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Abstract

In environmental epidemiology, the dilemma that multiple time series data with inner
trend cannot be fully adjusted by the observed covariates is often encountered. Inner trend
is complicated to determine and separate from abnormal signals of interest. This article
addresses how to de-trend time series in order to recover abnormal signals. It is found that
the current spline or kernel smoothing methods can produce either positive or negative
significant cross-correlations, depending on how the smoothing parameters are chosen. To
circumvent this problem, three classes of robust and stable smoothers are proposed to
de-trend time series data. Their properties are demonstrated by both case study, using
design of experiment on scenarios, and simulation study, using indistinguishable datasets
generated from the original dataset. Finally, general guidelines are provided on how to

reveal abnormal signals from time series data with inner trend.
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1 Introduction

In environmental epidemiology, how the current environment change would affect human health
is of great interest. In particular, do daily fluctuations in air quality induce fluctuations in
human morality? In the United States, Environmental Protection Agency claims that the small
particulate PMy 5 can cause acute death and would enforce cleaner energy production by new
protocols and facilities. Although their claim remains to be evaluated with some caution, the
air quality problem not only affects long-term human welfare but also poses a major economical
challenge to the United States and many other countries in the world.

While the air quality problem is an undergoing investigation, whether higher amount of
Ozone or PMj 5 in the air would associate with higher mortality is of important concern. The
available mortality data are usually the aggregated counts at different time scales. These count
data display a unique pattern with certain inner trend over time at any spacial location that
one collects data from, whether it is near the equator or the poles. More importantly, the inner
trend cannot be well adjusted by the observed covariates. Besides, there are other issues such
as lag effect discussed in Bhaskaran et al. (2013). To further elaborate, one can do comparisons
as follows. With time-dependent data, one can have the central location at each time, and the
central tendency over time is called the inner trend. For example, consider a sine curve with a
period of one year with signals riding on the sine curve. The inner trend is the sine curve and
the actual environmental changes would be the deviations from the inner trend.

The use of nonparametric smoothing in time series models of air quality and acute death was
first suggested in Schwartz (1994), where generalized additive Poisson models were used with
LOESS smooths of covariates including time. The smooth function of time serves as a linear
filter on the mortality and removes the inner trend in the mortality data. Several alternatives
for representing the smooth functions have been applied including smoothing splines, penalized
splines and parametric natural splines in Dominici et al. (2002), Ramsay, Burnett, and Krewski
(2003), Schwartz, Zanobetti, and Bateson (2003) and Touloumi et al. (2004). The conclusions
are drawn based on these embedded time series models and positive correlation between the air
quality variable and human mortality is often found. However, this is subject to how well the
de-trending works. Therefore, we intend to investigate the de-trending process systematically

and provide good guidance and practice on smoothing time series with inner trends.
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Human mortality excluding unnatural causes can still be attributed to various reasons, either
from the latent factors or from the air quality fluctuations. It is crucial that one can extract
the abnormal signals from the inner trend. However, in general, the complexity of the seasonal
and long-term trends in the mortality time series or in the air quality time series is not precisely
known. Oversmoothing the time series (thereby undersmoothing the deviations) can leave tem-
poral cycles in the deviations that can produce confounding bias of inner trends; undersmoothing
the time series (thereby oversmoothing the residuals) can remove too much temporal variabil-
ity and potentially attenuate the acute health effect, if any. The current automatic embedded
spline or kernel smoothing can be either too lenient or too harsh in de-trending the time se-
ries. By varying their smoothing flexibility, any significant result (from negative to positive) can
be calibrated. This excessive flexibility could undermine the whole investigation of air quality
study.

In Peng, Dominici, and Louis (2006), natural spline and penalized spline smoothing was
studied as a model choice problem, and model-based simulations showed that under moderate
concurvity, smoother spline of air quality variable can lead to less confounding bias. Nonetheless,
different model selection criteria can still lead to different smoothness; how smooth the spline
of any air quality variable is also vaguely defined. To circumvent this problem, we propose
stable and robust nonparametric smoothing methods that can closely capture the inner trend
and extract the abnormal signals. After smoothing or de-trending, we focus on the deviations
of the raw time series subtracting its estimated inner trend. These deviations contain the most
helpful information in investigating the association between air quality fluctuations and acute
effects. Along the way, the general properties of these smoothers are examined to ensure the
robustness and stability.

For case illustration, the research dataset is basically identical as the one investigated in
Lopiano, Smith, and Young (2015). It contains human mortality, air quality and weather co-
variate data in Los Angeles county, California from 2000 to 2012. The daily mortality count
data are obtained from California Department of Public Health. The daily air quality data
PM,; 5 and Ozone are downloaded from California Environmental Protection Agency. The daily
temperature data were downloaded from Carbon Dioxide Information Analysis Center of United
States Historical Climatology Network and the daily humidity data were from United States

Environmental Protection Agency.
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Based on the whole study, there are three main points to be stated. First of all, it is found
that the current spline or kernel smoothing methods can result in different (either positive or neg-
ative) effects depending on how the smoothing parameter is varied. Second, the proposed time
series smoothers are robust and stable as shown by the compact correlation and partial correla-
tion confidence interval and analyzed by factorial design on scenarios. Third, indistinguishable
simulated datasets can be generated to examine their capability of detecting cross-correlations
among multiple time series.

