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Abstract
This paper considers a sparsity approach for inference in large vector autoregressive (VAR) models.
The approach is based on a Bayesian procedure and a graphical representation of VAR models. We
discuss a Markov chain Monte Carlo algorithm for sparse graph selection, parameter estimation,
and equation-specific lag selection. We show the efficiency of our algorithm on simulated data and
illustrate the effectiveness of our approach in measuring contagion risk among financial institutions.
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1. Introduction

High dimensional modeling has received considerable attention in recent years. It is well
known that useful information is often scattered among many variables. Developing mod-
els that extract such information enhances a better understanding of the modern economic
and financial systems. Many studies have shown that combining financial and macroeco-
nomic variables in large VAR models produces better forecasts than standard approaches
(see Banbura et al., 2010; Stock and Watson, 2012; Koop, 2013). Many applications involv-
ing large datasets of financial time series also report evidence of a highly interconnected
system, where linkages play a fundamental role in the spread of risk (see Billio et al., 2012;
Huang et al., 2012; Diebold and Yilmaz, 2014; Hautsch et al., 2015).

In this paper, we propose a model selection approach for large VAR model that is based
on a Bayesian procedure and network representation. We consider graphical models that
represent the causal relationships among the variables via directed edges (Pearl, 2000).
Such models have been applied in time series analysis for estimating causal relationships
in VAR models (see Corander and Villani, 2006; Demiralp and Hoover, 2003; Swanson and
Granger, 1997) and for identifying restrictions in structural VAR (Ahelegbey et al., 2016).
They have shown to be a promising tool for the analysis of financial interconnectedness
and contagion (see Billio et al., 2012; Ahelegbey and Giudici, 2014; Diebold and Yilmaz,
2014). See also Ahelegbey (2016) for a review with focus on financial time series analysis.

As described in the following, we contribute to the literature in many ways. In a typical
large VAR model, there are often too many parameters to estimate, compared to the avail-
able observations. The standard techniques discussed in the literature to overcome such
difficulties are: parameter shrinkage methods (Doan et al., 1984; De Mol et al., 2008; Ban-
bura et al., 2010); factor models (Forni et al., 2000; Bai and Ng, 2002; Stock and Watson,
2002); factor augmented VARs (Bernanke et al., 2005); sparse factor models (Bhattacharya
and Dunson, 2011; Carvalho et al., 2012; Kaufmann and Schumacher, 2013); Bayesian
model averaging (Koop and Potter, 2004; Jacobson and Karlsson, 2004); and sparse VAR
model estimation (De Mol et al., 2008; Gefang, 2014; Basu and Michailidis, 2015; Davis
et al., 2015; Kock and Callot, 2015; Medeiros and Mendes, 2016). In the literature, a key
empirical finding is that many explanatory variables in large VAR models tend to be highly
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correlated and, hence, parsimony can be obtained by assuming that the dependent vari-
ables are driven by a small number of “common factors” or independent variables. We
contribute to this stream of literature by considering a Bayesian graphical approach to esti-
mating sparse VAR models.

We model sparsity in the temporal dependence among variables and uncertainty on
the lags of a graphical VAR model. In standard applications, the common practice is to
estimate an unrestricted model for a given range of lags and to apply a criterion to select
a universal lag order. Such an approach may be inefficient for high-dimensional models
because using an unrestricted VAR means including many irrelevant variables. Moreover,
lag selection in high dimensional time-varying multivariate stochastic volatility (TV-MSV)
models is still an open issue. In many VAR and TV-MSV models, the interaction between
variable selection and equation-specific lag selection is not considered.

This paper extends the graphical VAR model, the inference approach and the posterior
approximation algorithm in Ahelegbey et al. (2016). The approach adopted in this paper is
based on a new hierarchical prior for the equation-specific lags, the graph sparsity param-
eter and the parameters of the graphical model. The idea is to impose a restriction on the
number of predictors (fan-in restriction) to effectively estimate the model (see Friedman
et al., 1998). Setting an a-priori hard fan-in might be too restrictive for large VAR applica-
tions. We therefore allow for different prior information levels on the maximal number of
explanatory variables per equation in the model. We consider a random equation specific
fan-in via a prior on the number of potential covariates for each equation. Since there is
a duality between the prior distribution and the penalty term in the information criterion,
we show that our prior leads to a modified Bayesian information criterion (BIC) which can
be used to select the graph structure and the equation-specific lag order. See Friedman and
Goldszmidt (1998) for learning local networks with standard BIC. See also Bogdan et al.
(2004); Chen and Chen (2008); Foygel and Drton (2010) for extended BIC. We also pro-
pose a new Markov Chain Monte Carlo (MCMC) algorithm to sample from the posterior
distribution, the sparse graph structure, the lag order and the parameters of the VAR model.

We demonstrate the efficiency of our approach on simulated experiments and with an
application to analyze the risk connectedness in the European financial market based on
daily realized volatilities. We find evidence of higher level of systemic vulnerability during
the global financial crisis of 2007-2008 than the European sovereign debt crisis period.

The paper proceeds as follows. We present graphical VAR models in Section 2. Sec-
tion 3 presents the hierarchical prior distribution and posterior approximations. Section 4
outlines the Bayesian inference procedure. Section 5 presents the simulation experiment.
Sections 6 discuss the empirical applications to financial data.

