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Abstract 

 

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive means to determine active parts of 
the brain by observing changes in the Blood Oxygen Level Dependent (BOLD) signal. The reconstruction 
pipeline of the complex-valued k-space data often coincides with multiple image processing techniques. 
Implemented both before and after the actual reconstruction, image processing enhances the overall quality 
or a particular aspect of an image. Registration is an important processing step out of many others included 
in the fMRI reconstruction pipeline, which can be described as the alignment of two or more images through 
geometric transformations. It has been shown in recent studies that some image processing operations can 
alter the statistical properties of an image and even induce artificial correlation of non-biological origins 
between voxels. This concept applies to common fMRI registration algorithms as well, the extent and 
structure of these effects will be examined. Quantifying any potentially induced correlation from image 
registration can allow for future development of statistical models that will greatly improve the accuracy 
and reliability of fMRI studies. 
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1. Introduction 

The emergence of projects such as the Human Connectome Project have provided a source of readily 
available experimental fMRI data. The large database of easy access data has become an essential resource 
for many researchers. However, this has also lead to the unknowingly careless use of data sets without 
regard to the processing that has been performed. In essence creating a black box complex-valued (CV) 
reconstruction pipeline from data acquisition to analysis. In actuality, multiple steps are performed before 
any image analysis is performed. This includes pre-processing (e.g. Nyquist ghost correction, zero-filling, 
apodization, etc.), reconstruction depending upon acquisition method (e.g. Cartesian acquisition, spiral 
acquisition, parallel acquisition, etc.), and post-processing (e.g. smoothing, sharpening, slice timing 
correction, registration, etc.). 

Image registration is an important and in many cases a necessary processing step included in the CV 
reconstruction pipeline. The registration of intra-subject and inter-subject studies are necessary for any 
meaningful analysis. Especially important when movement or anatomical differences are significant factors 
that need to be accounted for. It is a great example of an algorithm not limited to only fMRI and is used in 
accordance with a variety of medical imaging modalities.  
 
1.1. Motivation 

 
It has recently been shown that some image processing techniques can alter the statistical properties of 

an image. It is possible to induce both spatial and temporal correlations between voxels of no biological 
origin. These induced correlations can either be local or far reaching in structure or compound upon each 
other with the combination of multiple processing techniques. A simple estimate of these altered statistical 
properties can be obtained with time consuming and computationally intensive Monte Carlo simulations. 
However, estimates formulated from Monte Carlo methods are naturally noisy and do not provide the 
necessary accuracy.  

The widespread and sometimes automatic implementation of image registration algorithms calls for an 
accurate understanding of the potential statistical effects. Instead of Monte Carlo simulations, a linear 
framework model will be used to accurately describe any changes in statistical properties of an image. The 
model will display the statistical effects of image registration implemented independently and in 
correspondence with other image processing techniques. Variations in analysis results of activation and 
connectivity will emphasize that the aftereffects of an image processing algorithm is equally important to 
the results it produces.  
 

2. Background 

 

2.1. Complex-Valued Reconstruction Pipeline 
 

In fMRI, a time series of complex-valued (CV) data is collected in the spatial frequency domain, k-space, 
given some acquisition method. The simplest method is a Cartesian sampling in k-space which is then 
reconstructed through a 2-dimensional inverse Fourier transformation. Other methods such as spiral or 
parallel acquisitions are faster but have a more involved reconstruction process and side effects (spiral 
causes blurring).  

In addition to the reconstruction algorithm of the complex-valued data, a number of image processing 
techniques are implemented before and after. For the sake of consistency between different research fields, 
processing done before and after reconstruction will be referred to as pre-processing and post-processing, 
respectively. Both pre-processing and post-processing steps in the CV pipeline are made up of the 
application of multiple mathematical algorithms which greatly enhance an image’s quality. Pre-processing 
operations are generally necessary before any reconstruction, and can vary dependent upon the CV data 
acquisition and reconstruction method. Post-processing is performed to further enhance the analysis results. 

The CV reconstruction pipeline can be constructed from a large set of combinations of pre-processing, 
reconstruction, and post-processing algorithms. The inclusion or exclusion of a particular algorithm in any 
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of the steps or the interchanging of the order of two operations could greatly alter the resulting properties 
of a reconstructed image before analysis. It should be emphasized that there is an incredible amount of 
variability in the CV reconstruction and processing pipeline at each step and as a whole.  
 