The rest of the article is organized as follows. In Section 2, the detailed problem formulation is
elaborated. In Section 3, three classes of time series smoothers are proposed and their properties
are summarized. In Section 4, the air quality and mortality data in Los Angeles are investigated
and the factorial sensitivity analysis is conducted along with comparison to other methods. In
Section 5, simulation study is conducted and it is shown that the proposed methods can detect
even small effects correctly with small variance. In Section 6, the conclusion is drawn and general

recommendation is made.
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2 Problem Formulation

In air quality study, aggregated count data over time are usually encountered. The basic model

formulation is generalized linear model with log link, as used in Schwartz (1999).

Y; ~ Poisson(ju)
(1)
log(py) = a+ Bs1(zy) + n's2(z)
Y, is the mortality count variable at certain aggregation level at time ¢. x; is the air quality
variable of interest at time t. z; is a vector of measured covariates at time t. s;(-) and sa(-) are
a spline or kernel smoothing estimator and vector of such estimators, respectively, that address
the lag effect of a vector of covariates before and after the time point of interest.

However, there are two major problems. First of all, in the raw data, long-term pattern
including seasonality is dominating. Due to the universal inner trend of mortality, any short-
term positive association between mortality and the air component exposure of interest cannot
be found. Second, Poisson regression assumes that the observations are independent, but the
observations close in time are likely to be more similar than those distant in time.

To account for the inner trend, kernel or spline smoothing methods have been proposed to
de-trend the original time series so the deviations can be retained for further consideration. In

Peng, Dominici, and Louis (2006), the model formulation evolves as below.

Y; ~ Poisson(ji)
log(pe) = a+ my(t, A1) + By + n's(z¢) (2)

Ty = mQ(ta )\2) +&

Here, &; is the de-trended air quality variable of interest at time ¢t. my(-), mo(:) and s(-) are
embedded spline or kernel smoothing estimators over time. A; and Ay are the smoothing pa-
rameters that control the flexibility of the spline or kernel estimator during the model fitting
process. The de-trended time series observations are more likely to be independent and iden-
tically distributed. The choice of A\; and Ay depends on the degree of the inner trend that the
entire model wants to remove and results in smoother or rougher splines m;(-) and my(-). This

arbitrariness makes the result ambiguous for evaluation.
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Hence, how to de-trend and extract these abnormal signals becomes an important subject
of study. We propose stable and robust estimators with systematic evaluation. Therefore, our

model formulation is the following.

szyt—rml(y:) (3 1)

Dy = xy — rmo(zy)

where y; and z} are sets of before and after points to estimate the central tendency at time ¢;
rmy(-) and rms(-) are stable and robust estimators of the inner trend to be defined. Then, we

utilize certain dependence measures or models on the de-trended time series. For instance,

E(Df’.ﬁl}'t, Zt) =+ 6Df -+ n/S(Zt) (32)

Here, applying logarithm transformation on mortality count is not recommended, since the
logarithm transformation can shrink all the point into a narrow band and this may weaken the
association. This can also be viewed as a two-stage model so that one would first de-trend the
time series and then analyze using the resulting deviations. Both 3, and x; are de-trended and
thus the dominating long-term patterns including seasonality would be controlled. Meanwhile,
the concurvity, analogue of multicollinearity, between x; and z; would also be controlled.

More specifically, our problem formulation in rewinding the acute effects is to simply define
time series smoothers such that the inner trend can be well estimated without involving the
excessive modeling and other observed covariates at the same time. The mathematical statement
should simply be the first stage of model formulation. Note that in Equation 3.1, D} and D are
changeable due to different r7m4(-) and rmsy(-). Robustness and stability mean that no matter
how the setup parameters change, the association between mortality and air quality under certain

dependence measure is stable and consistent.

imax(u(DY, DY) — min(u(Df, D)) < ¢

where p(+) is a certain dependence measure and c is a relatively small constant.
The resulting deviations should not display any systematic pattern except heterogeneity

during the shock of acute events. In other words, when the observations are in the non-volatile
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period, Var(D}) and Var(D{) are constants. The ultimate purpose is that the de-trended time
series contain little information about the inner trend but all the information of the shock events
with a low level of noises. To elaborate further, the raw time series are non-stationary; after
de-trending, the deviations are still non-stationary due to the abnormal signals such as forest
fires or human interventions that cause the air quality changing drastically. Based on these mild

assumptions, the time series decomposition can be written below.

X, =85, +& +e (4)

where S; is the long-term pattern with seasonality, & is the abnormal signal driven by an event
and ¢, is the independently and normally distributed random error with mean 0 and variance o
During the non-volatile period, & is close to 0; during the volatile period, & displays a certain

pattern. The ultimate target is to closely estimate and then eliminate S; while retaining &;.
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3 Proposed Methodology

To solve the formulated problem in Equation 3.1, three classes of methods utilizing a centered
moving window with a centered gap of varying width are hereby proposed.

The moving window includes all the necessary information before and after the time point
of interest. The gap at the center can be helpful in retaining any abnormality in the time series
data. If there is a strong signal at the time point of interest, the gap reduces the local signal
in the smoothed estimate and thus leaves it in the deviation; if not, this window with centered
gap should be approximately the same as the ordinary moving window. This type of window
includes the points on both edges to estimate the central trend at the time point of interest.
The resulting estimate resembles an experimental control. After time series smoothing, the de-
trended observations can behave as if independently with much less serial correlation and no or
little long-term including seasonality patterns left.

To elaborate further, the formulation in Equation 3.1 and 4 is utilized for justification. For
simplicity, one point before and after the time point of interest is considered and the smoothing

measure is the mean.