2. Graphical VAR Models

Graphical models is a class of multivariate analysis that uses graphs to represent statistical
models (Lauritzen, 1996). They are formally represented by (G, θ) ∈ (G × Θ), where G
is a graph of relationships between variables, θ is the model parameter, G is the space of
graphs and Θ is the parameter space. The graph, G, is defined in terms of a set of nodes,
denoting variables, joined by a set of edges, depicting interactions.

In a VAR(p) model, an n× 1 vector of time series, Yt, is modeled by

Yt =

p∑
s=1

BsYt−s + εt, εt
iid∼ N (0,Σε) (1)

t = 1, . . . , T , where εt is n×1 vector of errors; p is the maximum lag order; Bs, 1 ≤ s ≤ p
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is n×nmatrix of coefficients. Equation (1) can be expressed as a graphical VAR model (see
Ahelegbey et al., 2016), with a network that is directly related to the coefficient matrices.

Let Xt = (Y ′t−1, . . . , Y
′
t−p)

′ be a np× 1 vector, B = (B1, . . . , Bp), G = (G1, . . . , Gp)
and Φ = (Φ1, . . . ,Φp) denote stacked representations of Bs, Gs and Φs, 1 ≤ s ≤ p,
respectively where each matrix is of dimension n × np. In general, Bij measures the
impact of changes in the j-th element of Xt (i.e., Xt,j) on the i-th element of Yt (i.e., Yt,i).
Thus,Bij = 0 if there is no direct effect ofXt,j on Yt,i. We defineB = (G◦Φ), whereG is
a binary connectivity matrix, Φ is a coefficients matrix, and (◦) is the element-by-element
Hadamard’s product (i.e., Bij = GijΦij). There is a one-to-one correspondence between
B and Φ conditional on G, such that Bij = Φij , if Gij = 1; and Bij = 0, if Gij = 0.

Let Dt = (Y ′t , X
′
t)
′ be a (n+np)× 1 vector, and Dt ∼ N (0,Ω−1), where Σ = Ω−1 is

a d× d is the covariance matrix, where d = n+ np. Then, the joint distribution of Dt can
be summarized with a graphical model, (G, θ), whereG is the network among the variables
and Ω consists of the VAR parameters, {B,Σε}, of model (1). The relationship between Ω
and {B,Σε} is as follows. Assume Dt = (Y ′t , X

′
t)
′ ∼ N (0,Ω−1), Xt ∼ N (0,Σxx) and

Yt|Xt ∼ N (BXt,Σε), {B,Σε} can be obtained from Σ = Ω−1 by B = ΣyxΣ−1
xx , and

Σε = Σyy − ΣyxΣ−1
xxΣxy, where Σxy is np × n covariances between Xt and Yt, and Σyy

is n × n covariances among Yt. Given {B,Σε} and Σxx, Ω = Σ−1 can be obtained using
the well-known Sherman-Morrison-Woodbury formula, (see Woodbury, 1950)

Ω =

(
Σ−1
ε −Σ−1

ε B
−B′Σ−1

ε Σ−1
xx +B′Σ−1

ε B

)
(2)

Based on the relationship between B and G defined above, equation (2) shows how Ω
is related G through B. In this paper, we model the direct effects from elements in Xt on
elements in Yt. Thus, Gij = 0, if Yt,i and Xt,j are conditionally independent given the rest
of the elements in Dt, and Gij = 1 otherwise. Formulating (1) in a graphical form allows
us to identify the causal dependencies in the model. Moreover, for large VAR models,
the number of parameters to be determined is often too large compared to the number
of observations, and this possibly leads to overfitting and loss of inference accuracy. The
graphical form can be used to deal with these issues and to obtain more efficient estimators.
Thus, we propose a sparse graphical approach to identify the set of covariates that explains
the dependent variables. The quantities to estimate consist of the lag order, the sparse graph
structure and the parameters. Estimating all these jointly is very challenging. We therefore
adopt a Bayesian procedure that allows us to incorporate prior information where necessary,
to include simulation based approximation techniques, and to apply model averaging.

3. Sparse Bayesian Graphical VAR Models

The specification of our sparse Bayesian graphical VAR model is completed with the choice
of a hierarchical prior on the lag order p, the sparse graph structure G and the parameter Ω.

3.1 Lag Order Prior Distribution

Let pi be the i-th equation lag order, and IA(x), the indicator function, i.e., unity if x ∈ A
and zero otherwise. We assume for pi, a discrete uniform prior on the set {p, . . . , p̄}, i.e.,

Pr(pi) =
1

(p̄− p+ 1)
I{p,...,p̄}(pi), for some 0 < p < p̄ <∞ (3)
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3.2 Sparse Graph Prior Distribution

We model sparsity in the graph structure via fan-in, i.e., imposing a restriction on the num-
ber of regressors that can predict a dependent variable (see Friedman and Koller, 2003).
For a large VAR(p) model with n time series each of length T , the number of coefficients
is npi for each equation, which is typically larger than T . We assume a maximum fan-in m
where m < npi. Specifically, we set m = T − pi for each equation.

