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Abstract
The instrumental variables method is a valuable tool in the analysis of simultaneous equations

models. Since the estimation of coefficients in the model can be challenging, adept modeling of the
covariance matrix is also important. The Inverse Wishart distribution is commonly used to provide
a conjugate prior for the covariance matrix. However, the Inverse Wishart is limited in the flexibility
to model prior information. We propose an alternative that allows for the specification of varying
confidence levels for each element in the covariance matrix for the Instrumental Variables models.

Key Words: covariance matrix, Inverted Wishart prior, Markov Chain Monte Carlo, matrix loga-
rithm, Metropolis-Hastings algorithm

1. Introduction

Improving estimation techniques for the error term in simultaneous equations models (SEM)
presents a unique opportunity to make a more informed determination of the existence of
causality in a relationship of interest. SEMs are very prevalent in the field of econometrics
– an example of which is the ubiquitous supply and demand curves. As their name would
suggest, they consist of multiple equations that interact to produce the observed data. This
type of interaction implies the existence of endogenous variables – those that are jointly de-
termined by the model. As a result, the approach of considering the equations individually
is not a viable option, as a “simultaneity” bias will occur when an independent variable is
correlated with the error term. This forces the dependent variables to be modeled simulta-
neously by the system of equations.

The method of instrumental variables (IV) provides a way of consistently estimating
coefficients in SEMs. By deconstructing and rebuilding the simultaneous equations with
instruments, a more insightful look into the inherent causal relationships is possible. In
SEMs, variables are candidates for instruments if they are correlated with the endogenous
explanatory variable (conditional on other covariates), but uncorrelated with the distur-
bance term in the explanatory equation. When these instrumental variables are combined
in regression, it is often referred to as an IV regression model.

Research into IV regression began with classical/frequentist methods. In the late 1940s
and early 1950s, the first inferential procedure was developed using the method of maxi-
mum likelihood (Anderson and Rubin, 1949; Koopmans and Hood, 1953). This method,
called limited information maximum likelihood (LIML), derives the maximum likelihood
estimator for the parameters of the reduced form model.

Soon after, Theil (1953) and Basmann (1957) developed an alternative inferential pro-
cedure called two stage least squares (2SLS). Unlike LIML, it does not require any distri-
butional assumptions for independent variables on the right hand side of the equations. In-
stead, it utilizes two steps to determine the estimator: first, perform Ordinary Least Squares
(OLS) regression of the endogenous variable on the instruments to obtain predictions for
the endogenous variable; second, perform OLS regression of the dependent variable on the
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predicted values from step one. To this day, 2SLS is the most commonly used estimation
method as it is not only efficient (it takes all of the information contained in the set of in-
struments and instills it into a single instrument) but also simple to use. It is worth noting
that, under certain circumstances, the LIML estimator is the same as the 2SLS estimator.

Interest in Bayesian approaches to IV regression sparked years later with a seminal pub-
lication by Drèze (1976). In his paper on the Bayesian analysis of SEMs, Drèze proposed
to equalize the Bayesian and classical analysis of IV models by using sufficiently diffuse
priors for the parameters of interest. Today, Drèze’s method is considered by many to be
a Bayesian version of 2SLS. Yet, as many have noted, its greatest flaw is that it does not
consider the effect of weak instruments (those that are poor predictors of the endogenous
variable) on the inference of IV models.

Additional Bayesian analyses followed in the research of Zellner (1971), Drèze and
Morales (1976), Drèze and Richard (1983), and Tsurumi (1985, 1990). More recent re-
search tackles the problem present in Drèze’s method – that of weak instruments on the
inference of IV models. The problem with weak instruments is that they can cause near
non-identification of structural parameters. This issue is identified and addressed in papers
such as Kleibergen (1997), Kleibergen and van Dijk (1997), Chao and Phillips (1998), and
Kleibergen and Zivot (2003).