D = X; —rm(X])

Xia+ X
— X, - tl;‘ t+1
Si-1+ S5 -1+ €1+ €
S &t t—1 t+1_5t1 ft+1_ t—1 + €41
2 2 2
Si-1+ 5 -1+ €-1t¢€
:(St_%)“‘(gt_gt 12£t+1)+(et——t 12 ass)

For the first term, % is a linear interpolation of S;, instead of extrapolation. The

long term pattern including seasonality S; is assumed to be smooth enough. Thus, %

is close enough to S;. The first term is close enough to 0. For the second term, there are two

cases: if t is the shock time, & should display a sharp spike while %

is at regular level

and therefore the difference exposes the shock signal; if ¢ is the regular time, & and % are

both at regular level and therefore the difference is close to 0. For the third term, since ¢, is
2 €t—1+€i41

i.i.d normal with mean 0 and variance o, ¢; — === should be close to 0 too in most cases.

Hence, the resulting term is only the shock signal.
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In general, the formulation is as follows.

DX = X, —rm(X])
= St + & + & —rm(Sf) —rm(&) — rm(e;)

= (Se —rm(5F)) + (& —rm(&)) + (& — rm(er))

where S; —rm(S;) — 0, & —rm(&) — & and ¢, —rm(e}) — 0. D;* is an unbiased and consistent
estimator to &;.

In this section, our major contribution is to define the robust and stable time series smoothers.
These smoothers can de-trend the time series efficiently, regardless of the window size or gap
size. The rest of this section is organized as follows. Three classes of time series smoothers
are introduced consequentially and each has their own merits. The first class is named moving
trimmed mean, where the idea of trimmed mean is used within each moving window. It can
change the robustness, from mean to median, controlled by the trimming percentage upon the
user’s preference or certain selection criterion. The second class is named moving weighted mean,
where the weight scheme can be determined upon the user’s preference or certain selection
criterion. It can incorporate the user’s prior knowledge in trend estimation. The third class
is named moving recursive weighted mean. It can re-weight the points within each moving
window recursively in order to make abnormal signals revealed. The re-weighting function is
non-increasing and specified by the user, based on their prior knowledge and preference on the
subject of study. The performance of the three classes of smoothers are demonstrated by both

case study and simulation study in Section 4 and 5.

3.1 Moving Trimmed Mean

The first class of methods is moving trimmed mean or truncated mean. A trimmed mean or
truncated mean is a statistical measure of central tendency which involves the calculation of
the mean after discarding given parts of a probability distribution or sample at the high and
low end, and typically discarding an equal amount of both. Trimmed mean is less sensitive to
outliers and gives reasonable estimate of central tendency. Therefore, it is regarded as a robust
estimator.

The trim parameter, ranging from 0% to 50%, allows us to obtain a large collection of
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estimators. When the trim parameter is 0%, we trim no points and the estimator is arithmetic
mean; when the trim parameter is 50%, we trim 50% of high and low points and it results in
the most robust estimator, median.

Moving average is defined as the average of several days’ observations with a centered gap.

. 1
MA(zy) = 5 (Te—p + Tppy1 + - F T F T+ F D1 + Togr)

(k=1)

Moving median is defined as the median of several days’ observations with a centered gap.
. 1
MM (z7) = 5(X@-p) + X(e—t4))

where X(,_; and X(_;q1) are the (k — [)th and (k — [ 4 1)th ordered statistics of the set
{T b, Topr1s i1, Togig1s -+ Terk—1, Tear }; € 1S the time of our estimation; k is the num-
ber of observations we use before and after the estimation time point (k > 1) hence the total
number of observations is 2k + 1 before gapping; [ is the number of observation we take away
from the center before and after the estimation time point (I > 0) excluding z; hence the total

number of observations taken away is 2/ + 1 and the total number of observations left is 2(k —1).

3.2 Moving Weighted Mean

The second class of methods is moving weighted mean. The weighted mean assigns different
weights to the data points within each window in order to form an informed estimator. In general,
it is upon the user to determine how to assign the weights. Two typical types of moving weighted
mean are presented: center weighted moving average and edge weighted moving average. Center
weighted moving average puts more weights around the center outside the gap than the edges
symmetrically. It weighs more on the local trend near the time point of interest. Edge weighted
moving average puts more weights on the edges than the center symmetrically. It weighs less on
the specific local trend but more on the pattern of a longer term.
The sum of the normalized weight vector (w;_j, Wy_jgi1,** , We_1—1, W41,

L Wyik—1,Weyk) 1s equal to 1. Dividing the weight vector by its sum is called normalizing the

weights.

Center weighted moving average is defined as the center weighted average of several days’
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observations with a centered gap. The weight vector contains A-shaped linear weights and is
normalized to 1, with more weight at the center and less weight at the edges symmetric to time
t.

Edge weighted moving average is defined as the edge weighted average of several days’ ob-
servations with a centered gap. The weight vector contains V-shaped linear weights and is
normalized to 1, with less weight at the center and more weight at the edges symmetric to time

t.

3.3 Moving Recursive Weighted Mean

The third class of methods is moving recursive weighted mean. Recursiveness is that after we
obtain the deviations, we assign more weight on small deviation but less weight on large deviation
to calculate weighted mean and then perform this procedure repeatedly until convergence. We
would like those abnormal signals to stand out while those around the central tendency are

almost zero. The detailed algorithm is as follows.

Step 1: Apply moving average to obtain the estimated trend of time series.

Step 2: Calculate deviations from the estimated trend and standardize them.