Let fi be the equation-specific fan-in, 0 ≤ fi ≤ m, and πi = {j = 1, . . . , npi : Gij =
1} the set of indexes of explanatory variables in the i-th equation, with |πi| as the cardinality
of πi. Setting a-priori the value of fi might be too restrictive in many applications. We
introduce a prior distribution on fi that allows for different prior degrees of information on
the equation-specific fan-in. We denote with ηi = |πi|/npi, 0 ≤ ηi ≤ 1, the fraction of
covariates that explains the i-th dependent variable. We set fi = min(bηinpic,m), where
bAc is the largest integer less than A. Given |πi| and n, ηi decreases with pi. Thus, the
conditional prior on ηi given pi, is assumed to be the beta distribution, ηi|pi ∼ Be(ai, bi),
on [0, 1], where ai and bi are functions of pi. The parameters ai and bi can be chosen
following the researcher prior belief on ηi. We consider an uninformative Be(1, 1) prior.

Following Scott and Berger (2010), we consider the inclusion of explanatory variables
in each equation as exchangeable Bernoulli trials with prior probability

Pr(πi|pi, ηi, γ) ∝ γ|πi|(1− γ)npi−|πi| I{0,...,fi}(|πi|) (4)

where γ ∈ (0, 1) is the Bernoulli parameter. We assign to each variable inclusion a prior
probability, γ = 1/2, which is equivalent to assigning the same prior probability to all
models with a number of explanatory variables less than the fan-in fi.

3.3 Parameter Prior Distribution

Following the standard practice in graphical modeling (see Geiger and Heckerman, 2002),
we assume the prior distribution on the unconstrained Ω, given p and a complete graph with
no missing edges, G, is Wishart distributed with density function

Pr(Ω|p,G) =
1

Cd(ν, S0)
|Ω|

(ν−d−1)
2 exp

{
− 1

2
〈Ω, S0〉

}
(5)

where 〈A,B〉 = tr(A′B) denotes the trace, ν > d+1 is the degrees of freedom parameter,
S0 is a d× d prior scale matrix, and Cd(ν, S0) is the normalizing constant:

Cd(ν, S0) = 2
νd
2 |S0|−

ν
2 Γd

(ν
2

)
, with Γq(r) = π

q(q−1)
4

q∏
i=1

Γ
(
r +

1− i
2

)
(6)

where Γq(·) is the q-variate generalization of the gamma function, Γ(·). We further as-
sume (B,Σε|p,G) is an independent normal-Wishart, which is a standard prior in the VAR
literature. Specifically, we assume B is independent and normally distributed, B|p,G ∼
N (B, V ), and Σ−1

ε is Wishart distributed. The prior expectation, B, is a null matrix, and
the prior variance, V , is the identity matrix. The prior expectation of Σε is 1

νS where S is
the n× n scale matrix and ν > n+ 1 the degrees of freedom parameter.

4. Bayesian Inference

Let Gs be a n × n matrix of temporal relationship between variables at time t − s and
variables at time t. In order to emphasize the dependence of the graph size on the lag order,
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we denote with ~Gp = G = (G1, . . . , Gp), the collection of all graphs such that ~Gp is of
dimension n× np. We define ~Gp,i as the local graph of the i-th equation which is the i-th
row of ~Gp. LetD = (D1, . . . , DTl) be the collection of all observations, where Tl = T −p.
The likelihood function Pr(D|p, ~Gp,Ω) is multivariate Gaussian with density

Pr(D|p, ~Gp,Ω) = (2π)−
dTl
2 |Ω|

Tl
2 exp

{
− 1

2
〈Ω, Ŝ〉

}
(7)

where Ŝ =
∑Tl

t=1DtD
′
t is the d× d sample sum of squares matrix. Ω can be integrated out

analytically with respect to its prior distribution to obtain the marginal likelihood function

Pr(D|p, ~Gp) =
Cd(ν + Tl, S0 + Ŝ)

(2π)
dTl
2 Cd(ν, S0)

=
Cd(ν + Tl, (ν + Tl)Σ̄)

(2π)
dTl
2 Cd(ν, νΣ)

(8)

where Σ = 1
νS0 and Σ̄ = 1

ν+Tl
(S0 + Ŝ), with S0 and S0 + Ŝ as the prior and posterior

sum of square matrices respectively. In VAR models, the errors are correlated across equa-
tions which makes the factorization of (8) into local marginal likelihoods quite problematic.
However, following the large-sample approximation of Kass et al. (1988) and Chickering
and Heckerman (1997), we treat the errors as unobserved variables that can be considered
as independent when dealing with a large set of observed variables. We therefore approxi-
mate (8) with a pseudo-marginal likelihood given by the product of local densities

Pr(D|p, ~Gp) ≈
n∏
i=1

Pr(D|pi, ~Gp,i(i, πi)) =
n∏
i=1

Pr(D(i,πi)|pi, ~Gp,i)
Pr(D(πi)|pi, ~Gp,i)

(9)

where ~Gp(i, πi) is the sub-graph of ~Gp with links from Wt,πi to Yt,i, i.e., Wt,πi ∈ Wt

denotes the vector of predictors of Yt,i,D(i,πi) andD(πi) are sub-matrices ofD consisting of
(Yt,i,Wt,πi) and Wt,πi respectively. This allows us to focus on the local graph estimation.
According to standard practice, since (8) factorizes into local scores, a search algorithm
can be applied to estimate local graphs (Friedman and Goldszmidt, 1998; Bach and Jordan,
2004). For any n× n matrix A, and any scalar ρ, we have |ρA| = ρn|A|, thus, the product
elements on the left-hand side of (9) become

