899 94.42%     ML #3 
   A   14.  (4, 0, 7, 2, 8, 1) -0.07878 94.17% Rice… MISE(1) [12]  ML#11 
(* #10* same as #7; from a level set edge.  Level set edge min h > level set min h.) 

 

 

 

    Table 2a.                            One bin MISE example 1 
       Shape comparisons and rankings for Rice Stats website MISE (1) 

   Scott et al (circa 2000); Shimazaki MISE (2007); Exact MISE (1) & Exact ML (3) 
   Weber 2008 Data #2                            n = 22                    
        MISE   MISE    
      Histogram    Shape   Density    
  Histogram Calculator    Shape    Rank   Rank    
  A. Rice… MISE apprx (1) [12] (4,6,0,6,4)      7   21   
  B. Shimazaki apprx MISE [15] (10,10) 6   ≥ 6   
  C. Exact MISE (1) (20) 1     1   
  D. Exact UBW ML (3) (5,5,0,5,5)     18   18   

 
 

Weber 2008 Data #2, n = 20 - exactly symmetric data:  2.05, 2.27, 2.50, 2.95, 3.18, 3.41, 
3.64, 3.86, 4.09, 4.32, 7.73, 7.50, 7.05, 6.82, 6.59, 6.36, 6.14, 5.91, 5.68, 7.95 
 

Exact MISE bins, Weber 2008 Data #2        
to  2.05         
h  5.9         

Bin edges:  2.05 7.95 13.85       
Data Includes xmin = 2.05,   7.95 = xmax, h  ↔ range  for an MISE 

        1 bin  Shape
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    Table 2b.                            One bin MISE example 2 
       Shape comparisons and rankings for Rice Stats website MISE (1) 

   Scott et al (circa 2000); Shimazaki MISE (2007); Exact MISE (1) & Exact ML (3) 
   Weber 2008 Data #3                           n = 12                    
        MISE   MISE    
      Histogram    Shape   Density    
  Histogram Calculator    Shape    Rank   Rank    
  A. Rice… MISE apprx (1) [12] (6,6)       6   10   
  B. Shimazaki apprx MISE [15] (6,6)  6   ≥ 6   
  C. Exact MISE (1) (12) 1     1   
  D. Exact UBW ML (3) (3,0,3,1,2,3)     53   53   

 
 
 

Weber 2008 Data #3, n = 12 - shapes include (1,2,3,3,2,1) and (3,2,1,1,2,3): 
0.37, 1.13, 1.23, 2.25, 2.35, 2.45, 3.37, 4.37, 4.47, 5.37, 5.47, 5.61 
Exact MISE bins, Weber 2008 Data #3        

to  0.37         
h  5.24         

Bin edges:  0.37 5.61 10.85       
Data Includes xmin = 0.37, 5.61 = xmax, h  ↔ Range for a  MISE 

        1 bin Shape
 

2.  Uniform Bin Width Histogram Shapes, Shape level sets, inf MISE, sup ML   
 

Obtaining the above examples requires correct calculation of MISE and ML enabled via 
uniform bin width histogram shape level sets.  Uniform bin width histogram shape level 
sets are the core tool for correct, exact calculation of MISE and maximum likelihood 
uniform bin width histograms.  Also an optimum cannot be expected unless all histogram 
shapes are considered. How can we be sure of considering every shape? 
 

2.1  All possible UBW shapes, Histogram shape level sets, inf MISE, sup ML  
Appendix B.1 describes a compact subset, a domain of optimization, Do⊂ {(to, h) | h > 0}.  
Do includes subsets* of (to, h) values that lead to shapes of one or two bins, and all of the 
(to, h) values for shapes of three and at most K bins. (Compactness is not necessary here.  
Think of compactness here as nothing more than capitalizing the first letter of a sentence.  
Further, compactness here does not ensure the existence of maximum or minimum values 
for MISE and ML objective functions, which I already have pointed out do not exist.) 
(*Arbitrarily wide bins are excluded by an upper bound that exceeds the range of the data.) 
 

Convex polygon shape level sets partition Do.  Partitioning Do ensures that every shape is 
represented by a shape level set.  For data, xi, the list of S possible uniform bin width 
histogram shapes is determined from selecting an interior point from the sth-shape-level-
set, s = 1 to S, (to

int,s, hint,s), and calculating the histogram for data xi with half-open bins 
[to

int,s + (k–1)hint,s, to
int,s + khint,s), k = 1 to K. 

 

How can hinf be determined for each shape?  The shape level sets are specified by vertices 
of the convex polygon shape level sets, so it is as simple as selecting the bin width from 
the vertex with smallest bin width.  Since this is an infimum bin width, not minimum, the 
associated shape is determined from a shape level set interior point, for example the 
average of the vertices, or average of any three or average of any two non adjacent 
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vertices.  Using hinf, to
hinf, and bin counts, νk

s for the shape leads to inf MISE and sup ML 
objective function values.  
 