Step 3: Apply the user-defined weight function on standardized deviations, for example e*’“"Q,

normalize them and obtain moving weighted mean trend.

Step 4: Repeat Step 2 and 3 until the estimated trend converges with the difference of the

estimated inner trends || - ||oo < 107°.

The convergence of trend estimates is very fast. Typically, it takes less than 10 iterations for
each window.

There are infinitely many choices of recursive weight function. In the following section, two
recursive weight functions e~l"? and e~1e” are used for demonstration, where e~le"* has less

penalized weighting on deviations while e~ has more penalized weighting on deviations.

3.4 General Properties

In general, the moving measures should incorporate two basic considerations. If the period of

seasonality is known, then the window width should be its fraction. The literature in air quality
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study typically picks the window width from a few weeks up to a month. If certain shocks are
known, then the gap width should be approximately the shock width. Shocks are usually some
natural phenomena, for example, wildfires, that immediately raise the level of Ozone or PMs 5;
or human intervention such as a regulatory action, for example, declaring non-attainment and
attainment regions in Chay and Greenstone (2003).

For the three classes of time series smoothers, they have shared and individual properties.
The shared properties come from the window and gap. When the window size increases, the
trend estimated is stiffer and the deviation will contain more seasonal signals; when the gap
size increases, the trend is also stiffer and the deviation will contain more seasonal signals. The
individual properties come from the different measures of central tendency. Moving trimmed
mean is robust and stable as well as bearing a good scientific meaning. When the trimming
percentage increases, the estimated trend is more robust. Moving weighted mean is more flex-
ible, depending on the weighting scheme. It can accommodate the users’ preference and prior
knowledge. Moving recursive weighted mean estimates a relatively robust central tendency and
makes the abnormal deviations more noticeable and the regular deviations near zero. In this
sense, it is more helpful in recovering abnormal signals.

More specifically, the exemplified smoothers also have their own properties. Moving average
is less robust than moving median but more efficient in the trend removal. Within the moving
window, if the fluctuations around the trend are symmetric, moving average can easily recover
the underlying trend of the time series. If the fluctuations around the trend are normally
distributed, then moving average is statistically optimal. Moving median is the most robust
moving measure that captures the overall trend of the time series. Within the moving window,
no matter whether the fluctuations around the trend are symmetric or not, the median can
always estimate the trend central location. If the fluctuations are Laplace distributed, then
moving median is statistically optimal.

Center weighted moving average is used when one wants more weight on the observations
near the time point of interest to obtain a better local or short-term trend estimate. It weighs
the local observations more in forming an experimental control thus more aggressive in the short-
term trend removal. Edge weighted moving average is used when one wants more weight on the
observations further away from the time point of interest to obtain a better long-term estimate.

It weighs the local observations less in forming an experimental control thus less aggressive in
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the short-term trend removal.

Moving recursive weighted mean with e~ lel? places more weight on the ordinary observations
and less weight on the abnormal observations. This weight function penalizes less on large
deviations and the resulting smoother follows the curve fluctuation closer. Hence, the deviations
will moderately stand out. Moving recursive weighted mean with e~171” has weighted function
with much heavier weight on the ordinary observations and much lighter weight on the abnormal
observations. This weight function penalizes more on large deviations and the resulting smoother

follows the central trend closer. Hence, the deviations will be more noticeable.
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4 Case Study

4.1 Data and Description

To explicate the proposed methods, their performances on air quality and mortality data are
illustrated. The research dataset comes from Los Angeles, California. The dataset contains daily
mortality counts, air quality levels for ozone and PMs 5, minimum and maximum temperature
and maximum relative humidity from Year 2000 to 2012 with 4749 data entries in total. Below

is a snapshot of the dataset.

RowlD  basin year month day dayofyear AllCause75 PM25davg o3 tmin.0 tmax.0 MAXRH.O
1 south-coast 2000 1 1 1 226 68.6 40 37 62 94.3
2 south-coast 2000 1 2 2 235 7.5 40 19 65 71.0
3 south-coast 2000 1 3 3 202 NA 39 35 69 53.6
4 south-coast 2000 1 4 4 223 27.1 38 37 72 49.8
5 south-coast 2000 1 5 5 217 30.2 41 38 72 58.0
6 south-coast 2000 1 6 6 216 243 40 38 74 41.1
7 south-coast 2000 1 7 7 248 35.8 36 37 69 54.3
a south-coast 2000 1 a8 a8 196 49.6 39 35 71 66.3
a south-coast 2000 1 9 9 185 65.5 34 36 69 75.4
10 south-coast 2000 1 10 10 185 73.4 40 35 69 98.0
11 south-coast 2000 1 11 11 199 59.5 28 38 70 83.1
12 south-coast 2000 1 12 12 190 61.6 33 39 68 89.3
13 south-coast 2000 1 13 13 165 53.4 37 40 79 69.3
14 south-coast 2000 1 14 14 178 15.0 39 42 a2 442
15 south-coast 2000 1 15 15 165 30.6 42 44 83 58.0
16 south-coast 2000 1 16 16 196 38.8 36 43 75 81.7
17 south-coast 2000 1 17 17 149 49.2 32 45 72 88.8
18 south-coast 2000 1 18 18 177 17.9 28 55 78 80.8
19 south-coast 2000 1 19 19 163 18.9 31 50 78 85.3
20 south-coast 2000 1 20 20 182 18.3 23 52 72 90.5
21 south-coast 2000 1 21 21 160 20.3 31 52 65 90.1
22 south-coast 2000 1 22 22 154 36.2 34 46 65 86.5

Figure 1: Sample Data from Los Angeles California

AllCauseT5 is the daily mortality counts above Age 75, excluding unnatural deaths such as
accidents. 03 is the daily average level of ozone. tmin.0 is the daily minimum temperature.
tmax.0 is the daily maximum temperature. M AX RH.0 is the daily maximum relative humidity
level.