Pr(Dwi |pi, ~Gp,i) =
π−

1
2
Ti|wi|ν

1
2
ν|wi|

(ν + T )
1
2

(ν+Ti)|wi|

|Σwi |
1
2
ν

|Σ̄wi |
1
2

(ν+Ti)

|wi|∏
i=1

Γ
(
ν+Ti+1−i

2

)
Γ
(
ν+1−i

2

) (10)

where wi ∈ ({i} ∪ πi), and Dwi is a sub-matrix of D consisting of |wi| × Ti observations,
where |wi| is the dimension of wi, Ti = T −pi, |Σwi | and |Σ̄wi | are the determinants of the
prior and posterior covariance matrices associated with wi.

4.1 Posterior Approximation

The standard approach to approximate the graph and parameters joint posterior distribution
is to consider a collapsed Gibbs sampler. At the j-th iteration, the sampler consists of the
following steps:

1. Sample jointly, p(j), η(j) and ~G
(j)
p from Pr(p, η, ~Gp|D).

2. Sample B(j) and Σ
(j)
ε directly from Pr(B,Σε|p(j), ~G

(j)
p ,D).
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Regarding the first step, since the lag order is unknown the dimension of the sample
space changes with the number of lags at each Gibbs iteration. Thus, standard MCMC
algorithms (e.g., Madigan and York, 1995) cannot be applied given they are designed for
fixed dimension posterior distributions. The commonly discussed approach in the literature
for this problem is the reversible jump (RJ) MCMC (Green, 1995). However, in a typical
graph estimation problem, the graph space dimension increases super-exponentially with
the number of variables (Chickering et al., 2004). Therefore, using the RJ algorithm will
require a higher number of iterations to thoroughly visit the space of all candidates. In our
model, the inferential difficulty increases due to the random fan-in restriction.

We propose to adopt the standard approach to lag selection and to sample the equation-
specific sparse graph structure for each lag order. Thus, for the i-th equation and for each
lag pi = p, . . . , p̄, we sample at the j-th iteration, η(j)

i from Pr(ηi|pi, ~Gp,i,D) and ~G
(j)
p,i

from Pr(~Gp,i|pi, ηi,D). By conditioning on each possible lag, the dimension of the model
remains fixed, which allows us to apply standard MCMC algorithms to sample the graph.
This enables us to avoid MCMC moves between parameter spaces of different dimensions.
After J iterations, we apply the metric in Ahelegbey et al. (2016) to monitor convergence

of the MCMC chain and to estimate ~̂Gp,i. Next, we select (p̂i, Ĝp̂,i) which minimizes the
criterion in (22). From p̂i and Ĝp̂,i, we select the relevant explanatory variables per equation
and estimate B and Σε.

4.2 Sparse Graph Selection

Our MCMC algorithm differs from the one described in Grzegorczyk and Husmeier (2011)
in two aspects: the initialization and the inclusion of the random fan-in restriction. In
MCMC search algorithms, the space exploration crucially depends on the choice of the
starting point of the MCMC chain. A set of burn-in iterations is often used to obtain a
good starting point. Brooks et al. (2011) showed that any sample representative of the
equilibrium distribution is considerable. Following this view, we initialize the search by
extracting explanatory variables with reliable information to improve predictions of the
dependent variables. Let ~Gp,i denote the local graph of the i-th equation, Vi

p,x, the vector of
all possible covariates with lags up to pi, pi ∈ {p, . . . , p̄}, and Vy, the vector of dependent
variables. We run the following steps:

1. Initialize the graph ~Gp as n× np null matrix, i.e., ~Gp,i is 1× np null vector.

2. For each equation i = 1, . . . , n and each covariate index k = 1, . . . , npi: test whether
predictions of yi ∈ Vy is improved by incorporating information from xk ∈ Vi

p,x,
i.e., Pr(yi|xk) > Pr(yi). Following a Minnesota type of prior (see Doan et al.,
1984), we assume recent lags of yi are more reliable to influence current realizations.
Based on this concept, we set ~Gp(i, k) = 1, if xk = Yt−1,i. For xk 6= Yt−1,i, we
compare the null hypothesis, H0 : Pr(D|pi, ~Gp(i, ∅)) ≥ Pr(D|pi, ~Gp(i, k)) against
H1 : Pr(D|pi, ~Gp(i, k)) > Pr(D|pi, ~Gp(i, ∅)), where ∅ is the empty set. If H0 is
rejected, we set ~Gp(i, k) = 1 and retain xk in Vi

p,x. Otherwise, set ~Gp(i, k) = 0 and
remove xk from Vi

p,x.

3. We denote with Np(πi) the set of indexes of the candidate covariates in the i-th
equation which consists of elements retained in Vi

p,x. We investigate the combination
of candidates in Np(πi) that produces the highest score networks.

In our experience, the above initialization provides a good starting point for the MCMC
algorithm. At the j-th iteration, let ~G(j−1)

p,i be the current local graph and π(j−1)
i , the current
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set of indexes of covariates in ~G
(j−1)
p,i , then for each equation, the Gibbs iterates as follows:

1. Draw the sparsity parameter for the forward proposal probability, η(∗)
i from a Be(ai+

|π(j−1)
i |, bi + npi − |π(j−1)

i |) and set the fan-in f (∗)
i = min(bη(∗)

i npc,m).