Until recently, Bayesian analysis of IV regression focused primarily on the estimation
of parameters in the relationship of interest. While this allowed researchers to make rea-
sonable conclusions about the direction of causality, these conclusions may not be as well
supported as they would like to believe. Since choosing an appropriate instrument is often
a difficult task, it is only natural that many chosen instruments only explain a small propor-
tion of the variability in the endogenous variables. Therefore, accurate estimation of the
error term could provide further insight on the relationship of interest and play a significant
role in determining causality.

The current standard Bayesian method for estimation of the covariance matrix of the
error term, Σ, uses an Inverse-Wishart (IW) prior. Its popularity stems from the simplicity
it offers as a natural conjugate prior. Although this conjugacy property does simplify pos-
terior inference, it has several significant flaws. The main problem lies in the parameters
of the IW distribution – one location matrix and one degree of freedom. While the location
matrix is sufficient, the degree of freedom parameter is not sufficient to fully represent the
confidence levels for all the elements of the location matrix.

We propose instead the specification of a flexible prior that addresses the flaws seen
in using the IW prior. By considering its matrix logarithm transformation instead of Σ
itself, we can specify a multivariate Normal for the vector of elements of the transformed
covariance matrix. The beauty of the multivariate Normal prior is that we can specify
locational information as well as different levels of confidence for each element. This
allows researchers to fully utilize any information they may have, a priori, regarding the
various elements of covariance matrix of the error term.

Due to the nature of our proposed method, direct sampling is not a viable option.
Markov Chain Monte Carlo (MCMC) sampling is used instead to perform posterior in-
ference. MCMC sampling allows the determination of the characteristics of a density when
it is difficult to obtain that density analytically or numerically. It creates a sequence of
random samples from the density, allowing for the calculation of characteristics such as
the mean and variation. Our use of MCMC sampling will utilize the Metropolis-Hastings
accept-reject algorithm.

The rest of this chapter is organized as follows. Section 2 introduces the IV regression
model. It provides an overview of the different forms used for IV regression and a discus-
sion on the benefits of each. Section 3 explores a few Bayesian methods currently used in

JSM 2016 - Section on Bayesian Statistical Science

1859



IV regression analysis. In Section 4, we introduce our method. We provide an in depth
look at the math and logic for the procedure. Section 5 is used to conclude.

2. The Model

The basic two equation IV regression model seen in Rossi et al. (2005) is used for calcu-
lations, but can be extended to a more general multivariate case. In this model, yi is the
response variable and xi is the endogenous regressor, for i = 1, 2, . . . , n, where n is the
sample size. The model is then defined by the following system of equations:

xi = z
′
iδ + ϵ1i (1)

yi = κ+ βxi + ϵ2i (2)

In equation (1), zi is an h-dimensional vector containing both the intercept term and
h − 1 instruments, δ is the corresponding h-dimensional vector of coefficients, and ϵ1i is
the error term. Note that when δ = 0, i.e. the instruments do not explain any variability in
x, x is simply an error term and y is simply the sum of a constant and a disturbance term.
Clearly, this limiting case would make the model unidentifiable.

In equation (2), κ is the intercept, β is the causal effect parameter, and ϵ2i is the error
term. It is assumed that the instruments in zi are related to xi, but uncorrelated with ϵ2i. If
we let,

ϵi = (ϵ1i, ϵ2i)
′

it is assumed that ϵi are i.i.d. N2(0,Σ), where Σ is a 2 × 2 positive definite matrix. In
other words, the error vector ϵi is distributed as a bivariate normal distribution with zero

mean vector and Σ =

(
σ11 σ12
σ12 σ22

)

covariance matrix.

Although the error vector ϵi is distributed as a bivariate normal distribution, this model
is not that of a standard bivariate regression. The potential existence of a correlation be-
tween ϵ1i and ϵ2i translates to a potential corresponding correlation between xi and ϵ2i. If
in existence, this correlation would create an “endogenity” bias when estimating the value
of β. In other words, if xi and ϵ2i are correlated, then β cannot be consistently estimated
since information about xi that is correlated with ϵ2i will be used in the estimation.