In the demonstrative analysis, the association between daily ozone level and mortality is our
focus. Due to the large number of levels of factors, a factorial design on different scenarios is
formed and linear model is be applied on. By the factorial design and sensitivity analysis, more
features of three smoothers could be understood better, along with the research question about

air quality and acute death.
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For the response variable, the correlation and partial correlation as well as their p-values
are utilized as the dependence measures. Partial correlation controls for minimum temperature,

maximum temperature and maximum relative humidity level.

4.2 Current Smoothing Methods

In this section, it is found that the current smoothing methods such as spline or kernel smoothing
can produce significant correlations, from negative to positive. For demonstration, the penalized
cubic smoothing splines are utilized. Cubic smoothing splines performs a regularized regression
over the natural spline basis, placing knots at all points. They circumvent the problem of knot
selection, as they just use the inputs as knots, and simultaneously, they control for over-fitting
by shrinking the coefficients of the estimated function. It can be shown that these smoothing
methods can be too flexible to be relied on.

In Figure 2, the smoothing spline is allowed to vary from a straight line to a extremely
flexible curve by varying the smoothing parameter. The smoothing parameter is controlled by
the option spar of smooth.spline() in R. The upper bound spar = 1.5 represents the stiffest
while the lower bound spar = —1.5 represents the most flexible. For simplicity, the smoothing

parameters are set the same for both AllCause75 and O3.
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Figure 2

The de-trended time series or deviations are shown correspondingly in Figure 3. The more

de-trending, the more similar to i.7.d. the deviations.
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Figure 3: De-trended Time Series of Mortality and Ozone

Spar | Correlation | P-value | Partial Corrrelation | P-value
1.50 -0.4313 ~ 0 -0.08354 ~ 0
0.71 -0.2665 ~ 0 -0.001043 | 0.9427
0.70 -0.2429 ~ 0 0.008141 0.575
0.61 -0.005198 | 0.7203 0.06978 0
0.60 0.01395 | 0.3367 0.07174 0
-1.50 0.07248 ~ 0 0.04627 0

Q

NERY

Table 1: Correlations and Partial Correlations with P-values between Mortality and Ozone

In Table 1, Spar is the smoothing parameter spar in smooth.spline() and its values are
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chosen based on the sign changes of the resulting correlations. Correlation means the correlation
between deviation of mortality and deviation of ozone while partial correlation means the partial
correlation between them given the weather covariates temperature and relative humidity. As the
inner trend including seasonality gets eliminated more and more, both the correlation and partial
correlations between mortality and ozone changes from significantly negative, to insignificant and
then to significantly positive. Indeed, one has to find a proper way to justify de-trending or at

least find a stable and robust method before making a claim on any possible association.

4.3 Proposed Smoothing Methods

In order to study the robustness and stability of our proposed smoothers, a factorial design
of experiment on different settings is utilized for the time series smoothers. Table 2 is a brief

summary of the factorial design.

Factor Level
Window | 7, 15, 21, 29, 35, 43, 49 or 57
Gap 0,1,3,5,7,9,11 or 13
Scenario Two Levels
Type DD, DR, RD, RR

Table 2: Factors for Design of Experiments on Scenarios

For the moving window size, the variable Window is defined and assumes 7, 15, 21, 29, 35,
43, 49 or 57 days. The actual meaning would be one week, two weeks and up to one month
before and after the time point of interest.

For the gap size, the variable Gap is defined and assumes 0, 1, 3, 5, 7, 9, 11 or 13 days. The
actual meaning would be no removal, one-day point removal and up to one-week points removal
before and after the time point of interest. Note that when the gap size is 0, the ordinary moving
measures is simply used. Also, the gap should always be smaller than the window.

For each class of time series smoothers, two representative scenarios are included as described
before to understand the effect of the pre-selected parameter or weighting scheme. There are
infinite choices of the parameters or weighting schemes within the window. This is upon the
user’s preference.

To simplify the presentation, the factor Type is defined and plan to investigate whether there

is any effect between deviations of mortality and deviations of ozone by assuming DD, between
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deviations of mortality and raw time series of ozone by assuming DR, between raw time series
of mortality and deviations of ozone by assuming RD and between raw time series of mortality
on raw time series of ozone by assuming RR. Since no smoother is applied on RR, it is a special
case in this design.

All scenarios combined resembles a full factorial design of experiments for us to examine all
possible effects. This factorial design is of the size 8 X 8 X 2 x 4 — # missing = 325.

For the factorial design analysis, linear regression model is utilized and all main effects and
two-way interactions are included. To summarize the effect and significance, volcano plot is
utilized.

For illustration, moving trimmed mean is shown below. Moving weighted mean and moving
recursive weighted mean can be used in the same way and produce similar results. Here, moving
average with trimming percentage = 0% and moving median with trimming percentage = 50%
are selected.