2.2. Image Registration 
 

Image registration can be described as the alignment of one or more images to a template through 
geometric transformations. Most fMRI registration algorithms can be simplified into two stages: (1) an 
optimization with respect to some pre-determined cost function to find a suitable geometric transformation 
[6.7], and (2) an interpolation is implemented for non-integer voxel coordinates [1,2]. 

Registration itself is a rather extensive topic and is made up of a multitude of methods which exist for 
different scenarios; for example, the registration of inter-subject as opposed to intra-subject images can 
vary greatly in computational intensity and methodology. In addition, several popular fMRI processing and 
analysis software packages exist, each with its’ own image registration algorithm, such as FSL, SPM, and 
AFNI. The algorithms in the various packages share several similarities, but there is no established standard 
algorithm for image registration. These variabilities will produce slightly different registration results for 
the same image between different software packages, but all packages and their algorithm adhere to the 
same idea. Decisions on the choice of the algorithm determination should be a made on a case by case basis.  

In digital image processing, an image can be geometrically transformed (warp, shift, scale, etc.) 
multiple ways [3,4]. One of them is to define the geometric transformation as a linear set of equations which 
also form a transformation matrix, Eq. 1.  This same method is applied in most fMRI registration algorithms. 
A 3-dimensional transformation can include up to 12 different parameters: 3 rotation, 3 scaling, 3 shearing, 
and 3 shifting parameters. The parameters are optimized with respect to some cost function [7]. Differing 
image registration algorithms will vary in number of parameters, optimization methods, and cost functions 
(e.g. mean squared error, mutual information, correlation ratio, etc.). 

Following the geometric transformation, each voxels’ respective coordinates may no longer adhere to 
a grid of integer values. An interpolation scheme is implemented to account for the non-integer voxel 
coordinates (e.g. nearest neighbor interpolation, bi-linear interpolation, sinc interpolation, etc.).  

 
2.3. A Linear Framework 

 
Monte Carlo simulations are a useful method to estimate the statistical properties of an image. However, 

the naturally noisy results are still produced and this leaves an unnecessary amount of inaccuracy. It can be 
reduced but not eliminated with large and time consuming simulations; Instead, the use of a linear 
framework model can more accurately depict the statistical properties of an image [8,9]. This linear 
framework will take advantage of some basic matrix properties, Eq.1.  
 

Given a vector f of dimension N2×1 with μf = E(f) and Σf = cov(f), and a matrix O of  
dimension N2× N2. If,  
 
v O f   
 
then, 
 

( )v fE v O    , cov( ) T
v fv O O     , and 1/2 1/2( )v vcorr v D D       

 
where, D is a square matrix of the diagonal elements of the covariance matrix Σf 

Eq. 1 

 
Usually, image processing techniques in fMRI are mathematically computed as a convolution 

operation. In this linear framework, convolution will be represented differently to fulfill Eq. 1. The 

JSM 2016 - Section on Statistics in Imaging

1881



 
 

convolution operation itself can be understood in several different ways: (a) The iterative process of a mask 
or kernel overlayed the original image, (b) with some matrix reshaping, a matrix multiplication in image 
space, (c) and using the Fourier convolution theorem, a matrix multiplication in frequency space. These 
three methods are graphically displayed in, Figs 1 (a) – (c).  

 

   
Figs. 1 (a) – (c). Illustrative representations of convolution: (a) iterative, (b) image space multiplication, 
and (c) frequency space multiplication. 

 
Given Eq. 1 and the conversion from an iterative sequential voxel process to a global simultaneous matrix 
multiplication in image space, if the mean and covariance of the original image are known, then the mean 
and covariance after multiplication can be found as well. The mathematical descriptions for both methods 
are displayed in, Eq. 2 & Eq. 3 respectively. You don’t say what you do at the image edges. 
 

1 1
( )( , ) [ ( , ) ( ( ), ( ))]

M M

i j
g f x y g i j f x M i y M j

 

        

 
Where g is an M×M convolution mask and f is an N×N image. 

Eq. 2 
 

 
(1,1) ( , ) ( , 1) ( , )
(1,2) ( , 1) ( , ) ( , 1) ( , )

1, mod 2 1
2' & ,(2,1)
, mod 2 0(2,2)

2

( , ) ( , )

f g i j g i j g M M
f g i j g i j g i j g M M

Mi j M
f Of

Mi k Mf

f N N g i j

   
   

 
   

      
   

    
      
   
   
   
   

 

 
( )( , ) 'g f x y O f    
 
Where O is an N2×N2 matrix operator representing the reshaped convolution mask and f′ is an 
N2×1 vector representing the reshaped image. 