Structural form modeling is built upon the belief of a theoretical model as well as as-
sumptions about structural errors. Since the goal of structural form modeling is to estimate
the parameters of behavioral functions, it is very popular in econometrics. In the case of IV
regression, the use of a structural form has the added benefit of allowing for endogenous
variables in the system of equations. Here, this structural form system of equations can be
simplified by defining the following:

Yi =

[
xi
yi

]

, A =

[
0 0 δT

κ β 0T

]

Xi =

⎡

⎢⎣
1
xi
zi

⎤

⎥⎦ .

This allows the structural form model to be expressed as:

Yi = AXi + ϵi (3)

where Yi is a (2× 1) vector, Xi is ((h+ 2)× 1) matrix, and A is a (2× (h+ 2)) matrix.
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3. Privious Methods

3.1 Inverse Wishart Prior

An Inverse Wishart prior is commonly used for the covariance matrix Σ of the error term.
From equation (3), the joint likelihood of A and Σ can be expressed as:

ℓ(A,Σ|Y) = (2π)−n|Σ|−
n
2 exp

{

−1

2

n∑

i=1

(Yi −AXi)
′Σ−1(Yi −AXi)

}

= (2π)−n|Σ|−
n
2 exp

{
−1

2
tr(WΣ−1)

}
(4)

where
W =

n∑

i=1

(Yi −AXi)(Yi −AXi)
′

such that 1
nW is the maximum likelihood estimator for Σ and Y = (Y1, · · · , Yn)′. Now

with the prior specification of Σ ∼ IW (ν0,Σ0), the conditional posterior density of Σ is
simply the product of the prior density and the profile likelihood function of Σ:

π(Σ|Y) ∝ |Σ|−
v0+3

2 exp
{
−1

2
tr(Σ0Σ

−1)
}
× |Σ|−

n
2 exp

{
−1

2
tr(WΣ−1)

}

∝ |Σ|−
v0+n+3

2 exp
{
−1

2
tr[(Σ0 +W)Σ−1]

}
(5)

The resulting conditional posterior is then conveniently also distributed as IW :

Σ|Y ∼ IW (v0 + n,Σ0 +W)

Since the IW prior is a natural conjugate prior specification for Σ, it is not surprising that
is so commonly used.

When the prior specifications and subsequent posterior distributions are determined,
Gibbs sampling can be used to perform posterior inference. Rossi et al. (2005) suggested
the following prior specification for the structural parameters:

δ ∼ N2(d0,D0), (κ,β)′ ∼ N2(b0,B0), Σ ∼ IW (v0,Σ0)

where the hyperparameters d0,D0,b0,B0, v0, and Σ0 are specified. They reported that
the Gibbs sampling can be performed as follows:

1. Sample Σ. As seen above, the covariance matrix of the error term has the conditional
posterior

Σ|Y, δ,κ,β ∼ IW (v0 + n,Σ0 +W)

2. Sample (κ,β). The regression parameters (κ,β) have a joint conditional posterior

κ,β|Y, δ,Σ ∼ N2(b1,B1)

where

B1 =

(

B−1
0 +

n∑

i=1

x̃ix̃i
′
)−1

, b1 = B1

(

B−1
0 b0 +

n∑

i=1

x̃iỹi

)

x̃i =
1

σ
1
2
2|1

(1, xi)
′, ỹi =

1

σ
1
2
2|1

[
yi − (xi − z′iδ)

σ12
σ11

]
, σ2|1 = σ22(1−ρ2)

and ρ = σ12/(σ11σ22)1/2.
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3. Sample δ. The regression parameter δ has the conditional posterior

δ|Y,κ,β,Σ ∼ N2(d1,D1)

where

D1 =

(

D−1
0 +

n∑

i=1

z̃iz̃i
′
)−1

, d1 = D1

(

D−1
0 d0 +

n∑

i=1

z̃ix̃i

)

x̃i =
1

σ
1
2
1|2

[
xi − (yi − κ− βxi)

σ12
σ22

]
, z̃i =

zi

σ
1
2
1|2

and σ1|2 = σ11(1−ρ2)

This methodology illustrates that an IW prior for Σ is not only convenient for its natural
conjugacy property, but also very easy to implement. Yet, as previously discussed, its
inability to specify varying confidence levels for each of the elements of the covariance
matrix makes it very limited in its ability to model information known a priori.