In Figure 4, it is shown that only the effects with Type have both large size and significance;

all other effects have small size although highly significant.
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Figure 4: Volcano Plot by Moving Trimmed Mean;
Red Line = —l0g100.05

In more detail, for correlation, all main effects and two-way interaction effects are signif-
icant except the main effect Lambda and the interaction effect GapxLambda. However, the
increments of Window or Gap are so small when Type is fixed that they would not alter the
sign of the correlation. On the other hand, Type can make a significant difference on the as-
sociation between mortality and ozone. The trimming percentage Lambda is insignificant. For
the response measure partial correlation, we can obtain similar results. The detailed tables of
coefficient estimates and significance are in Appendix A. Thus, moving trimmed mean is robust
and stable with respect to different Window, Gap and Lambda.

In Figure 5, correlation and partial correlation across different types are summarized in

boxplots.

1773



JSM 2016 - Section on Physical and Engineering Sciences

Correlation Partial Correlation
n n
- —
o o ——
o o E‘
— 8 — '
o I — o
— _8 s
w0 L] n
° f —— S B
o ! H o
S S
o o
—_—
Yo} n
S | =
? T T T ? T T T
DD DR RD DD DR RD
P-value of Correlation P-value of Partial Correlation
o | o ] !
N N
g 94 g -
? 7
L oo | 8 L o | _
g - - ERla
g = g
2 PR = g )
(. . [ g 5
——————]
8 - - =
o 4 n N o 4 ——
T T T T T T
DD DR RD DD DR RD

Figure 5: Boxplots of Association by Moving Trimmed Mean;
Red Line (above) = 0, Red Line (below) = —l0g1¢0.05

Table 3 shows the correlations and partial correlations with their p-values for each type when

Window=21, Gap=>5 and Trimming Percentage=50%.

Type | Correlation | P-value | Partial Correlation | P-value
DD 0.08693 ~ 0 0.05683 ~ 0
DR 0.03314 | 0.02266 -0.02832 | 0.05148
RD 0.03364 | 0.02071 0.1140 ~ 0
RR -0.4338 ~ 0 -0.0956 ~ 0

Table 3: Association for Type by Moving Trimmed Mean:
Window=21, Gap=5, Trimming Percentage=50%

Based on Figure 5 and Table 3, it can be seen that the correlations and partial correlations
when Type=DD are positively significant. When Type=DR, half of correlations are insignificant
while all the partial correlations are insignificant. When Type=RD, half of correlations are
significant while all the partial correlations are highly positively significant. De-trending on
both time series is greedier in finding significance.

From the factorial design of analysis, we conclude that Window and Gap can adjust the
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association slightly, however, the sign of association will not flip when Type is fixed. For moving
trimmed mean, the small effect of Window and Gap shows the robustness and the no-effect of

Lambda also shows the stability.

4.4 Discussion & Recommendation

On one hand, it has been discovered that the current spline or kernel smoothing can produce any
significant correlations, from negative to positive, depending on how the smoothing parameters
are varied. On the other hand, robust and stable smoothers are proposed to circumvent the
sensitiveness of smoothing parameter and evaluated on Los Angeles dataset.

The main framework of the proposed methods is to utilize a moving window with centered
gap. Within each window, different central tendency measures can be selected, based on the
user’s preference. As the window size increases, the estimated curve is stiffer and de-trending
is less severe; stronger correlation will be found between deviations. As the gap size increases,
more local signal is removed, the estimated curve is also stiffer and de-trending is less severe;
stronger correlation will be found between deviations. However, no matter how the window or
gap size changes, within a wide range of days, the sign or significance of the association for each
type remains the same. This is one important property, robustness.

Within each moving window with centered gap, three classes of time series smoothers are
proposed. For each moving measure, varying the parameter or weight can adjust the correlation
or partial correlation. However, the sign or significance would not change. For moving recursive
weighted mean, even though the sign of correlation changes when Type=DR or RD, the cor-
relations are around zero and mostly insignificant thus the results are still consistent. This is
another important property, stability.

For moving trimmed mean, it involves a collection of classic central tendency measures with
the robustness changing from mean to median. Within each window, different trimmed means
can reach statistical optimality under different underlying distributions. If one does not have
any prior knowledge or preference on the abnormal signals of time series data, moving trimmed
mean can work.

For moving weighted mean, it involves weighted arithmetic mean. Within each window, one

can decide assign different weights to the points based on their prior knowledge or preference on
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the abnormal signals of time series data. If one has any prior knowledge or preference, moving
weighted mean can help.

For moving recursive weighted mean, it involves re-weighting scheme in order to obtain
a better trend estimate in terms of retaining central tendency conservatively and enlarging
abnormal signals. It is more greedy in searching for anomaly. If one emphasizes on conserving

the central tendency and revealing more anomaly, moving recursive weighted mean can handle.
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5 Simulation Study

5.1 Simulation Setting

Due to the robustness of the smoothers, Window=21, meaning the most useful information are
within 10 days before and after the time point of interest, and Gap=>5, meaning the removal of
local trend are within 2 days before and after, are chosen in the simulation.

The target correlation between deviations of mortality and ozone are set as 0, 0.01, 0.02,
0.05 and 0.10. In Section 4, the detected correlation is between 0.05 and 0.10. In literatures,
it is understood that the correlation or partial correlation between air quality and mortality is
relatively low. Hence, it is reasonable to set the correlation to be 0.05 and 0.10. Also, including
0.01 and 0.02 can demonstrate how sensitive the proposed smoothers are in revealing abnormal
signals.