2.2 Shape Level Sets 
Figure 1, below, illustrates a shape level set. How are shape level sets obtained?  
Appendix B.1 describes subset Do containing (to, h) values leading to uniform width bins 
that put xmin in a first bin, etc.  Do is partitioned into shape level sets by n x K shape level 
set boundaries, (4ab), for K ≡ a max number of bins, n = sample size.  
 
 

                                        data value = bin edge                                              (4a) 
 

                                xi = to + kh, k = 1 to K, i = 1 to n                                     (4b) 

 

This leads to convex polygon shape level sets specified by their vertices, (to, h)s,v, for the 
sth shape, s = 1 to S ≡ number of shapes, and v = 1 to Vs ≡  number of vertices for the sth 
shape.  Shapes and level set vertices are organized and presented lexicographically sorted 
on the number, Ks, of bins actually required for the data, then bin counts, νs,k .  
Concatenating Ks, νs,k with vertices (to, h)s,v, v = 1 to Vs, leads to (5). 
 

 (5)                    {(Ks, νs,k , (to, h)s,v) | k = 1 to Ks , v = 1 to Vs, s = 1 to S }                  
 

                          S ≡ number of shapes, K ≡ max number of bins 
                          Ks ≡ number of bins for sth shape ≡ index of bin for xmax , Ks ≤ K) 
 

                          Vs ≡ number of vertices for sth shape 
 

Matrix (5) is right ragged S x (1 + Ks + Vs), S rows and (1 + Ks + 2Vs) entries in each row. 
 

h, bin width 

 to, bin       
 location  

xmin   

to + k2h = xj  

to + k3h = xp 
to + k1h = xi 

                  Figure 1 
      Shape  Level  Set 

xmax   

to + k4h = xq 

         Shape Level Sets are like this,  
         but not always parallelograms.      
         Here k1 = k2 < k3 = k4 and xi < xj < xp < xq 

Each shape level set vertex corresponds to (to, h) values 
leading to at least two bin edges that equal data values. 
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Summary of Shape Level Set Procedure. 
To obtain all shapes for a data collection, construct Do, use the lines (4b) to calculate 
shape level set vertices, (to,h)s,v, then level set interior points, (to, h)s,int, then bins            
[to,s,int +(k –1)hs,int, to,s,int + khs,int), and bin counts, νs,k for all of the level sets. This 
determines Ks, νs,k , (to, h)s,v for (5).  ( (to, h)s,int is the easiest way to calculate νs,k without 
details about half open bins, min h, inf  h, etc.) 
 
 

Lists of all shapes show extreme histogram shape variability and the challenge of 
defining “good” histograms.   
 
 

3  Concluding Notes 
 

3.1 Histogram Objects and Methods  
Histogram calculations and shape level sets should be viewed in a larger context shown 
by Table 3.  The main focus has been situation A and exact calculation of MISE and ML 
histograms. Situation D is the easy, well known histogram construction.  Situations B & 
C do not solve any pressing problems but can be used to construct examples or confirm 
infeasibility of combinations of UBW histogram shapes.  For example, Weber 2008 Data 
#3 for Table 2b was created via method B.  (That is, there are numbers leading to shapes 
that include (1,2,3,3,2,1) and (3,2,1,1,2,3).  But the linear program leading to uniform 
histogram shapes that include (1,2,3,4,4,3,2,1) and (4,3,2,1,1,2,3,4) is not feasible.) 
 

Table 3 Histogram objects and exact methods 
 

    Known  – have    Unknown – want      Method – use  
A. data xi  All uniform bin width Shapes, vk A. Shape level set algorithm 
B. {shapes vk}  Data x I;(to,h) & bins   B. Simplex algorithm 

C. data xi; shapes vk (to, h) & bins     C. Level set or simplex algorithm 
D. data xi; (to, h) Bin frequencies vk   D. Familiar histogram construction  

 
 

3.2 Conclusion 
It is a puzzle that this elementary but embracing analysis did not appear earlier.  Upon 
noticing many distinguished authors cited in Scott 1992, etc., a tempting explanation is 
simply Little, R. J.  (2013) “In Praise of Simplicity not Mathematistry!  Ten Simple 
Powerful Ideas for the Statistical Scientist” Journal of the American Statistical Assoc. 
108:502, 359-360.  DOI: 10.1080/01621459.2013.787932. (JASA Most Read 4/2015.).   
 

This effort began with a simple question: “For data, xi, what uniform bin width histogram 
shapes are possible?”  That is, what are the possible uniform width bin counts? I expected 
to look up something, or at least find related prior work.  Most references below were  
examined with the narrow objective of finding the answer to this question or relevant 
discussion.  The usual criterion of using a result does not apply to almost all of these 
sources.  I looked at them and none address the question “What shapes are possible?”  
My answer to that question naturally lead to “So what?”  Exactly calculating many kinds 
of histograms and discovering that reasonable approximations do not work addresses “So 
what?”  Or as Don Saari might abbreviate: WGAD (Saari, 1995, pp 102, 228.)  
 