3.2 Dirichlet Process Prior

Conley et al. (2008) proposed an alternative Bayesian approach to IV regression. They
assume the same structure for the IV regression, but model the error distributions non-
parametrically. Since most researchers consider the assumption of normality of the error
terms in IV models as only an approximation, this proposed method’s flexible error distri-
bution allows for a more accurate estimation of the true error distribution.

Conley et al.’s approach uses a Dirichlet Process (DP) prior for the error terms. This
method strives to better capture the structure of the data. In particular, this approach allows
the error terms to be modeled using the same distribution, but with varying parameters. This
creates, in effect, a mixture model. Although the number of base distributions is not fixed
a priori, the DP prior and the data will help determine the number of mixture components.
This is accomplished by the process itself since it encourages the grouping of “similar”
observations.

Similar to previous approaches (see Section 3.1), it specifies normal priors for the other
parameters of interest δ ∼ N2(d0,D0) and (κ,β)′ ∼ N2(b0,B0) for their natural conju-
gacy properties. While previous approaches assumed i.i.d. error terms: ϵi ∼ N2(0,Σ),
this approach allows each term to have varying parameters: ϵi ∼ N2(0,Σi). Additionally,
it assumes that each of the Σi are i.i.d. from a discrete random distribution G, which is
modeled as G ∼ DP (α, G0). Furthermore, G can be integrated out to result in a contin-
uous marginal distribution for Σi. This is also known as a mixture of Dirichlet Processes
(MDP).

Conley et al. also consider various established methods for estimation of the error term.
Their research found that under departures from normality, the semi-parametric Bayes es-
timators have smaller root mean square errors (RMSE) than standard classical estimators.
Furthermore, the non-parametric Bayes method has identical RMSE for normal errors, and
much smaller RMSE for log-normal errors.

Using MCMC sampling techniques, they found that their method produces smaller
credibility regions than the classical procedures, under both weak and strong instruments,
and especially in the case of non-Normal errors. If the errors are non-Normal, their method
may provide efficiency gains; if the errors are Normal, their method definitely does provide
efficiency gains. Their results indicate that their methodology is better than the standard
Bayesian and classical methods.
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3.3 Cholesky Prior

Lopes & Polson (2014) proposed the use of a Cholesky-based prior for Σ. Cholesky-
based priors have been successfully used for other applications such as longitudinal models
(Pourahmadi, 1999), as well as high dimensional stochastic volatility modeling (Lopes,
McCulloch, and Tsay, 2011). In this context, this approach allows researchers to model the
individual components of the recursive conditional regressions resulting from the Cholesky
decomposition of Σ. In other words, it addresses the problem seen in using an IW prior
for the covariance matrix – the inability to specify varying levels of confidence for the
individual components of covariance matrix.

This method utilizes the Cholesky decomposition of Σ, which can be represented as
follows:

Σ = AHA′

In this equation, A is lower triangular with ones in the main diagonal and lower triangular
element a21 = σ12

σ11
, and H = diag(σ11,σ2|1). Equivalently, σ12 = a21σ11 and σ22 =

σ2|1 +
σ2
12

σ11
. Using the common assumption that ϵi = (ϵ1i, ϵ2i)′ are i.i.d. N2(0,Σ), then the

distribution of the transformed error terms is as follows:

A−1ϵi ∼ N2(0,H)

and ϵi ∼ N2(0,Σ) can be rewritten using the following conditional regressions (Lopes and
Polson, 2014):

ϵ1i ∼ N(0,σ11)

ϵ2i|ϵ1i ∼ N(a21ϵ1i,σ2|1)

In these equations, a21 represents the strength of correlation between ϵ1i and ϵ2i, and σ2|1
represents the conditional residual variance.