When the correlation between deviations of mortality and ozone is pre-specified, leaving the
other covariate structures unchanged, the partial correlation will also be pre-specified and can
be obtained from the whole correlation matrix. By R package corpcor, the corresponding partial
correlations are computed as -0.0290, -0.0182, -0.0074, 0.0250 and 0.0791.

Therefore, the simulation times for each scenario is 100 and the total simulation times for
each smoother is 1000.

In this simulation study, the idea is to generate many indistinguishable datasets from the orig-
inal dataset. Indistinguishable means that the datasets are almost identical under the measures
correlation and partial correlation. To maintain the original correlation structure, each time
series is decomposed by LOESS into trend, seasonal and reminder terms. Only the deviations
are simulated by multivariate normal distribution with the actual means and variances of the
decomposed deviations, and pre-defined correlations thus covariances. The detailed algorithm

is as follows.
Step 1: Decompose each time series into trend, seasonal and reminder components.

Step 2: Retain the actual means and variances of each reminder. Set the correlation between
reminders of mortality and ozone to be the pre-specified value above and obtain the new

covariance matrix of all the variables.
Step 3: Simulate the deviations by multivariate normal distribution with the actual means and
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Step 4: Add the simulated deviations back to the decomposed trend and seasonal components

so the simulated data are formed.

5.2 Simulation Comparison

Current Smoothing Methods

Given the cubic spline smoothing, generalized cross validation can be adopted to select the

tuning parameter. The leave-one-out cross validation gives almost the same result.

In Figure 6, it can be seen that the current smoothing can identify the correct correlation

and partial correlation with small errors, under multivariate normality.
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Figure 6: Plots of Found-Specified by Cubic Spline Smoothing Under GCV

In Figure 7, both pre-specified correlation and partial correlation can be found accurately;

the significance can be detected when the pre-specified correlation is higher than 0.05.
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Figure 7: Boxplots of Association by Cubic Spline Smoothing Under GCV;
Red Line (above) = 0, Red Line (below) = —l0g1¢0.05

Without the loss of generality, the highly flexible S, = —1.5 and the moderately flexible

Sp = 0.60 are selected for other smoothing cases.

In Figure 8, it can be seen that the estimated correlations or partial correlations display some
systematic bias,i.e., the estimated correlations are uniformly smaller while the estimated partial

correlations are uniformly larger than the pre-defined values. Also, the estimation variation is

large.
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Figure 8: Plots of Found-Specified by Cubic Spline Smoothing

In Figure 9, statistical significance generally cannot be obtained except when the pre-defined

correlation is 0.10, for either correlation or partial correlation.
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Proposed Smoothing Methods

Following the convention above, moving trimmed mean is demonstrated. Again, moving
average with trimming percentage = 0% and moving median with trimming percentage = 50%
are used for simulation.

In Figure 10, it can be seen that when the pre-specified correlation or partial correlation
increases, the estimated correlation or partial correlation will be more accurate. When the pre-
specified correlation or partial correlation is relatively small, the found correlation or partial

correlation tends to be slightly larger than the pre-specified ones.
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Figure 10: Plots of Found-Specified by Moving Trimmed Mean

In Figure 11, when the pre-specified correlation is 0, no statisitcal significance can be found in
either correlation or partial correlation. when the pre-specified correlation is small, such as 0.01
or 0.02, even if the correlations can be correctly found, we cannot obtain statistical significance.
When the pre-specified correlation becomes larger than 0.05, our estimate is more accurate.
Likewise, the partial correlation behaves in the similar way except that less significance can be

found when the pre-specified association is set small.

1782



JSM 2016 - Section on Physical and Engineering Sciences

Correlation Partial Correlation

-0.05 0.00 0.05 0.10 0.15
I

-0.05 0.00 0.05 0.10 0.15
I

0 0.01 0.02 0.05 0.1 -0.029 -0.018 -0.0074 0.025 0.079

P-value of Correlation P-value of Partial Correlation

20
!
20
!

15
15

m

—log,o(P-value)
|
—log;o(P-value)
10
|

—— o —

—— ——
o 4 —_— o 4 — — —

0.01 0.02 0.05 0.1 -0.029 -0.018 -0.0074 0.025 0.079

o -

Figure 11: Boxplots of Association by Moving Trimmed Mean;
Red Line (above) = 0, Red Line (below) = —l0g1¢0.05

5.3 Discussion & Recommendation

Without proper tuning parameter, cubic spline smoothing can alleviate the association or even
bias the estimation; it may also introduce large variation in estimation. Three proposed classes
of time series smoothers can correctly detect small correlations and partial correlations. The
precision can be improved when the association strengthens. Meanwhile, if more accurate inner
trend estimates can be obtained, abnormal signals will be better recovered. One possible remedy
is to adjust the window and gap size adaptively. For instance, we can enlarge the window and
gap size during the non-volatile period and shrink their sizes during the volatile period under
certain criterion.

Another possible remedy is ideally to choose the most appropriate measure within each rolling
window with centered gap. Assuming that the de-trended time series are weak stationary, there
is a certain measure of central tendency that can achieve the optimality within the moving

window. For instance, when the fluctuations around the inner trend are normally distributed,
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moving average is statistically optimal for recovering the abnormal signals; when the fluctuations
around the inner trend are Laplace distributed, which places higher probability on rare events
than does the normal, moving median is statistically optimal. In more complicated distributions,
different weight schemes in moving average can empirically separate the inner trend and abnor-
mal signals well. Different recursive weighting schemes can also be useful in greedily searching
for abnormal signals. In the simulation setting, multivariate normal datasets are generated and
all the measures behave very well under multivariate normal distribution. Thus, the simulation
results are quite similar.