Regarding Saari, 1995, this elementary exploration into calculating histograms has been 
inspired at least a little by the general theory achieved via elementary methods (i.e. simple 
linear algebra) presented in Saari, 1995.  Another general and relatively transparent 
result obtained by elementary mathematics (i.e. calculus) is Weber, J.S. 1991. 
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Regarding my 2002 voting theory paper, “"How many voters are needed for paradoxes?" 
Economic Theory, 20, 41-355 (2002)”, situation B, Table 3 constructing histogram 
examples via the simplex algorithm is similar to constructing voter preference profiles via 
integer programming. 
 
Regarding my 1991 paper, it extends discussion of densities for random variables x such 
that f (x) has a prescribed density, where f is an arbitrary “nice” function, R 

1→ R 
1. 

Possibly the first such result is characterization of densities that x can have if f (x) = x 
2 is 

chi-square 1 d.f.  The core tool is inverse images of intervals for which f- is strictly 
monotone,  f-

 
– 1(a, b) = (  f-

 
– 1

 (a),  f-
 
– 1

 (b)) or (  f-
 
– 1

 (b),  f-
 
– 1

 (a)), or interval inverse images 
of points where f  is constant. If  f is constant on an interval, then a = b and the inverse 
image of a is an interval.  Needed along with inverse images are generalized inverse 
functions: R 

1→ R 
1:  f-

 ( f--1
 ( f-(x))) = f-(x).  This leads to generalizations of results of cited 

papers of S. Geisser (1966, 1973), C. Roberts (1966, 1971); and, overlooked in my 1991 
paper, H. W. Block (1975); Funk & Rodine (1975), B. Ramachandran (1975), maybe     
E. S. Key (1994).  My generalizations are non-trivial: i a symmetry requirement is 
eliminated, ii gamma families of densities are replaced by arbitrary densities. 
 
Why consider only piecewise differentiable functions that are strictly monotone or 
constant on intervals? Assigning the uniform density on [0,1] to the absolute value 
function on [–1, +1] and appealing to a familiar non measurable set found in many 
introductions to measure theory leads to a non-measurable density (with apologies for the 
term “non-measurable density”).  For this reason focusing on absolute continuity seems 
arbitrary.  Either be as general as possible and include non-measurable densities, or keep 
the discussion as simple as possible and work with piecewise differentiability and the 
simplest kinds of integrals.  
 
And the point is?  The core tool for exact – correct – calculation of histograms is shape 
level sets.  Shape level sets are inverse images of uniform bin width shapes – bin counts – 
in {(to, h)}.  Is the use of inverse images to attack problems with calculation of 
histograms, and the main question I consider in my 1991 paper as far as the similarity 
goes?  Don’t know. For now, this is just a noticeable coincidence. 
 
Regarding my 1991 paper, not being distracted by absolute continuity etc. gives a view of 
transformations of one random variable via contractions, dilations and step functions.  
That is more transparent than (or maybe just different from) functional analysis 
approaches. 
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Appendices 

Appendix A Using histogram shape level sets for many histogram estimators 
 
Appendix B: Some details, some proofs  
     Appendix B.1 Domain Do 
     Appendix B.2 Showing minimum bin width does not exist, use infimum bin width 
     Appendix B.3 Over-smoothing, MISE and ML - Bin width, number of bins rules 
     Appendix B.4 Data symmetry, shape reversals 
 
Appendix A Using histogram shape level sets for various histogram estimators 
In the main text we focus on MISE histograms provided by two easily accessible website 
MISE histogram calculators and compare with correctly calculated MISE and maximum 
likelihood uniform bin width histograms.  This is meant to show that inaccuracies in 
current practice are too great to ignore.  However uniform bin width histogram shape 
level sets are widely applicable to exact calculation of many kinds of histograms.  
Examining the Rice Stats website and the Shimazaki website suggests that there probably 
would be unacceptable inaccuracy in other reasonable approximations.  For example, the 
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1916 dissertation of K. Smith is suspect because of the reasonableness of R. A. Fisher’s 
objection as well as the clear inability in 1916 to do easily approximate calculations like 
those performed by the Rice Stats website and Shimazaki websites.  Another example, 
Simonoff and Udina shape stability analysis emphasizes how simple exact calculations 
are via shape level sets.  (The situations considered below connect to published or evident 
histogram situations.) 
  
MISE – The MISE objective function depends on bin width and shape is almost always 
negative and infimized at the infimum bin width.  The global MISE histogram density is 
associated with the minimum of all of the local shape MISE infima.(For each shape, the inf 
bin width associated with a unique location (unique up to integer multiples of bin width.) 
 