2. If |π(j−1)
i | < f

(∗)
i , randomly draw an index k from the set of candidate covari-

ates, Np(πi), and add/remove the link between yi and xk, i.e., set ~G(∗)
p (i, k) = 1 −

~G
(j−1)
p (i, k). The forward proposal probability Q(~G

(∗)
p,i |~G

(j−1)
p,i , η

(∗)
i ) = 1/|Np(πi)|.

If |π(j−1)
i | ≥ f

(∗)
i , then randomly draw an index k from π

(j−1)
i , and remove the

link between yi and xk, i.e., ~G(∗)
p (i, k) = 0. The forward proposal probability is

Q(~G
(∗)
p,i |~G

(j−1)
p,i , η

(∗)
i ) = 1/|π(j−1)

i |.

3. We denote with π(∗)
i , the set of indexes of covariates in ~G

(∗)
p,i which accounts for

the changes made in step 2. Next, we draw the sparsity parameter for the reverse
proposal probability, η(∗∗)

i from a Be(ai + |π(∗)
i |, bi + npi − |π(∗)

i |) and set f (∗∗)
i =

min(bη(∗∗)
i npc,m).

4. If |π(∗)
i | < f

(∗∗)
i , the reverse move will draw of an index fromNp(πi) to add or delete

from ~G
(∗)
p,i . The reverse proposal probability is Q(~G

(j−1)
p,i |~G(∗)

p,i , η
(∗∗)
i ) = 1/|Np(πi)|.

If |π(∗)
i | ≥ f

(∗∗)
i , the reverse will randomly draw an index from π

(∗)
i to delete from

~G
(∗)
p,i . Here the reverse proposal probability is Q(~G

(j−1)
p,i |~G(∗)

p,i , η
(∗∗)
i ) = 1/|π(∗)

i |.

5. From (4), the ratio of the local graph priors simplifies to 1 and the acceptance prob-
ability becomes A(~G

(∗)
p,i , η

(∗)
i |~G

(j−1)
p,i , η

(∗∗)
i ) = min{1, RA} where

RA =
Pr(D|pi, ~G(∗)

p,i )

Pr(D|pi, ~G(j−1)
p,i )

Q(~G
(j−1)
p,i |~G(∗)

p,i , η
(∗∗)
i )

Q(~G
(∗)
p,i |~G

(j−1)
p,i , η

(∗)
i )

(11)

and Pr(D|pi, ~Gp,i) = Pr(D|pi, ~Gp(i, πi)) can be computed from (9) and (10).

6. Sample u ∼ U[0,1] and if u < min{1, RA}, then accept changes made in the local

graph and set ~G(j)
p,i = ~G

(∗)
p,i , otherwise set ~G(j)

p,i = ~G
(j−1)
p,i .

4.3 Duality between Priors and Penalties

In graphical models, the most plausible graph is the one that minimizes the following cri-
terion: (see Heckerman et al., 1995; Friedman and Goldszmidt, 1998)

−2 logPr(G|D) ≈ BIC(G) = −2 logPr(D|Ω̂G, G) + |EG| log T (12)

where≈ indicates the approximation obtained by replacing the likelihood with the pseudo-
likelihood (see equation (9)), Ω̂G is the estimate of Ω under G, Pr(D|Ω̂G, G) is the likeli-
hood evaluated at Ω̂G, and |EG| is the total number of edges in G. The BIC score decom-
poses as BIC(G) =

∑n
i=1BIC(i, πi) (see Friedman and Goldszmidt, 1998), where

BIC(i, πi) = −2 logPr(D|Ω̂G,i, G(i, πi)) + |π̂i| log T (13)

is the local BIC score, Pr(D|Ω̂G,i, G(i, πi)) is the local likelihood evaluated at Ω̂G,i, and
|π̂i| is the number of selected variables. See Bach and Jordan (2004) for the AIC version.
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Due to the duality between prior distributions and the penalization of likelihood func-
tions, we define an information criterion for selecting p̂i and π̂i by solving the following

(p̂i, π̂i) = arg max
pi,πi

Pr(pi)Pr(D|pi, ~Gp,i)
∫
Pr(πi|pi, ηi, γ)Pr(ηi|pi)dηi (14)

Proposition 1. Let Pr(ηi|pi) be the probability density function of the beta distribution
Be(ai, bi) and let Pr(πi|pi, ηi, γ) be as in (4), then setting γ = 1/2, ηi can be integrated
out to obtain

Pr(πi|pi) = Pr(πi|pi, γ = 1/2)

∝ 1

2npi

m∑
j=0

I{0,...,j}(|πi|)
(
Inpi−m+j

npi

(ai, bi)− I j
npi

(ai, bi)
)

(15)

where Iz(ai, bi) =
∫ z

0 (B(ai, bi))
−1 ηai−1

i (1− ηi)bi−1 dηi, is the incomplete beta function
(see Abramowitz and Stegun, 1964, p. 263).