After discussion, the general recommendation can be delivered as follows. First of all, the
window and gap size should be chosen based on the scientific background or the literatures.
Ideally, they should be adaptive to capture the central trend. If no other information is available,
the user can simply choose any pair of window and gap described above. Due to the robustness
of the proposed smoothers, different window and gap sizes should always detect the association
reasonably well. Secondly, if one has no prior knowledge or preference on the moving measure,
moving trimmed mean should be used; the trimming percentage can be decided by the user,
depending on how robust one wants for the central tendency within each window. If one has
some prior knowledge or preference on the moving measure, moving weighted mean should be
used; the weight scheme is upon the user, depending on the relevance of each point to the central
location. If one wants to extract abnormal signals more greedily, moving recursive weighted mean
can be used; the re-weighting scheme is also up to the user’s choice, depending on how robust

one wants for the overall central tendency.
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6 Conclusion

In this article, the major formulations of smoothing in air quality studies are studied and summa-
rized systematically. A potential pitfall has been found in the current spline or kernel smoothing
methods. From the demonstration of cubic spline smoothing, it is shown that the current spline
or kernel smoothing can obtain any significant results, from negative to positive, via varying
the smoothing parameter. This can undermine the authenticity in recovering the relationship
between air quality and acute death.

Hence, robust and stable time series smoothers with control characteristics are proposed.
Each smoothed estimate serves as an experimental control at the time point of interest. There
are three classes of robust time series smoothers: moving trimmed mean, moving weighted mean
and moving recursive mean. Moving trimmed mean uses the trimming percentage to control
the robustness of each experimental control estimate. Moving weighted mean can incorporate
the users’ prior knowledge or preference to control the degree of de-trending. Moving recursive
weighted mean can make the abnormal signals or observations more noticeable by redistributing
the weights recursively. All of them can generate robust and stable de-trended time series while
allowing reasonable flexibility.

When examining the behaviors and properties of time series smoothers, factorial design on
time series smoothers is utilized. Linear model and analysis of variance are applied to find the
main and interaction effects. It is shown that the proposed time series smoothers can have
correct and consistent results in recovering associations. Meanwhile, users are allowed to adjust
the smoothness by changing window and gap size. Although the robustness and stability of
the proposed smoothers guarantee the result’s consistency, it is recommended that one chooses
the window and gap size by the prior literature or domain knowledge. The window size is
approximately the length of the relevant information to the time point of interest and the gap size
is determined by the average length of the shock period. Within each window, users can choose
different class of smoothers to further suit their needs, according to the characteristics of the time
series data in their subject of study. It is recommended that one should use moving trimmed
mean if no extra information is available with respect to the distribution of the time series.
Otherwise, one should consider using moving weighted mean with an empirical weight scheme

that addresses the distribution. If one wants to estimate the central tendency conservatively and
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retain the abnormality boldly, moving recursive weighted mean can be adopted with a proper
recursive re-weight scheme. In a nutshell, the time series smoothers provide us a reliable and
efficient collection of tools that do not require fine tuning parameters and produce unbiased and

consistent results.
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Appendices

A Analysis of Variance: Moving Trimmed Mean

Estimate Std. Error t value Pr(>|t])

(Intercept) 0.0640 0.0019  34.58  0.0000
Window 0.0004 0.0000 7.57  0.0000

Gap 0.0031 0.0003  12.34  0.0000

Lambda 0.0037 0.0036 1.01 0.3143

TypeDR  -0.0298 0.0021 -14.11 0.0000
TypeRD  -0.0225 0.0021  -10.67  0.0000
Window:Gap ~ -0.0001 0.0000 -10.90  0.0000
Window:Lambda ~ -0.0002 0.0001 -2.57  0.0107
Window:TypeDR ~ -0.0004 0.0001 -8.52  0.0000
Window:TypeRD  -0.0005 0.0001 -9.15  0.0000
Gap:Lambda 0.0000 0.0003 0.04  0.9683
Gap:TypeDR ~ -0.0006 0.0002 -3.56  0.0004
Gap:TypeRD  -0.0010 0.0002 -5.56  0.0000
Lambda:TypeDR ~ -0.0204 0.0029 -6.94 0.0000
Lambda:TypeRD  -0.0192 0.0029 -6.54  0.0000

Summary of Correlation versus Variables and Interactions

Estimate Std. Error t value Pr(>|t])

(Intercept) 0.0426 0.0020 21.10 0.0000
Window 0.0002 0.0001 3.98 0.0001

Gap 0.0024 0.0003 8.47 0.0000

Lambda 0.0065 0.0040 1.62 0.1057
TypeDR -0.0718 0.0023 -31.15 0.0000
TypeRD 0.0493 0.0023 21.39 0.0000
Window:Gap -0.0000 0.0000 -7.42 0.0000
Window:Lambda -0.0002 0.0001 -2.46 0.0144
Window:TypeDR 0.0001 0.0001 2.12 0.0345
Window:TypeRD 0.0007 0.0001 12.43 0.0000
Gap:Lambda 0.0003 0.0003 0.80 0.4218
Gap:TypeDR -0.0005 0.0002 -2.75 0.0064
Gap:TypeRD 0.0002 0.0002 0.81 0.4166
Lambda:TypeDR -0.0126 0.0032 -3.93 0.0001
Lambda:TypeRD -0.0260 0.0032 -8.10 0.0000

Summary of Partial Correlation versus Variables and Interactions
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