The prior specifications for the parameters of this approach are similar to that seen for
the IW prior in Section 3.1. In fact, the same prior distributions are used for the parameters
κ, β, and δ. The difference occurs in its prior specification for the covariance parameters
a21, σ11, and σ2|1. These parameters are assigned the following prior distributions:

a21 ∼ N(µa,σa)

σ11 ∼ IG(a11,β11)

σ2|1 ∼ IG(a2|1,β2|1)

Here, µa, σa, a11, β11, a2|1, and β2|1 are assumed to be specified by the user. By combining
these priors with the profile likelihood of Σ in equation (4), a conditional posterior distri-
bution can be calculated. This allows for usage of the same MCMC sampling steps seen in
Section 3.1, with only a substitution of the conditional posterior distribution for the error
terms.

4. Proposed Prior: Multivariate Normal

In a multivariate Normal setting, the vectorization of the matrix logarithm of the covariance
matrix can be shown to have an approximate likelihood with a multivariate Normal form,
with respect to the elements of the transformed matrix. A multivariate Normal prior is then
happily the conjugate prior for such a likelihood.

Such a prior allows for a flexible specification for the elements of the location param-
eter (and equivalently, Σ). However, the structure of the exact posterior distribution pre-
cludes the possibility of an analytical/numerical approach, therefore necessitating the use of
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approximation techniques. In particular MCMC sampling can be used with a Metropolis-
Hastings accept reject algorithm. The details are discussed below.

4.1 Likelihood Function

Suppose we have a random sample of size n from the structural IV model in equation (3):

Yi = AXi + ϵi

where ϵi = (ϵ1i, ϵ2i)′ ∼ N2(0,Σ). Recall that the joint likelihood of A and Σ is as seen
in equation (4):

ℓ(α,Σ|Y) = (2π)−n|Σ|−
n
2 exp

{
−1

2
tr(WΣ−1)

}

4.1.1 Exact Likelihood

We define the maximum likelihood estimate of Σ to be S, such that S = 1
n

∑n
i=1(Yi −

AXi)(Yi −AXi)′ =
1
nW. Then using the joint likelihood for Σ and A in equation (4),

the exact profile likelihood for Σ is seen to be:

ℓ(Σ|Y) = (2π)−n|Σ|−
n
2 exp

{
−n

2
tr(SΣ−1)

}
.

Now define C and Λ to be the matrix logarithm of Σ and S, respectively.

C = log(Σ) = E[log(D)]E′

Λ = log(S) = E0[log(D0)]E
′
0

where E and E0 are orthonormal matrices whose columns are the normalized eigenvectors
for Σ and S, respectively; D and D0 are diagonal matrices containing the normalized
eigenvalues associated with Σ and S, respectively.

Using the equivalence of |Σ| = exp {tr(C)}, the exact profile likelihood of C can be
expressed as:

ℓ(C|Y) = (2π)−n exp
{
−n

2
tr[C+ S exp(−C)]

}
. (6)

4.1.2 Approximate Likelihood

From Bellman (1970), it is known that exp(−C) can be expressed as a linear Volterra
integral equation. Leonard and Hsu (1992, 1999) demonstrated that it can then be approx-
imated by Bellman’s iterative solution to the linear Volterra integral equation. This allows
for the following approximation to the likelihood function for γ:

ℓ⋆(γ|Y) ∝ |S|−
n
2 exp

{
−1

2
(γ − λ)′Q(γ − λ)