Exact calculations identify the inf bin width (to, h) vertex for each shape level set.  Shape 
is determined from any level set interior point.  Also see note in Shape Stability 
discussion combining shape stability with MISE. 

 
ML – The ML situation is identical to MISE except that the ML objective function is 
always positive.  Like MISE, ML is optimized for a shape for inf bin width for a shape.  
The global ML density is the density associated with the maximum among the local 
shape ML objective function suprema.  (J. R. Thompson and R. Tapia (1990) show that 
among step function densities the usual histogram density is maximum likelihood.)  
  
MOM – Method of Moments may be more detailed than expected. 
See: https://arxiv.org/ftp/arxiv/papers/1606/1606.04891.pdf.  (Recently a journal editor 
wrote that Table 1ab is unclear.  So anyone looking at my arxiv MOM paper must figure 
out Table 1ab.  That’s not the whole story, but certainly a big part. Warning: My arxiv  
paper may state incorrectly that sometimes bin width minima exist.  If so, that’s an error 
that I have not corrected.  
 
In the same two dimensional {(to, h)} plane, the MOM mean and variance constraints are 
piecewise straight lines.  (The variance level curves – graphs – are straight lines.  The 
spacing of the lines is nonlinear in h but does not depend on to.)  Shape level sets make 
the situation clear for UBW histogram densities, relative frequency histograms, and 
frequency histograms 
 
MOM is not the same for frequency histograms, relative frequency histograms and 
histogram densities.  For these three kinds of MOM histograms, for each shape, the mean 
and variance straight line level curves may intersect the associated shape level set, or not, 
and may intersect each other inside or outside of the associated shape level set.  A mean 
or variance level curve outside of a shape level set corresponds to (to, h) values that lead 
to a different shape.  For a shape, if a mean or variance level curve intersects its shape 
level set, then there is an adjustment of the bins so that grouped data, multinomial relative 
frequency or histogram density mean or variance or both equal the sample mean and 
variance.  This does not quite clarify all of the possibilities.   
 
(MOM density histograms, frequency histograms and relative frequency histograms do 
not freely scale to one another because the definition of moments is not the same for 
histogram densities, multinomial models, and grouped data frequency histograms. This is 
different from the MISE and ML presentation of density histograms as frequency 
histograms. With that said, I suppose a MOM histogram density could be presented as a 
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frequency histogram with a foot note that the moments correspond to the density 
histogram, not frequency histogram grouped data moments.) 
 
Even though two parameters, bin width, h, and bin location, to, determine uniform width 
bins, I focus on the first three moments.  For histogram densities and frequency 
histograms, for each shape, constraining to and h, beyond the constraints imposed by the 
shape, MOM leads to straight-line relationships between to and h for the mean and 
variance, but not skewness.  These straight lines may or may not intersect a shape level 
set interior + boundary, or just a boundary or vertex.  Calculated examples may be the 
easiest way to explain all of the combinations of mean and variance consistency with 
shape, and that all of the combinations actually occur.  Further, examples show that for 
many shapes, there are unique values for (to, h) that lead to histogram density or 
frequency histogram grouped data moments that equal the sample mean and variance.  
(The grouped data mean depends on bin location and width. Variance depends only on 
bin width, hence, grouped variance level curves are horizontal straight lines in {(to, h)}.) 
 
Both gamma and Fisher-Pearson measures of skewness depend only on shape.  Also 
gamma and Fisher-Pearson are monotonically related.  Consequently skewness rankings 
of frequency, relative frequency and density histograms for gamma sn Fisher-Pearson are 
identical. (Also see Weber 2008, although in that note, there is misunderstanding of 
skewess and shape.)  Having the histogram skewness equal to the sample skewness rarely 
happens except for exactly symmetric data and symmetric UBW histogram shape.  
Symmetric data does not guarantee symmetric histogram shapes – see Appendix B.4.   
 
For data collections comprised of finitely many rational number values there are 
countable numbers of bin width and location values for which all grouped data moments 
equal the data collection moments.  This extends what is already known (D. W. Scott 
email) that histogram moments converge to sample moments as bin width becomes 
arbitrarily small.  Further, this is foreshadowed by Anon (2006) [actually Anon. ed. =    
R. Stong, assoc. editor, Monthly problems.  Thank you Professor Stong.] 