Proof. From the prior distributions in (4), setting γ = 1/2, ηi can be marginalized as

Pr(πi|pi, γ = 1/2) ∝ 1

2npi

∫ 1

0
I{0,...,fi}(|πi|)

1

B(ai, bi)

(ηi)
ai−1

(1− ηi)bi−1
dηi (16)

where fi = min(bηinpc,m), m = min{npi, T − pi}, I{0,...,fi}(|πi|) is such that

I{0,...,fi}(|πi|) =


I{0}(|πi|), 0 ≤ ηi < 1

npi
...

...
I{0,...,m−1}(|πi|), m−1

npi
≤ ηi < m

npi
I{0,...,m}(|πi|), m

npi
≤ ηi ≤ 1

(17)

Pr(πi|pi) ∝
1

2npi

[
I{0}(|πi|)

∫ 1
npi

0
H(ηi)dηi + . . .+ I{0,...,m}(|πi|)

∫ 1

m
npi

H(ηi) dηi

]

=
1

2npi

m∑
j=0

I{0,...,j}(|πi|)
(
Inpi−m+j

npi

(ai, bi)− I j
npi

(ai, bi)
)

(18)

where H(ηi) = (B(ai, bi))
−1 ηai−1

i (1 − ηi)
bi−1, and Iz(ai, bi) =

∫ z
0 H(ηi)dηi is the

incomplete beta function (Abramowitz and Stegun, 1964, p. 263).

Corollary 4.1. For a uniform prior on ηi, i.e., ai = bi = 1, equation (15) becomes

Pr(πi|pi) ∝
(npi −m)

npi 2npi

m∑
j=0

I{0,...,j}(|πi|) =
1

2npi

(
1− m

npi

)(
m+ 1− |πi|

)
(19)

Proof. By assuming a uniform prior on ηi, i.e., H(ηi) = 1, the difference between the
incomplete beta functions in (18) is Inpi−m+j

npi

(ai, bi)− I j
npi

(ai, bi) = 1− m
npi

. Thus

Pr(πi|pi) ∝
(npi −m)

npi 2npi

m∑
j=0

I{0,...,j}(|πi|) =
1

2npi

(
1− m

npi

)(
m+ 1− |πi|

)
(20)
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Proposition 2. Let Pr(πi|pi) be as in (19). If ϕ(|πi|) is an approximation asymptotically
equivalent to − logPr(πi|pi), where 0 ≤ |πi| ≤ npi, then ϕ(|πi|) is a convex function
given pi > 0 and n > 0.

Proof. The function ϕ(|πi|) is convex if and only if ϕ′′(|πi|) > 0, ∀|πi|. By defining
ϕ(|πi|) as an approximation asymptotically equivalent to − logPr(πi|pi), then

ϕ′′(|πi|) =
1

(m+ 1− |πi|)2
> 0 (21)

From (19), it follows that Pr(πi|pi) < 1
2npi ,∀|πi| ≤ m. Given that Pr(pi) is constant

according to (3) and (13), we define a modified BIC for local graph and lag selection as

BIC(pi, i, πi) = −2 logPr(D|pi, Ω̂G,i, ~Gp(i, πi)) + |π̂i| log T + 2npi log 2 (22)

Following Chib and Greenberg (1995), we use the estimated local graph to evaluate the
score and to select the lag order. Selecting the local graph and the lag order for each
equation may produce asymmetric lags for the different equations. Closely related to our
criterion is the extended BIC by Bogdan et al. (2004); Chen and Chen (2008); Foygel and
Drton (2010). A significant difference between our BIC and the ones discussed in the above
papers is that our additional penalty term depends on the number of potential covariates
(npi) per equation and not on the estimated number of explanatory variables (|π̂i|). Thus,
in comparing sparse graphs with the same lags, but different configuration, our criterion
differs from the standard BIC (13) by a constant term.

4.4 Model Estimation

We estimateB and Σε by exploiting their relationship with Ω (see equation (2)). We assume
an independent normal-Wishart and by conditioning on Ĝp, we estimate the coefficients as-
sociated with the non-zero elements of the i-th equation graph Ĝp,i. We define the selection
matrix Ei = (ej1 , . . . , ej|πi|), where Ei is of dimension npi×|πi|, jk ∈ πi is an element of
the set of predictor indexes for the i-th equation, and ek is the k-th element of the standard
orthonormal basis of the space of real npi-dimensional vectors. The posterior mean and
variance of B are

B̄G,i = V̄G,i(V
−1
G,iBG,i + σ̄−2

i W ′G,iYi), V̄G,i = (V −1
G,i + σ̄−2

i W ′G,iWG,i)
−1 (23)

with WG,i = WEi, BG,i = BiEi, VG,i = E′iV iEi, where WG,i ∈ W ′, is the set of
selected predictors of the i-th equation; W ′ is stacked W ′1, . . . ,W

′
Tl

, with dimension Tl ×
npi; Y is stacked Y ′1 , . . . , Y

′
Tl

, with dimension Tl×n; Yi is the i-th column of Y ; BG,i and
V G,i, are the prior mean and variance of B respectively; σ̄2

i , is the i-th diagonal of Σε, and
the posterior of Σ−1

ε is Wishart distributed with scale matrix, S̄ = S + (Y ′ − B̄W ′)′(Y −
WB̄′), and degrees of freedom ν̄ = ν + Tl. Here B̄ = (B̄G,1, . . . , B̄G,n), is the stacked
posterior mean of the coefficients, such that B̄ij 6= 0, if Ĝp,ij = 1; and B̄ij = 0, otherwise.