}
(7)

where γ = V ec∗(C) and λ = V ec⋆(Λ), where the function V ec∗ is defined to be the
vector of the upper triangular elements of a matrix taken along the diagonal and shifting
to the right, and Q is a (3 × 3) symmetric almost surely positive definite matrix known
as the likelihood information matrix of γ. Recall that Q is a function of the normalized
eigenvalues and eigenvectors of S

Q =
n

2

2∑

i=1

fiif
′
ii + n

2∑ 2∑

i<j

ξijfijf
′
ij .
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and
ξij =

(di − dj)2

didj [log(di)− log(dj)]2
.

and fij = ei∗ej represents the (3×1) vector that satisfies the condition γ′(ei∗ej) = e′iCej .
Additionally, dj is the jth normalized eigenvalue of S for j = 1, 2.

4.2 Prior Structures

The approximate profile likelihood function seen in equation (7) has a multivariate Normal
form with respect to γ, which indicates that the multivariate Normal distribution is the
conjugate prior. Suppose our multivariate Normal prior takes the form of

γ|η,Υ ∼ N3(η,Υ).

Recall that η is a (3 × 1) prior mean location hyperparameter and Υ is a (3 × 3) prior
covariance hyperparameter matrix. This prior specification allows users to specify confi-
dence levels for each element of γ in addition to the amount of interdependence between
each pair of elements of γ. If a researcher chose to specify a subset, this can be accom-
plished by modeling η = η(µ) and Υ = Υ(θ), where µ and θ are of smaller order than η
and Υ, respectively.

Now if we believe that there are the following two distinct groups in γ: the variance
elements which follow one structure and the covariance elements which follow another
structure, we can express this belief as follows:

γ|µ,∆ ∼ N3(Jµ,∆).

Thus the prior distributional form is:

π(γ|µ,∆) ∝ |∆|−
1
2 exp

{
−1

2
(γ − Jµ)′∆−1(γ − Jµ)

}
(8)

where J is a (3× 2) matrix

J =

[
1 1 0
0 0 1

]′

Here, we have µ as a (2 × 1) vector,

µ =

[
µ1

µ2

]

and ∆ is a (3× 3) symmetric positive definite matrix

∆ =

⎡

⎢⎣
σ2
1 0 0
0 σ2

1 0
0 0 σ2

2

⎤

⎥⎦ .

In this model, µ1 and σ2
1 are the location and variance hyperparameters for the variance

elements, and µ2 and σ2
2 are the location and variance hyperparameters for the covariance

elements.
If we are uncertain as to the true values of µ and ∆, a hierarchical prior structure can

be considered. We can assume a priori that each variable has some known distribution. In
the case where no prior information is known about either variable, they are said to have a
priori a diffuse distribution. For µ, we specify the following prior,

µ ∼ N2(µ
∗,Ψ∗). (9)
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Note that we can later assume (which we do) that µ has a diffuse prior (π(µ) ∝ 1). For the
elements of ∆, we specify the following prior,

νiλi

σ2
i

∼ χ2
νi

where νi is the degree of freedom parameter and λi is the scale parameter (both of which
will be specified to be quite small). Then the distribution of σ2i can be expressed as follows:

π(σ2
i ) ∝ (σ2

i )
− νi

2 −1 exp

(

−νiλi

2σ2
i

)

. (10)

4.3 Exact Posterior

The exact joint posterior distribution is simply a product of the exact profile likelihood
function in (6), the prior distribution for γ in (8), and the vague prior distribution for µ and
∆ in (9).

π(γ,µ,∆|Y) ∝ |∆|−
1
2 exp

{
−n

2
tr[C+ S exp(−C)]− 1

2
(γ − Jµ)′∆−1(γ − Jµ)

}
π(∆)

From the equation above, it is evident that the exact joint posterior is not analytically
tractable and would thus require numerical techniques for further analysis.