 
Min Chi-squared was considered by K. Smith, circa 1916, in her Ph.D. dissertation. This 
is not about “good” histograms, but estimating normal parameters from grouped data, 
from uniform bin width histograms, via min chi-squared. K Smith was K. Pearson’s 
student.  R. A. Fisher objected to Smith’s procedure because different bins lead to 
different bin counts and different normal parameter estimates. (Stigler 2005) 
 
This suggests three related problems. 
1. For a fixed histogram density, determine the normal mean and variance parameters that 
minimize the chi-squared statistic for actual bin frequency and expected count for a 
normal model. 
2. For a fixed histogram shape, determine the UBW histogram bin parameter values and 
normal mean and variance parameter values for the normal density that minimize the chi-
squared statistic for actual bin frequency and expected count for a normal model. 
3. For a data collection, determine UBW to and h parameter values and the normal mean 
and variance parameter values that that minimize the chi-squared statistic for the UBW 
histogram bin frequency and expected count for a normal model.  Tentatively, these 
problems can be solved with shape level sets and LaGrange multipliers. [What about 
Sheppard’s correction?] 
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Like method of moments, if the LaGrange multiplier or other solution is outside of the 
shape level set, then the associated (to, h) values do not lead to the same shape. Then 
maybe the optimum is on the boundary, possibly on a minimum length path that reaches 
the shape level set from the unrestricted optimum.  
 
The last problem involves solving the second problem for every UBW histogram shape 
and then selecting the minimum among all of the shape minima.  Four variables are 
involved: bin parameters, to, h; and normal parameters, mean and variance.  For to, h in a 
shape level set, the shape, i.e. observed frequencies, are the same.  The expected counts 
are given by the usual normal expected values for bin intervals [to + (k – 1)h, to + kh), for 
various normal mean and variance parameter values.  For each shape there is a minimum 
(or infimum) chi squared value, for bin parameter values in a shape level set and various 
normal parameter values.  The minimum of all of the shape minima or infima solves the 
third problem.  A final note: location may not be unique unless some bin edges equal data 
values.  Otherwise, a translation of both the bin edges and normal mean will lead to the 
same min chi-squared calculation.  
 
Approximating a histogram density with a normal density to minimize integrated 
squared deviation between the densities.  – L. Brown and G. Hwang, (1993) JASA.  
This suggests two kinds of problems. 
1. For a fixed histogram density, determine the normal mean and variance parameters for 
the normal density that minimizes the integrated squared deviation between the normal 
density and the histogram density. 
2. For a data collection, determine the UBW to and h parameter values and the normal 
mean and variance parameter values that minimize integrated squared deviations between 
the histogram density and the normal density.   
 

Maybe both problems can be solved with shape level sets and LaGrange multipliers. 
 

Note that the integrated squared deviation of the normal curve from the histogram density 
is unchanged when both the histogram density and the normal density are translated (via 
to and the normal mean) within a shape level set. 
 

So a unique solution to the more general problem is not assured, unless translation of to 
and the normal mean is restricted. 
 

Brown & Hwang address problem 1, apparently, do not change the histogram, only adjust 
normal parameters.  Overall, this calls to mind Smith’s 1916 effort. 
 
 

Shape stability 
Shape stability could be considered the most primitive and intuitive rule for selecting bin 
width, even if it does not have a distinct theoretical description beyond selecting among 
bin widths that have the fewest number of shapes due to translation of bins.  And the 
exact partitioning of a range for bins can be done exactly, some might say elegantly, with 
shape level sets.  
 

J. Simonoff and F. Udina 1997 consider bin widths that have the fewest number of 
different shapes associated with each bin width and develop a bin width index based on 
the number of shapes and an application of the econometric Gini index. 
 
The Simonoff – Udina approximation method involves estimating the number of shapes 
for each of a set of bin width values via a fixed number of uniformly spaced translations 
for each bin width.  Then a polynomial model of shape stability leads to bin widths 
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associated with the fewest number of shapes.  We do not know of a website 
implementation of this procedure.  Tentatively, the polynomial models of numbers of 
shapes for various bin widths – a model of shape stability – ironically will be very 
unstable for different sets of bin widths and different numbers of uniform translations for 
each bin width.  In contrast, the exact method described below is …exact and correct.  
One result emerges every time.  There is no algorithm variability due to different initial 
values or parameter settings. 
 
Shape level sets afford exact description of bin width shape stability.  Each shape level 
set has a vertex for the min or inf bin width and a vertex for the max or sup bin width for 
a shape.  Using a bin width range Rh ≡         
 

    [(Min {|xi-xj| | xi ≠ xj})/2,   (xmax – xmin) + (Min {|xi-xj| | xi ≠ xj})/2], 
 

the set of points {hmin,s, hmax,s | s = 1 to S = number of shapes} partitions Rh into open cells, 
(hmin or max,si, hmin or max,sj), … hmin or max,si < hmin or max,sj … and cell end points, each of which 
is associated with a fixed set and fixed count of shapes, for the bin width intervals and 
interval end points, etc. 
 
