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Abstract

Joint modeling of time-to-event data such as survival or time to disease progres-

sion incorporating with the longitudinal data has been an active research topic.

Software programs are also available in the public domain to perform this kind

of data analysis. However, most of the programs are limited to one longitudinal

data series and to extend this to multiple longitudinal series is remaining as a

challenge. In this research, we estimate the treatment effects on disease progres-

sion using joint modeling with multiple data series of laboratory tests. We also

estimate the variations of estimates via bootstrap. We compare the results from

the existing software programs with respect to their consistency. Data from a

recent clinical trial is used to illustrate the proposed approach.
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1 Introduction

Clinical trials collect huge amount of data. For trials with long study durations,

such as cancer studies, longitudinal repeated measurements on the treatment ef-

fect with respect to responses, disease progression, or duration of survival are

among some of the commonly collected endpoints. In addition to these endpoints

of interest, laboratory test data, safety data in terms of adverse events, concomi-

tant medications taken during the studies, etc. are also been collected repeatedly

during the studies. With respect to the laboratory test data, even though NIH,

Mayo Clinic, and other institutions had published various laboratory test guides

for various diseases with the emphasis of their importance, these data are rarely

analyzed in full extend. They are most often being summarized with simple sum-

mary tables or with data listings.
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The longitudinal data, such as laboratory tests, genetic biomarker, or health

outcomes, can be important predictors or surrogates of an event of interest, such

as progression-free survival, relapse-free survival, or overall survival. Classical

models such as the linear mixed effects model for longitudinal data and the Cox

proportional hazards model for time-to-event data do not consider dependencies

between them. Alternatively, joint models for longitudinal data and time-to-event

data are commonly used that bring these two data types together (simultaneously)

into a single model so that one can infer the association between them, and to

better assess the effect of a treatment. Due to the rapid development of clinical

and genetic biomarkers in clinical trials, joint modeling has gained its popularity

in recent years because it can potentially provide more efficient estimate of the

treatment effects on the event of interest, more efficient estimate of the treatment

effects on the longitudinal data series, more detailed relationship on how hazard

of events are affected by longitudinal process in dimension of time, and can po-

tentially provide a better estimate of the overall treatment effect because more

aspects of the study data are analyzed together.

However, most of the practices are limited to the inclusion of one longitudinal

data series. In some cases with multiple data series, one of them is treated as

response with the rest of them are treated as covariates. To extend this for general

cases including multiple longitudinal series remains as a challenge, in addition,

many commonly used software programs seem to also have this limitation. The

objective of this research is to extend the current case and propose a joint modeling

with multiple longitudinal processes so that to enhance a better understanding of

treatment effect by the inclusion of more data series from the huge amount of data

the study had collected.

In this research, we estimate the treatment effects on disease progression using

joint modeling with multiple data series of laboratory tests. We also estimate the

variations of estimates via bootstrap. We compare the results from the existing

software programs in R with respect to their consistency. Data from a recent

clinical trial is used to illustrate the proposed approach.

2 Notations and Models

For subject i, (i = 1, ..., N), for the time-to-event process, let T ∗i denote the true

event time, Ci be the censoring time. The distributions of T ∗i and Ci are indepen-

dent, the observed Ti = min(T ∗i , Ci), δi = I(T ∗i ≤ Ci) is the event indicator, with

hazard function λi(t). For the longitudinal process, let yij(t) denote the value of

the longitudinal outcome at time point tij with j = 1, · · · , ni.
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The joint model assumes a longitudinal process

yi(t) = F1i(t) +R1i(t) + εi(t), (1)

where F1i(t) is a fixed effect, R1i(t) is an unobserved random effect, and εi(t) is

random measurement error. It also assumes an event process, such as survival,

with hazard function

λi(t) = λ0(t) exp{F2i(t) +R2i(t)}, (2)

where F2i(t) is a fixed effect, R2i(t) is an unobserved random effect. The random

effects are assumed to follow a joint normal distribution, i.e., (R1i,R2i) ∼ N(0,Σ).

Specifically for the longitudinal process, at each time point t ∈ {tij | j =

1, · · · , ni},

yi(t) = F1i(t) +R1i(t) + εi(t)

= x′i(t)β + z′i(t)bi + εi(t), (3)

where xi(t) is the design matrix for the fixed effect, β is the vector of the un-

known fixed effect parameters, zi(t) is the design matrix for the random effect,

and bi ∼ N(0,Σ) is a vector of random effect parameters, and εi(t) ∼ N(0, σ2) is

the measurement error independent of bi.