The exact conditional posterior distribution for γ can also be calculated, but first re-
quires the calculation of the prior distribution for γ and ∆. This is accomplished by inte-
grating out µ in the joint prior distribution, which is the product of the prior distribution
for γ in equation (8) and the vague prior distribution for µ and ∆ in equation (9). This
essentially entails integrating out µ in equation (8), which gives us:

π(γ,∆) ∝ |∆|−
1
2 |J′∆−1J|−

1
2 exp

{
−1

2
γ ′G∗γ

}
· π(∆) (11)

where G∗ = [I3 −J(J′∆−1J)−1J′∆−1]′∆−1[I3 −J(J′∆−1J)−1J′∆−1]. Recall that, I3
is a (3 × 3) identity matrix, and that this joint prior (with respect to γ) has a multivariate
Normal form.

The exact joint posterior distribution for γ and ∆ is the product of the exact profile
likelihood function in equation (6)) and the previously calculated joint prior distribution
for γ and ∆ in equation (11).

π(γ,∆|Y) ∝ |∆|−
1
2 |J′∆−1J|−

1
2 exp

{
−n

2
tr[C+ S exp(−C)]− 1

2
γ′G∗γ

}
· π(∆)

From the equation above, it can be seen that the exact conditional posterior distribution is
proportional to the exact joint posterior distribution [for γ and ∆] such that

π(γ|Y,∆) ∝ π(γ,∆|Y) ∝ exp
{
−n

2
tr[C+ S exp(−C)]− 1

2
γ ′G∗γ

}
(12)

This expression is also not analytically tractable with respect to γ, and will also require
numerical techniques for further analysis.

To be able to use the MCMC technique, we also need to calculate the exact posterior
distribution for ∆ conditional on γ. This posterior distribution is proportional to the prod-
uct of the exact profile likelihood function in equation (6), the conditional prior distribution
in equation (11) for γ|∆, and the prior distribution of ∆ in equation (10). Since the exact
profile likelihood function does not depend on ∆, the exact posterior distribution for ∆
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conditional on γ is simply proportional to the product of the conditional prior distribution
in equation (11)) for γ|∆ and the prior distribution for ∆ in equation (10).

π(∆|Y,γ) ∝ |∆|−
1
2 |J′∆−1J|−

1
2 exp(γ ′G⋆γ) · π(∆)

∝ (σ2
1)

− r+ν1−1
2 exp

{

− 1

2σ2
1

[
ν1λ1

2σ2
1

+
2∑

i=1

(γi − γ̄v)
2

]}

× (σ2
2)

− q−r+ν2−1
2 exp

{
− 1

2σ2
2

[
ν2λ2

2σ2
2
2
]}

The exact posterior distribution for ∆ conditional on γ is simply the product of two Inverse
Gamma distributions:

σ2
1 |Y,γ ∼ IG

(
ν1 + 1

2
, ν1λ1 +

2∑

i=1

(γi − γ̄v)
2

)

σ2
2 |Y,γ ∼ IG

(
ν2
2
, ν2λ2

)

where γ̄v = 1
2(γ1‘+ γ2) is the arithmetic mean of the variance components of γ. From

this equation, we can deduce that the posterior distributions for σ21, σ2
2 are independent

Inverse Gamma density functions. We can set ν1 = ν2 = λ1 = λ2 = 1 so that δ has a
fairly diffuse prior. Then,

σ2
1 |Y,γ ∼ IG

(

1, 1 +
2∑

i=1

(γi − γ̄v)
2

)

σ2
2 |Y,γ ∼ IG

(
1

2
, 1
)
.

4.4 Approximate Posterior

The exact conditional posterior distribution is not analytically tractable, so it cannot be
used directly to obtain draws for posterior inference. The calculation of an approximate
conditional posterior with a convenient form would allow the use of MCMC simulation
techniques to simulate “draws” from the exact conditional posterior. An alternative would
be to use of the approximate conditional posterior distribution if it has a convenient form.