A similar partition of the range of the objective function shows which sets of shapes can 
be incorrectly ranked on account of approximate bin widths.  The range of MISE values 
may be partitioned by the extreme values for each shape: {inf MISE(shape s), sup 
MISE(shape s) | s = 1 to S}, wherein inf usually occurs for inf bin width, sup for sup bin 
width, for each shape.  Just as MISE and ML do not lead to the same ordering of shapes, 
even though all local extrema occur for the same bin parameter values, the partition of the 
MISE range over all shapes by {inf MISE(shape s), sup MISE(shape s) | s = 1 to S} will 
give cells of MISE values that correspond to a set of shapes that all have a common range 
of MISE values within the range of each range for each shape.  Clearly a similar partition 
can be based on ranges of likelihood values, (3), for shapes, etc.  
 
Number of bins rules The shape level set algorithm provides shape level sets for a range 
of numbers of bins, from 1 ≤ k1 ≤ k 2 ≡ K< ∞.  If a number of bins rule prescribes exactly 
k bins, then k1 = k 2 = k.  If a range of numbers of bins is prescribed, then obviously k1 = 
min number of bins and k 2 = max number of bins, etc.  For example, for the Sturges 
Rule, k1 ≤ log2(n) ≤  k 2, k1, k 2  integers ≤ K.  The all histogram shapes and densities 
associated with Sturges numbers of bins can be obtained. 

 

Bin width rules Exact determination of shape stability partitions the bin range into open 
cells and cell end points.  The same set of shapes arises for any bin width in a cell interior 
or cell end point.  The width prescribed by a bin width rule will be contained in a cell 
interior or equal a cell end point.  This leads to all of the shapes and densities that satisfy 
a bin width rule point estimate.  
 
 
 
 
 
 
 
 
 
 

JSM 2016 - Section on Statistical Graphics

1909



 

Appendix B: Some details, some proofs 
Appendix B.1 Domain Do 

Uniform bin width frequency histogram “shape” is the list of bin counts, νk, k = 1 

to K, beginning with the first positive count, ν1.  A shape level set (Fig.1, §2.2) is the set 

of bin parameter values for to, h, that lead to the same shape for the same data. (Shape 

level sets are identical for frequency, relative frequency and density histograms.)  The 

first bin, [to + (k – 1 )h, to + kh), k = 1, must contain the data minimum, xmin.  As a 

consequence, each level set is one convex polygon in Do in the {(to, h)} plane.  Do has 

enough (to, h) points to lead to all UBW histogram shapes that data can have.  As 

previously noted, this is more restrictive than is customary, Scott (1992, p 49, etc.), 

Weber (2008). 

Do is defined by the following three constraints: 

                        1  xmin contained in a first bin means  to  ≤  xmin < to + h ↔  
 1a: to  ≤  xmin   
 1b: xmin < to + h,  xmin – h < to 
 

2  At most K bins ↔  
 2a:  xmax <  to + Kh    

                 Exactly K bins so xmax is in the last bin [to + (K–1)h, to + Kh) ↔ 
 2b: to + (K–1)h ≤  xmax and 2a 
 

            3  Do is bounded:  h < B ≡ (xmax – xmin) + δ, 0 < δ 
 

These lead to the following boundaries for Do: 
 

1a:   to  =  xmin   
1b:   xmin = to + h 
2a:   xmax =  to + Kh    

               3:     h = (xmax – xmin) + δ 
 

The above boundaries lead to four Do vertices, clockwise:  
  vertex 1: (1a,3): (xmin, (xmax – xmin) + δ)   
  vertex 2: (1a,2): (xmin, (xmax – xmin)/K)  
  vertex 3: (1b,2): (xmin – (xmax – xmin)/(K – 1), (xmax – xmin)/(K – 1))  
  vertex 4: (1b,3):(xmin –((xmax –xmin) + δ)),(xmax –xmin) + δ)  

                
Since Do depends on K, δ, xmin, xmax, one might write Do(K, δ, xmin, xmax) or Do

K,δ
[xmin, xmax]   

 

Normalizing data  [xmin,  … …,  xmax] to [0, 1] and  
letting K → ∞, δ→ 0 brings vertex 2 and vertex 3 together,  
leading to Do

∞
[0,1] :  

 

  vertex 1: (1a,3): (xmin, (xmax – xmin)) ; ( 0, 1 + δ )                                           →    (0, 1)   
  vertex 2: (1a,2): (xmin, 0)                  ; ( 0, 1/K )                                             →    (0, 0) 
  vertex 3: (1b,2): (xmin, 0)                  ; ( –1/(K – 1), 1/(K – 1) )                      →    (0, 0)   
  vertex 4: (1b,3): (xmin –((xmax – xmin))),(xmax – xmin)) ; ( –(1 + δ), 1 + δ )       →   (–1, 1) 
 
Do

∞
[0,1] is the triangle with vertices: (0,1), (0,0), (-1,1). 
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Shape level set boundaries (4b): xi = to + kh, k = 1 to K, i = 1 to n partition Do or Do
∞

[0,1] 
into shape level sets like the one shown in Figure 1. All of the lines xi = to + kh , i = 1 to 
n, k = 1 to K intersect Do.  The shape level set algorithm generates the lines xi = to + kh  
one by one, determines intersection vertices with Do and already calculated existing 
polygons.  Including the last line, xn = to + Kh, completes a level set partition. 
The level sets can be specified and organized by sorting (5b) lexicographically on         
Ks, νs,k ; and sorting (5c), (5d) on MISE-(1) values ascending, ML-(3) values descending.  
 