Eq. 3 
 

 

 
2.4. Illustrative Example 

 
An illustrative example will better display this conversion of convolution from an iterative sequential voxel 
process to a global simultaneous matrix multiplication in image space as well as confirm that both produce 
identical results. This example will first use a generic matrix and convolution kernel, Ex. 1, then the 
formation of a matrix operator of the 2-dimensional discrete inverse Fourier transform, Ex. 2.  
 

Given a function f(x,y) and convolution kernel g(x,y) where (x,y) represent the spatial locations, Ex. 1 
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1 1 1 2

2 1 2 2

( , ) ( , )
( , )

( , ) ( , )
f x y f x y

f x y
f x y f x y

 
  
 

 & 1 1 1 2

2 1 2 2

( , ) ( , )
( , )

( , ) ( , )
g x y g x y

g x y
g x y g x y
 

  
 

 

 
If using Eq. 2, 
 

1 1 1 2 1 1 1 2

2 1 2 2 2 1 2 2

( , ) ( , ) ( , ) ( , )
( )( , )

( , ) ( , ) ( , ) ( , )
g x y g x y f x y f x y

g f x y
g x y g x y f x y f x y
   

     
   

 

1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )g f x y g x y f x y g x y f x y g x y f x y g x y f x y    

 
 
Then using Eq. 3, 
 

 

1 1

1 2
1 1 1 2 2 1 2 2

2 1

2 2

( , )
( , )

( )( , ) ( , ) ( , ) ( , ) ( , )
( , )
( , )

f x y
f x y

g f x y g x y g x y g x y g x y
f x y
f x y

 
 
  
 
 
 

 

1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )g f x y g x y f x y g x y f x y g x y f x y g x y f x y    

 
 

With respect to the 2-dimensional inverse Fourier transformation, the acquired k-space is a function of 
proton spin density and the accumulated phase with respect to time and acquisition method. This 
formulation leads to the Fourier relationship from k-space to image space and the rational for the 
reconstruction method. A matrix operator representation of the Fourier transformation is an integral part of 
this linear framework. 

 
Given a k-space acquisition f(x,y) of dimension N×N it can be reshaped as 2N2×1 where (x,y) 
represent the spatial locations, 
 

1 1

1 1

( , )

( , )
( , )

( , )

( , )

real

real N N

imaginary

imaginary N N

f x y

f x y
f x y

f x y

f x y

 
 
 
 

  
 
 
 
  

 

 
If the inverse Fourier transform F-1 is observed as transformation of real and imaginary elements 
where, 
 

   1 1 1 1 1
, , , ,real y real x real y imaginary x imaginaryF F F F F        

 
 

& 

   1 1 1 1 1
, , ,Im ,imaginary y real x imaginary y aginary x realF F F F F        

 
  

Ex. 2 
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1 1

1 1
real imaginary

imaginary real

F F
O

F F

 

 

 
  
  

 

 
Then the reconstruction of the complex valued k-space data f(x,y) can be represented as v(x,y) 
with dimensions 2N2×1, 
 

1 1 1 1

1 1

1 1
1 1 1 1

( , ) ( , )

( , ) ( , )
( , ) ( , )

( , ) ( , )

real real

real N N real N Nreal imaginary

imaginary imaginaryimaginary real

imaginary N N imaginary N N

v x y f x y

v x y f x yF F
v x y f x yF F

v x y f x y

 

 

   
  
  
   

   
    

  
  
     










 

 
( , ) ( , )v x y O f x y   

 
 
It should be noted that because k-space data is complex-valued, there are both real and imaginary 
components both of which are essential to reconstruction. However it is (an ill-advised) common practice 
to discard to imaginary components after reconstruction and continue magnitude only (MO) data in any 
analysis. From this point on, only MO-images will be used for simplicity, but one should keep in mind that 
CV-images do have its benefits.  
 
3. Methods 

 

Given the amount of variability in an image registration algorithm, numerous scenarios will be analyzed 
for a better understanding of its effects. These scenarios will be chosen to stress the difference between a 
Monte Carlo and the Linear Framework model, the independent statistical effects of image registration 
algorithms, and the compounded statistical effects of image registration algorithms and other image 
processing algorithms. It is emphasized that these scenarios are not chosen to produce the highest quality 
image registration results. Before specifying the scenarios, several aspects of an image registration 
algorithm will be elaborated upon; once again, the two main steps will be discussed independently.  
 