The approximate joint posterior distribution for γ and ∆ can be calculated by taking the
product of the approximate profile likelihood function in (7) and their joint prior distribution
in (11),

π∗(γ,∆|Y) ∝ |∆|−
1
2 |J′∆−1J|−

1
2 exp

{
−1

2
[(γ − λ)′Q(γ − λ) + γ ′G∗γ]

}

This expression has a form that is similar to that of the multivariate Normal distribution,
with respect to γ. The exponent is re-written with a proportionality taken with respect to
the terms that involve γ to give the approximate posterior distribution for γ conditional on
∆,

π∗(γ|Y,∆) ∝ exp
{
−1

2
(γ − γ∗)′(Q+G∗)(γ − γ∗)

}
(13)

where γ∗ = (Q+G∗)−1Qλ. Now, it can be seen that the approximate conditional poste-
rior distribution of γ has a convenient form: γ|Y,∆

app∼ N3(γ∗, [Q +G∗]−1).
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4.5 Methodology

Consider the IV regression model defined in equations (1) and (2) or equivalently equation
(3), the priors for δ, κ and β described in Section 3.1 and the proposed hierarchical prior
for Σ described in Section 4,2. The complete steps for our MCMC sampling are as follows:

1. Simulate σ2(t+1)
1 , σ2(t+1)

2 from the conditional posteriors:
σ2
1 |Y,γ(t) ∼ IG

(
1, 1 +

∑2
i=1(γi − γ̄v)

2
)

σ2
2 |Y,γ(t) ∼ IG

(
1
2 , 1
)

2. Simulate γ: draw a candidate value γ̃ from the approximate conditional posterior:

γ|Y,∆(t) ∼ N3(γ
⋆, [Q+G∗]−1)

3. Metropolis-Hastings accept reject algorithm. Let:

γ(t+1) =

{
γ̃ with probability min(ρ⋆,1)
γ(t) otherwise

where ρ⋆ = π(γ̃ |Y,∆(t)
)

π⋆(γ̃ |Y,∆(t)
)

/
π(γ |Y,∆(t)

)

π⋆(γ |Y,∆(t)
)

and π(·|·) and π⋆(·|·) are as defined in
equation (12) and (13), respectively

4. Transform γ into corresponding Σ

(a) If the candidate value γ̃ was accepted, transform it into corresponding Σ.

(b) If the candidate value γ̃ was rejected, keep the current value of Σ.

5. Simulate (κ,β). The regression parameters (κ,β) have a joint posterior

κ,β|Y, δ,Σ ∼ N2(b1, B1)

where b1 and B1 are defined in Section 3.1.

6. Simulate δ. The regression parameter δ has the posterior

δ|Y,κ,β,Σ ∼ N2(d1,D1)

where d1 and D1 are also defined in Section 3.1.

7. Combine κ, β, and δ into the matrix A(t+1).

This MCMC scheme is not only easy to implement, but also fairly accurate. It allows
researchers to collect samples from a distribution that is difficult to sample from. The main
downside to MCMC sampling is the length of time it often takes for sufficient convergence.
Current increases in computational power – and subsequently computational speed – have
been able to ameliorate this problem to a degree.

JSM 2016 - Section on Bayesian Statistical Science

1868



5. Conclusion

Instrumental variables regression is an important topic in statistics and, in particular, econo-
metrics. One classical approach to the IV regression problem, 2SLS, is very popular for
its efficiency and ease of use. Yet, like all classical approaches, it does not allow the user
to include any outside information. Bayesian analysis, on the other hand, allows for prior
views about the parameters. It has been shown (Conley et al. 2008) that Bayesian interval
estimators perform well against frequentist estimators, even under frequentist performance
criteria.

The standard Bayesian approach to modeling the covariance matrix of the error term,
seen in equation (5), is with the use of an Inverse Wishart prior. While this allows for the
nice properties associated with conjugate priors, it lacks the ability to use all potential prior
information. In particular, it only allows for one level of confidence for all of the elements
of the covariance matrix. We proposed an alternative that allows for a flexible covariance
specification. This approach allows for the specification of varying confidence levels for
each element in the variance matrix.
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