5. Simulation Study

We investigate the effectiveness of our approach through simulated experiments. The data
generating process (DGP) of the experiment is a VAR with exogenous variables given by

Yt = BXt−1 + εt, εt
iid∼ N (0,Σε) (24)
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t = 1, . . . , T , where Σε, is a full matrix drawn from an inverse-Wishart distribution with
n1 + 1 degrees of freedom and an identity scale matrix, In1 , B is n1 × n coefficient ma-
trix, Yt and Xt are is a n1 × 1 and n× 1 respectively. To analyze different sparsity levels,
we generate the coefficients matrix such that the number of non-zero coefficients for each
equation is drawn from a uniform on {0, . . . , 40}. We set n1 = 10 and n = 100. We repli-
cate the simulation and estimation exercise 100 times. For each replication, we generate a
sample size T = 60 and use T0 = 50 samples to estimate the model and 10 samples for
out-sample forecast analysis.

We compare our sparse Bayesian graphical VAR (SBGVAR), against the standard
graphical model (referred to as Bayesian graphical VAR - BGVAR), and the standard Lasso-
type methods, i.e., LASSO (Tibshirani, 1996) and Elastic-net (ENET; Zou and Hastie,
2005). We evaluate the efficiency of the methods in terms of graph estimation accuracy
and predictive performances.

We set p = 1 and p̄ = 4 and implement a parallel estimation for the LASSO and ENET.
We apply a five-fold cross validation to select the regularization parameter. We run 20,000
Gibbs iterations for the graph estimation and 2000 iterations for parameter estimations. The
replications are conducted on a cluster multiprocessor system which consists of 4 nodes;
each comprises four Xeon E5-4610 v2 2.3GHz CPUs, with 8 cores, 256GB ECC PC3-
12800R RAM, Ethernet 10Gbit, 20TB hard disk system with Linux.

DGP Links = 201.5 LASSO ENET BGVAR SBGVAR
Links 149.8400 181.1200 238.2000 50.0400
ACC 96.2675 95.8375 94.5135 96.5935
BICG 4233.6897 4315.3526 4447.7941 4053.1426
MSFE 0.3055 0.3010 0.5038 0.4027
LPS -5.9148 -5.7482 -14.0147 -9.1776
AICM 311.5096 373.7364 504.4293 118.4352

Table 1: Graph and model performance. Note: Links is Predicted number of edges; ACC (graph
accuracy); BICG (graph BIC); LPS (log predictive score); and AICM (predictive AIC). Results
are averaged over 100 replications. Boldface values indicate the best choice for each metric.

We proceed by comparing the effectiveness of the methods in estimating the graph of
the DGP. Over all the simulation exercises, the DGP reported an average of 201.5 links.
The table shows that, on average, the BGVAR predicted more links than in the DGP and
the other competing methods. In terms of graph estimation accuracy, the SBGVAR out-
performs the other methods. The network BIC score favors the SBGVAR which confirms
the outcome of the graph accuracy metric. In conclusion, the SBGVAR network provides
a better representation of the temporal dependence in the simulated dataset than the other
methods. In terms of estimated model performance, the MSFE and the log predictive score
favor the ENET, while the predictive AIC favors the SBGVAR. The results show that the
sparsity restriction on the model selection enables us to better identify the significant set of
the most influential explanatory variables and that the SBGVAR produces a more parsimo-
nious model with competitive point and density forecasts.

6. Risk Connectedness in European Financial Markets

Risk connectedness among financial institutions and markets is currently recognized as an
important source of vulnerability for the financial system, since it can magnify the impact
of the triggers, as evidenced by the recent global financial crisis (Diebold and Yilmaz,
2014; Hautsch et al., 2015). Policy makers and regulators are increasingly focusing on
interconnectedness in order to identify the vulnerability in the system and areas of risk
concentrations in the build-up and after-math of the crises. See, e.g., Moghadam and Viñals
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(2010); Viñals et al. (2012) for the role of interconnectedness in policy making.
We analyze the stability of the volatility connectedness in the financial sector of the Eu-

ropean stock market. We construct daily realized volatilities using intraday high-low-close
price indexes of 118 institutions of Euro Stoxx 600, obtained from Datastream, covering
from January 3, 2005 to September 19, 2014. These are the largest euro area financial insti-
tutions consisting of 42 Banks, 31 Financial Services, 31 Insurance companies and 22 Real
Estates. The dataset covers the following countries: Austria, Belgium, Finland, France,
Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal and Spain.

Let Ht, Lt and Ct denote the high, low and closing price of a given stock on day t
respectively. Following Garman and Klass (1980), we construct the realized volatility as

RVt = 0.5
(

logHt − logLt
)2 − (2 log 2− 1)

(
logCt − logCt−1

)2 (25)

In stochastic volatility models, higher-order autoregressive terms are usually consid-
ered (e.g., see Asai, 2008). Lag selection in high dimensional time-varying multivariate
stochastic volatility (TV-MSV) models is still a challenging issue. Our MCMC procedure
is designed to deal with this problem. A closely related paper to our approach is Loddo
et al. (2011), where a Bayesian stochastic search is applied to select regressors and non-
zero covariances. However, in the above mentioned paper and many TV-MSV papers (e.g.,
see Asai et al., 2006, for a review), the interaction between variable selection and equation-
specific lag selection is not considered. Our approach accounts for this interaction.
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Figure 1: Volatility connectedness index obtained from a rolling window estimation of the SBG-
VAR with a window size of 150 days, covering the period January, 2005 – September, 2014.