To quantify the effect of F1i(t)+R1i(t) on the risk of an event. One of the com-

mon options is to use a relative risk model of the form (Therneau and Grambsch

2000):

hi(t|Mi(t), ωi) = lim
dt→0

Pr{t ≤ T ∗i < t+ dt | T ∗i ≥ t,Mi(t), ωi}/dt

= h0(t) exp{γTωi + α(F1i(t) +R1i(t))} (4)

whereMi(t) = {F1i(u) +R1i(u), 0 ≤ u < t} denotes the history of the true unob-

served longitudinal process up to time t, h0(t) denotes the baseline risk function at

time t, and ωi = F2i(t) is a vector of baseline covariates with a corresponding vec-

tor of regression coefficients γ, and parameter α quantifies the effect of association

between the underlying longitudinal outcome and the hazard of an event.

Note that the baseline hazard function h(·) can be estimate at each time point

t, namely h(t). One can also estimate h(·) based on the cumulative information

of hazard up to time t, namely h(Ci(t)), where

Ci(t) =

∫ t

0

exp{γTωi + α(F1i(s) +R1i(s))}ds.

Hence,

hi(t|Mi(t), ωi) = h0(Ci(t)) exp{γTωi + α(F1i(t) +R1i(t))} (5)
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If prior knowledge about h(·) is available, the extra specification of h can increase

the efficiency of estimation.

Wulfsohn & Tsiatis (1997) used the 2-stage method proposed by Laird & Ware

(1982) as another approach. Henderson, et al. (2000) extended Wulfsohn &

Tsiatis’ approach and proposed the following approach.

With the latent bivariate Gaussian process Ri(t) = (R1i(t),R2i(t)), such that

the longitudinal process

Yij = x1i(t)
′β1 +R1i(tij) + eij (6)

with

R1i(t) = V1i(t) + d1i(t)
′V2i(t),

for

V1i ∼ N(0,Σv1), V2i ∼ N(0,Σv2),

and the time-to-event process

λi(t) = Hi(t)α0 exp{x2i(t)′β2 +R2i(t)}, (7)

Henderson et al., assumed

V1i(t) = U1, V2i(t) = U2, d1i(t) = t,

and

R2i(t) = γ1U1 + γ2U2 + γ3(U1 + U2t) + U3

with U3 being another error term.

Note that if d1i(t) = ti, then R1i becomes a simple random intercept and slope

model. One of the differences between the relative risk model and the 2-stage

method is the latter approach allows extra random effects in the time-to-event

process in addition to that from the longitudinal process to increase the flexibility

of individual effect. In addition, the formal approach uses the MLE and the latter

approach uses EM algorithm to estimate the parameters. Both methods only

analyzed one longitudinal process.

3 Parameter estimation

The joint likelihood function contribution from the i-th subject can be formulated

as

L =

∫
p(Ti; δi|Ri; θt, β)×

∏
j

p(yi(tij)|Ri, θy)× p(Ri, θR)dRi, (8)
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namely,

L = P (event process)× P (longitudinal process)× P (latent random processes).

However, for the multiple longitudinal series, one can not simply extend Eq (8) to

the following equation due to the correlation between the longitudinal series:

L =

∫
p(Ti; δi|Ri; θt, β)×

∏
j

p(yi(tij)|Ri, θy)

×
∏
j

p(zi(tij)|Ri, θz)× · · · × p(Ri, θR)dRi. (9)

A possible alternative approach is to consider the general linear mixed effects

model which incorporates multiple series of repeated measures as dependent vari-

able such as

Y = Xβ + Zu+ eY = Xβ + Zu+ eY = Xβ + Zu+ e (10)

where u ∼ N(0, G), e ∼ N(0, R)u ∼ N(0, G), e ∼ N(0, R)u ∼ N(0, G), e ∼ N(0, R), and Cov(u, e) = 0Cov(u, e) = 0Cov(u, e) = 0.

Equation (10) includes parameters in the fixed effects vector βββ and all un-

knowns in the covariance matrices GGG and RRR. The number of parameters to be

estimated increases almost exponentially when the number of sequences and the

number of repeats increased that can cause substantial computational challenges

in convergence.

Even though some researchers assume one sequence as the response and other

sequences as covariates, others sum up the values of various sequences and treat

it as one sequence, these approaches can be problematic and not using the data

fully and efficiently. We therefore propose to analyze the data from event process

and data from each longitudinal process separately to estimate the association be-

tween these two processes, and combing these associations to estimate the overall

association between the multiple series and the event process.