 

{(νs,k , (to, h)s,v) | s = 1 to S, k = 1 to K, v = 1 to Vs}                                                  (B.1.1) 
{(νs,k , (to, h)s,v) | s = 1 to S, k = 1 to Ks , v = 1 to Vs}                                                (B.1.1*) 
{(Ks, νs,k , (to, h)s,v) | s = 1 to S, k = 1 to Ks , v = 1 to Vs}                                 (5) ≡ (B.1.2) 
{(MISE-(1), Ks, νs,k , (to, h)s,v) | s = 1 to S, k = 1 to Ks , v = 1 to Vs}                        (B.1.3) 
{(ML-(3), Ks, νs,k , (to, h)s,v) | s = 1 to S, k = 1 to Ks , v = 1 to Vs}                            (B.1.4) 
 
 

S ≡ number of shapes 
K ≡ max number of bins 
Ks ≡ number of bins for sth shape ≡ index of bin for xmax 
Vs ≡ number of vertices for sth shape 
(B.1.1), (B.1.1*), (5) == (B1.1.2), (B1.1.3), (B1.1.4) all are right ragged matrices (from 
Vs, Ks) with S rows, although obviously can be made rectangular with zeroes. 
 

As is typical, Scott (1992) p 49 does not require bin indexing so that the first bin contains 
the minimum data value.  Weber (2008) and Visual Basic implementation of histogram 
level set exact calculation of various kinds of histograms begins with partitioning Do. 
 
Appendix B.2 Showing minimum bin width does not exist, so use infimum bin width 
Proof: Referring to Fig. 1, the closure of a SLS, SLS , has a minimum bin width, 
hmin, at the intersection of  
 

to + k2h = xj  and  to + k3h = xp.  That is, hmin = (xp – xj)/(k3 –k2). 
 

Keep in mind that in a SLS, in Fig. 1, to and h are variable and xj, xp, k2, k3 are not 
variable.  Question: Is hmin ε SLS?  
SLS are associated with half-open bins, [to + (k – 1)h, to + kh). (Kendall & Stuart, various 
editions; D. W. Scott, 1992).   
 

to + k2h = xj <  xp = to + k3h. 
 

So a left, closed bin edge, to + k2h = xj, and a right, open bin edge, to + k3h = xp, is 
associated with the bins for the shape associated with Fig. 1 SLS. 
For h = hmin, xj ε  [to + k2h , to + (k2+1)h)). 
For h > hmin, xp ε  [to + (k3 – 1)h , to + k3h)). 
However for h = hmin, xp is not contained in [to + (k3 – 1)h, to + k3h)). 
That is, xp = to + k3hmin, so xp is not less than to + k3hmin. 
So shape for h = hmin is not the same as the shape for the SLS, for h close-to-but > hmin.                 
So (t hmin

o, hmin) is not contained in the SLS. 
We must focus on hinf = inf h, not hmin, and inf MISE, sup ML. 
Fortunately hmin( SLS ) is easy to calculate and hinf (SLS) = hmin( SLS ).  Inf MISE and sup 
ML are easily calculated with the shape bin counts for (to, h) ε SLS and hinf = hmin( SLS ).  
 

The easiest example of infimum, not minimum bin width is for the one-bin histogram:  
for the bins [xmin, xmax + δ) , 0 < δ, hinf  = (xmax – xmax) 
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Appendix B.3 Over-smoothing, MISE and ML - Bin width, number of bins rules 
Table B.3 and discussion show that six over-smoothing rules do not prevent 

shape reversals, using data example #5 (Weber 2008 data #2).         
 

Table B.3  Over-smoothing rules and bin translation skew shape reversals 
 

    
Satisfies over-smoothing conditions (Yes or No), 
Scott 1992, pp 73 to 75. 