We define connectedness through the lagged linkages among institutions captured by
the autoregressive coefficients matrix of a VAR model. We set the minimum and maximum
lag order to p = 1 and p̄ = 5 respectively. We characterize the total connectedness, i.e.,
the sum of the inter-linkages (see Figure 1), using a rolling estimation with window size
of 150-days. The total connectedness index is formally used to summarize the degree of
inter-connection for each window. This index attains a minimum value of zero when there
are no linkages and a maximum value of 100 when all the institutions are fully connected.

From Figure 1, we notice a steady rise in the connectedness index with a small peak
in 2006, rising through 2007 with a higher peak in 2008–2009. The index then declined
steadily after 2009 and rose again with another peak in 2011–2012. The closeness between
the peak in 2006 and the steady rise in 2007, coupled with the steady decline after 2009 only
to record another rise in 2010–2011, somehow shows that volatility connectedness seems
to occur in clusters. Our results support the findings of previous studies (see Tang et al.,
2010) about clustering effects in financial crisis occurrence. Interestingly, these three peaks
correspond to periods during the Iceland and Turkey crisis in 2006, the global financial
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crisis in 2007–2009 and the European sovereign debt crisis in 2010–2013, respectively. The
higher level of interconnectedness has been shown to indicate vulnerability of the system,
where linkages play a significant role in financial risk propagation (see, Tang et al., 2010;
Billio et al., 2012; Diebold and Yilmaz, 2014; Hautsch et al., 2015).

(a) 3/2006 – 10/2006 (Net-1) (b) 6/2008 – 1/2009 (Net-2)

(c) 4/2011 – 11/2011 (Net-3)

Figure 2: Networks of volatility connectedness in the European financial market during (2a) the Ice-
land and Turkey crisis in 2006, (2b) the global financial crisis in 2007–2009, and (2c) the European
sovereign debt crisis in 2010–2013. The size of the nodes is proportional to their degree.

Links Density Average Number of Average
Degree Communities Path Length

Net-1 (2006) 2731 0.351 40.752 51 1.652
Net-2 (2008–2009) 10093 0.909 106.39 58 1.092
Net-3 (2011–2012) 4965 0.583 68.153 55 1.417

Table 2: The network statistics for the three graphs. The average path length represents the average
graph-distance between all pairs of nodes. Connected nodes have graph distance 1.

Figure 2 shows the networks at the volatility connectedness peaks: (2a) the Iceland
and Turkey crisis in 2006 (Net-1), (2b) the global financial crisis in 2007–2009 (Net-2),
and (2c) the European sovereign debt crisis in 2010–20013 (Net-3). The topology of the
three networks shows some differences with a few highly connected nodes in Net-1 and a
large number of highly connected nodes in Net-2 and Net-3. These features indicate that
different spreading mechanisms occurred in the three crises. A more detailed analysis of
the network statistics confirms these differences.

Table 2 shows the network statistics for the three structures. As regards the number
of communities or cohese groups of nodes (see Girvan and Newman, 2002), we used a
resolution coefficients of 0.2 (see Blondel et al., 2008). We observe that Net-2 (2008–
2009) recorded about four times the estimated links in Net-1 (2006) and more than twice
that of Net-3 (2011–2012). Net-1, on the other hand, recorded the lowest density (0.351),
number of communities (51) and average degree (40.752) followed by Net-3 and Net-2 has
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the highest density (0.909), number of communities (58) and average degree (106.39).
We detect an increase in the number of communities during and after the financial

crisis, thus, providing evidence in favor of the use of stochastic block models in contagion
analysis (see Hałaj and Kok, 2013). The average path length represents the average graph-
distance between all pair of nodes, where connected nodes have graph distance equals to
1. The higher the graph distance the longer time it takes for a default cascade to cause
a systemic breakdown. Net-1 recorded the highest distance between nodes (average path
length of 1.652), followed by Net-3 with 1.417 and Net-2 with 1.09.

In conclusion, the result shows that the 2008–2009 sub-period recorded the highest
volatility (fear) connectedness over the entire sample period. Thus, the vulnerability of
the system during the 2007–2009 crisis was much higher than that in 2006 and in 2010–
2013. Hence, the severity in the impact of the global crisis (recession) through the large
number of closely connected communities affected a much broader aspect of the European
financial market, in a very short propagation time and involving several important financial
institutions, than the Iceland and Turkey crises and the European sovereign debt crisis.

7. Discussion

We consider a sparsity approach to inference for large vector autoregressive (VAR) models.
The approach is based on a Bayesian procedure and graphical representation of VAR mod-
els. We present a new prior which allows for the equation-specific lags, and graph sparsity.
We also discuss an efficient Markov chain Monte Carlo algorithm for sparse graph se-
lection, parameter estimation, and lag selection. We demonstrate the effectiveness of our
approach through simulation experiments and empirical applications to finance. An empir-
ical analysis of systemic risk based on realized volatilities in the European financial market
shows a higher level of systemic vulnerability and a shorter propagation time during the
global finance crisis than in the sovereign debt crisis period.
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