3.1. Geometric Transformation 

 
In these experiments the quality of the image registration itself is secondary, the primary focus is in the 

statistical effects of the algorithm itself. Computational efficiency is also emphasized over quality, as image 
registration is generally a very computationally expensive and time consuming process. Keeping this in 
mind the image algorithm implemented here is considered to be a simplified version of the algorithms found 
in the previously mentioned software packages; 6 parameters (2 rotations, 2 shifts, and 2 scales) are 
optimized with respect to the mean squared error (MSE), the MSE is optimized by iteratively searching 
through the parameters. Parallel computing methods are implemented where possible to further enhance 
computational efficiency.  
 
3.2. Interpolation Schemes 
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There are multiple interpolation methods and a full list can be found from each software’s respective 
user guides. A few common ones were selected: (a) nearest neighbor interpolation, (b) full sinc 
interpolation, and a (c) rectangular windowed sinc interpolation. Each interpolation method will be defined, 
Eq. 4 (a) – (c), and formulated as a matrix operator, Figs 2 (a) – (f).  
 

Given a reconstructed image f(x,y) of dimension N×N with non-integer valued spatial 
coordinates (x,y), 
 

( , ) ( , )v i j f x y , if ,

1,1,...2,2,... ,
arg min (|| ( , ) ( , ) ||),

1,2,...1,2...1,2x y

i N N
x y i j

j


 


 

 

Eq. 4(a) 

Given a reconstructed image f(x,y) of dimension N×N with non-integer valued spatial 
coordinates (x,y), 
 

1 1
( , ) ( , )sinc( )sinc(y-b)

N N

a b
v i j f x y x a

 

   

 

Eq. 4(b) 

Given a reconstructed image f(x,y) of dimension N×N with non-integer valued spatial 
coordinates (x,y), and a rectangular window of length w, 
 

1 1
2 2

1 1
2 2

2 2

2 2

( , )sinc( )sinc( - ), if mod 2 1

( , )

( , )sinc( )sinc( - ), if mod 2 0 

w wi j

w wa i b j

w wi j

w wa i b j

f x y x a y b w

v i j

f x y x a y b w

 
 

 
   

 

   


  



 

  



 

 
 

 

Eq. 4(c)  

 

(a) 

 

(b) 

 

(c) 

 
(d) (e) (f) 
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Figs. 2 (a) – (f). (a) – (c), the generalized convolution kernel for nearest neighbor interpolation, sinc 
interpolation, and windowed sinc interpolation. (d) – (f), the first 200×200 elements of a generalized 
matrix operator for nearest neighbor interpolation, sinc interpolation, and windowed sinc interpolation. 

 

4. Results 

 

4.1. Experimental Design 
 
The data set was collected from the General Electric 3.0 T Signa LX Magnetic Resonance Imager at 

the Medical College of Wisconsin. The scan was obtained at an oblique orientation with a single channel 
coil without RAMP sampling, the dimensions of the image are 96 voxels × 96 voxels × 11 slices with a 24 
cm field of view. The timing parameters of the image were as follows: 1 second Time to Repetition (TR) 
totaling at 720 TRs and 38.5 ms Time to Echo (TE). The tasks of the scan included a block design motor 
bi-lateral finger tapping with 9 second alternating periods, a block design visual flashing checkerboard 16 
second alternating periods, and periodic turning of the head in order to induce motion. 

The raw data set with no processing was used in order to enhance the validity of our results. The only 
preprocessing implemented was a Nyquist ghost correction in order to compensate for an aliasing artifact 
which would not induce correlation from uncorrelated data. The intention was to minimize the number of 
other processing steps in order to isolate the effects of registration algorithms. The template chosen was TR 
image 360, and the slice to be registered is TR image 720, as displayed in Fig. 3. 

Several scenarios will be presented and examined. Once again, these scenarios will be chosen to 
highlight the difference between a Monte Carlo simulation and the Linear Framework theoretical model, 
and the independent statistical effects of image registration The parameters were also chosen with the 
aforementioned goals in mind and are described in Table 1. The simulations were implemented with 1000 
trials and the addition of noise with a normal distribution of mean, 0, and standard deviation, 0.1. 