Uniform     n = 20, range = 5.9,sx = 1.9705,IQR=3.41  
Bin width                                                Rule  
Histogram Shapes  (3.42) (pre3.42) (3.43) (3.44) 

ν1, ν2 …    t0       h 
# 

Bins 
# Bins ≥ 
4 h < 1.725  h < .707 

h < 
3.72  

C: 10, 9, 1 1.425 3.208 3     
D: 1, 9, 10 -1.048 3.208 3 No No No Yes 
         
E: 8, 4, 7, 1 1.977 1.979 4     
F: 1, 7, 4, 8 0.108 1.979 4 Yes      No Yes Yes 
         
G: 6, 4, 4, 5, 1 1.983 1.475 5     
H: 1, 5, 4, 4, 6 0.642 1.475 5 Yes Yes Yes Yes 
         
 I: 4,6,0,5,4,1 1.976 1.181 6     
J: 1,4,5,0,6,4 0.9391 1.181 6 Yes Yes Yes Yes 
              
           Data : 2.05, 2.27, 2.50, 2.95, 3.18, 3.41, 3.64,    
                      3.86, 4.09, 4.32, 5.68, 5.91, 6.14, 6.36,       
                      6.59, 6.82, 7.05, 7.50, 7.73, 7.95    
Source:  Weber,  J.S.  -2008   JSM Proc.      

 

In addition to the four rules above, Scott 1992 §3.3.1, p 55 includes the Freedman 
– Diaconis rule: h ≤ 2IQRn –1/ 3 = 2(3.41)/(20) –1/3 = 2.5125.  Histogram bins E, F; G, H;  
I, J satisfy this rule.  (Freedman, D. and Diaconis P., 1981)  Also the Sturgis Rule, Scott 
1992 p 48, K = 1 + log2 n leads to 1 + log 2 (20) = 1 + 4.321928 = 5.321928, five or six 
bins.  Histogram bins G, H; I, J satisfy this rule.  Thus if two additional columns of rules 
are added to Table 7 then G & H; I & J satisfy all six rules.  (Calculations for Table 7 are 
available upon request.)  (Since the data are symmetric,  Doane (1976) adjustment(s) of 
the Sturges’ rule do not apply.) 
 
How well does MISE satisfy over-smoothing rules?  From Table 1*, exact MISE clearly 
over-smoothes in three out of six examples.  Overall, MISE via Rice Stats website, 
Shimazaki and exact calculation appears to over-smooth in nine out of eighteen instances 
in six examples.  However, ML does not violate any over-smoothing rules in these 
examples.  
 
 

Over-smoothing observations: 
a. Over-smoothing rules do not prevent shape reversals. 
b. Exact and approximate MISE (1a) over-smoothes in 50% of my examples. 
c. ML does not over-smooth in any of my examples. 
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Appendix B.4 Data symmetry, shape reversals 
Over-smoothing and shape reversals can be approached via data symmetry.  (The data for 
Table 2a are symmetric.)  The ordinary meaning of “smoothing” suggests that more 
smoothing should reduce graphic irregularities, such as reversal of non-symmetric 
histogram shapes.   But the situation appears opposite for uniform bin width histograms.  
Part B⇒A below means that exactly symmetric data leads to reversal of asymmetric 
shapes only for sufficiently wide bins. 
 
The following lemma connects data symmetry and asymmetric shape reversals. 

 
Lemma Data Symmetry and Asymmetric Shape Reversals. 
A. and B. below are equivalent. 
A. Data are symmetric. 
B. For every UBW histogram shape, there are translations of the bins leading to the 
reversal of shape, including asymmetric shapes such as (1, 7, 4, 8) and (8, 4, 7, 1). 
 

Sketch of  proof: 
A⇒B Reflection across the data axis of symmetry of the bins and the data reverses the 
shape.  Due to data symmetry, data values and value frequencies are unchanged.  
Reflection of UBW bin edges can be achieved via a translation. So translation of the bins 
leads to a reversal of the bin counts, such as (1, 7, 4, 8) to (8, 4, 7, 1).  (Data and bin 
edges are reflected, but bin orientation is not reflected or reversed. Bins are defined from 
bin edges a and b as [a, b). Reflection of  “[a, b)” is not “(b, a]”.) 
 
 

B⇒A  Small bin width “shape reversals” involve isolated individual data values. So 
small enough bin width shape reversals imply symmetric data value frequencies. Also, 
arbitrarily small bin width symmetric shape reversals imply symmetric data values.   
Symmetric data value frequencies and symmetric data values mean symmetric data. 
(Weber 2008; Supplement 3) 
 

So for symmetric data only over smoothing wide bins can lead to reversals of asymmetric 
shapes. (Simonoff & Udina 1997, §2.3.3, opine that symmetric data may be better from 
the perspective of bin width shape stability.  This Lemma relates to that thought.) 
 
 
After word.  … This effort includes, begins with an elementary solution to a problem 
that has been on the table since 1662: For data, xi, what uniform bin width histogram 
shapes (i.e. bin counts) are possible?  An elementary solution to an old problem often 
raises a red flag: Is it Junk Science? That it claims to correct errors in what has become 
common knowledge is yet another red flag.  About all I can suggest regarding this worry 
is revisit R. J. Little (2013) JASA, with an open mind.  
 
 
 
 
 
 

JSM 2016 - Section on Statistical Graphics

1913