4 Example: Joint Model with Two Longitudinal

Processes

In this section, we illustrate the proposed method using a recent clinical data

set on hematological disorder. The clinical trial data had sample size about 650

subjects. The efficacy data is time to disease progression (PFS) and the safety

data consists of laboratory test data series, specifically, the change from baseline

of serum protein level and white blood cells (WBC) for each cycle of the study.

These data were not measured at every cycle and data beyond cycle 10 were very

sparse, we therefore only keep data from cycles 3, 5, 7, 8, 9, and 10.
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Figure 1 shows the Kaplan-Meier curve of PFS for the treatment and control

groups. The active treatment clearly shows a significant better PFS advantage

comparing with the control group.

Figure 1: Kaplan-Meier Curves of the Progression-Free-Survival

For the laboratory data, the active treatment had shown an overall larger

reduction of serum protein level (Figure 2), while the change of WBC is not as

obvious when comparing the active treatment with the control group.

Figure 2: Change from Baseline of Serum Protein Level (left) and WBC (right)

by Treatment Groups

The data for the change of serum protein level was analyzed using JM package

in R and the result shows an association between longitudinal process and hazard

rate of the event process α = 0.0236, which indicates the larger reduction of serum
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protein level will reduce more of the hazard rate. The data was also analyzed using

another package in R, i.e. joineR. The results are similar but not identical and

are not shown here.

Joint Model Summary:

Longitudinal Process: Linear mixed-effects model

Event Process: Relative risk model with piecewise-constant

baseline risk function

Longitudinal Process

Value Std.Err z-value p-value

(Intercept) -10.0584 0.3024 -33.2590 <0.0001

day 0.0038 0.0031 1.2074 0.2273

day:trtgrp -0.0346 0.0031 -11.0981 <0.0001

Event Process

Value Std.Err z-value p-value

trtgrp -0.8966 0.1263 -7.0986 <0.0001

Assoct 0.0236 0.0044 5.3997 <0.0001

Similarly, the data for the change of WBC was analyzed and the result shows

an association between longitudinal process and hazard rate of event process α =

−0.0285. Which indicates too much of the WBC reduction will actually increase

the hazard rate. That should not be surprising as low level of WBC will increase

the chance of infection and that can cause other complications.

Joint Model Summary:

Longitudinal Process: Linear mixed-effects model

Event Process: Relative risk model with piecewise-constant

baseline risk function

Longitudinal Process

Value Std.Err z-value p-value

(Intercept) -0.2173 0.0986 -2.2039 0.0275

day 0.0053 0.0012 4.4575 <0.0001

day:trtgrp -0.0098 0.0012 -8.4021 <0.0001

Event Process

Value Std.Err z-value p-value

trtgrp -1.2105 0.1336 -9.0624 <0.0001

Assoct -0.0285 0.0233 -1.2227 0.2214
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5 Combining the Associations

To combine the associations, we bootstrapped 500 samples and estimated the 500

pairs of association. A covariance matrix between associations of serum protein

level and WBC was estimated. The weights to combine the associations can be

estimated using the following equation

β =
1− ρ(σ1/σ2)

1− 2ρ(σ1/σ2) + (σ1/σ2)2
,

and the BLUE of the combined association can be estimated by

A = (1− β)A1 + βA2,

where A1 and A2 are the associations of serum protein and WBC, respectively.

The combined effect of the change from baseline of serum protein level and

WBC on the hazard of PFS can also be visualized with the following graph (fig-

ure 3). The combination of changes below the cyan-colored plate will reduce the

hazard of PFS, and all other combinations of changes above the plate will increase

the hazard.

Figure 3: Joint effect of change from baseline of serum protein and WBC on the

hazard of PFS

6 Summary

Clinical trials collect huge amount of data on efficacy and safety. To better un-

derstand the overall treatment effects, one needs to combine these data longi-

tudinally as much as possible and to analyze efficacy and safety data, pre- and

JSM 2016 - Biopharmaceutical Section

1733



post-treatment data together, as they quite often interact with each other. Joint

model of various data types collected in clinical studies has been well-established

in both theory and practices. We propose a general approach to combine the effect

of two longitudinal data series and to estimate the joint effect on the hazard of

the event process. This can easily be extended to more longitudinal data series

and further work in under research. In addition, the results obtained using the

two methods mentioned in this article are not always consistent. Whether this is

data dependent or has intrinsic difference is unknown and more research will be

conducted to compare these methods.
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