 
(a) 

 

(b) 

 
Fig. 3 (a) – (b). Reconstructed and unprocessed images from (a) TR = 360 and (b) TR = 720. 
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4.2. Statistical Analysis 
 

For each scenario a covariance matrix, correlation matrix, and the correlation of a particular voxel and 
every other will be examined. The collected data set is a time series of images, but for now only the spatial 
statistical effects are examined and the temporal effects are excluded. The covariance matrices are 
structured such that the diagonal elements are the variance of each voxel, and the rows or columns are the 
covariance of one voxel and all others. The correlation matrices are structured such that the diagonal 
elements are 1’s, and the rows or columns are the correlation of one voxel and all others. The results of Sc. 
1 (a) – (b) will be presented first, Figs. 4 (a) – (f), followed by the results of Sc. 2 (a) – (f), Figs. 5 (a) – (f), 
Figs 6 (a) – (f), & Figs 7 (a) – (f).  

The aforementioned noise included in Monte Carlo simulations becomes abundantly clear; even at 1000 
trials it is problematic. In statistics a heuristic rule is that you want 10 times more observations than 
parameters estimated. In the covariance matrix there are 4N2 elements which means there are 4N2 (4N2+1)/2 
unique covariance parameters not including any mean parameters. In Fig. 5 (f), it is obvious that Gaussian 
smoothing induces a locally radial correlation, but the shape and specificity are lacking. Fig. 7 (b) displays 
the same Gaussian smoothing under the linear framework model, without the same noisy effects. 

Without any processing one can expect no induced correlations, but even with processing not all have 
an effect as seen with nearest neighbor interpolation in Fig. 5,6,7 (c). The structure and intensity of these 
effects are a reflection of the respective processing techniques. This is most obvious with the Gaussian 
smoothing and sinc interpolation, both are similar in structure to their respective convolution mask, Figs 7 
(b), (d). In addition, the structure of the sinc interpolation could be change with a rectangular window.    
 
5. Discussion 

  
It is well known that there can be statistical implication from image processing techniques, but it should 
not be accepted as an uncontrollable condition of working with experimental data. Although there is access 
to a great number of data sources now, understanding what is happening to the data is just as important. 
Aside from a greater awareness of the problem at hand, this linear framework will attribute to a better 
understanding of the individual processing techniques. These alterations in statistical parameters of a data 
set can lead to inaccurate conclusions. Quantifying will be the first steps in developing future models which 
will account for such alterations.  
 

Table 1. List of parameters in each scenario. No Parameters represents scenarios which do not require 
specification and N/A represents scenarios that are not analyzed. 
 

No Processing 
Gaussian 

Smoothing 

Nearest 

Neighbor 
Full Sinc 

Rectangular 

windowed Sinc 
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S
im
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o
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Sc. 1 (a): No 
Parameters 

Sc. 1 (b): Full 
Width at Half 
Maximum = 3 

Voxels 

N/A N/A N/A 

F
ra

m
ew

o
rk

 

T
h

eo
re

ti
ca

a
l 

Sc. 2 (a): No 
Parameters 

Sc. 2 (b): Full 
Width at Half 
Maximum = 3 

Voxels 

Sc. 2 (c): No 
Parameters 

Sc. 2 (d): No 
Parameters 

Sc. 2 (e): 
Rectangular 

window length = 
11 voxels 
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(a) 

 

(b) 

  

 

(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figs. 4 (a) – (f). (a,c,e) are the covariance matrix, correlation matrix, and correlation between the center 
voxel and all others of Sc. 1 (a). (b,d,f) are the covariance matrix, correlation matrix, and correlation 
between the center voxel and all others of Sc. 1 (b). 
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(a) 

 

(b) 

  

 

(c) 

 

(d) 

 
(e) 

 

(f) 

Figs. 5 (a) – (f). The covariance matrix resulting from (a) no processing, (b) Gaussian smoothing, (c) 
nearest neighbor interpolation, (d) full sinc interpolation, and (e) rectangular windowed sinc 
interpolation. 
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(a) 

 

(b) 

  

 

(c) 

 

(d) 

 
(e) 

 

(f) 
 

Figs. 6 (a) – (f). The correlation matrix resulting from (a) no processing, (b) Gaussian smoothing, (c) 
nearest neighbor interpolation, (d) full sinc interpolation, and (e) rectangular windowed sinc 
interpolation. 
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(a) 

 

(b) 

  

 

(c) 

 

(d) 

 
(e) 

 

 

Figs. 7 (a) – (f). The correlation between voxel at spatial location (49,49) and all others resulting from 
(a) no processing, (b) Gaussian smoothing, (c) nearest neighbor interpolation, and (d) full sinc 
interpolation, (e) rectangular windowed sinc interpolation. 
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