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Abstract
Copula models provide an effective tool for modeling joint distributions. Model selection allowing
to choose an appropriate subclass of copulas remains a critical issue for many applications. The pa-
per suggests an implementation of Bayesian model selection procedure based on ideas of Bretthorst,
Huard et al. It allows us to compare several classes of Archimedean copulas (Frank’s, Clayton’s,
and survival Gumbel-Hougaard families) and elliptical copulas (Gaussian and Student t-copulas).
For dimensions higher than 2 we consider several types of hierarchical structures including nested
Archimedean copulas, hierarchical Kendall copulas and vines. We consider a portfolio based on
four national indices. Extreme market co-movements are modeled by the tail behavior of the joint
distribution or index returns and currency exchange rates. Estimation of parameters within sug-
gested copula families and hierarchical structures is carried out via empirical Bayes approach using
random walk Metropolis algorithm and other Markov chain Monte Carlo techniques.
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1. Introduction

1.1 Index Futures, Hedging, and Diversification

The problem of hedging portfolio risks in the international markets is often resolved by tak-
ing long or short positions in national stock index futures allowing for the diversification of
the risk. This diversification may be achieved if corresponding index futures are negatively
associated with the other components of the portfolio.

Traditionally, analyzing correlations between the portfolio components (Markowitz
model) provided a reasonable tool of such diversification. Prior to Markowitz approach
risk assessment and profitability of portfolio investments was carried out through indepen-
dent analysis of assets. Introducing the concept of diversification, Markowitz suggested
that investors should build a portfolio based on joint performance of risk and return of its
constituent assets. This approach became a significant step forward in comparison with a
situation when investors formed their portfolios regardless of existing links in returns of
included assets. Using historical returns of each asset it is possible to estimate the expected
return and variance of the portfolio, which in turn can be viewed as proxy variables for re-
turn and risk. Examining different combinations of assets, Markowitz developed a method
of forming a portfolio based on the balance of its return and risk.

In practice, many classes of assets are characterized by returns that cannot be described
with a Gaussian distribution that comes into contradiction with the basic assumptions of the
Markowitz approach. This fact was already discovered by Mandelbrot (1963). Moreover,
it has been shown lately that correlations between index futures may change with time and
also give a poor assessment of the tail behavior of the joint distributions of index returns.

In recent years, dependence models became a subject of increasing attention and are
widely discussed. To update the concept of optimal portfolio researchers are trying to move
away from the traditional assumption that asset returns are independent and normally dis-
tributed. In the framework of this paper we will not consider dynamic correlation models,
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but rather suggest several models for the entire joint distribution of several index returns.
For this purpose we will use the instruments known as copula models. Copula models allow
the researchers to analyze the marginal distributions of the random vector separately from
their association structure defined by a special copula function, which can be determined
for each pair of vector components depending on the strength of their association. Pair
copulas are tied together into a multivariate hierarchical structure. Such models provide a
wide range of options depending on the class of pair copula functions considered and the
hierarchy on the set of variables. The objective of the paper is to compare several copula
models and observe to which extent the final hedging decisions may depend on the choice
of the model.

1.2 Copula Models for Joint Index Returns

In our study we will concentrate on four national indices: CAC-40 to represent France,
HIS for Hong Kong, JSE for South Africa, and Standard and Poors 500 (SPX) for the U.S.
market. This portfolio choice is not arbitrary, it includes representatives of geographically
diverse clusters, which was demonstrated in Kangina et al. (2016) to provide good diver-
sification benefits. We analyze daily index values for the period 2009-2011 available from
a Bloomberg terminal and construct four-dimensional copula models for the joint distribu-
tion of the normalized index returns: residual daily logarithmic returns of national indices
controlled for autoregression and heteroskedascticity.

Following Hansen (1994) and Gordeev et al. (2012), we will assume asymmetric t-
distribution for each of the four variables corresponding to the normalized index returns.
Thus we obtain a model for marginals. Elliptical copulas allow for direct four-dimensional
construction of the joint distribution based on the marginals and their correlation matrix
which can be estimated separately. If we do not assume exchangeability of the variables,
Archimedean copulas require an extra step. We will choose a pair copula model and then
define a hierarchy structure on the set of variables based on this model.

We will consider three families of Archimedean pair copulas, paying the most attention
to Frank’s family, which was proven in Gordeev et al. (2012) to provide the best overall
fit for the national index data. The most popular methods to define a multivariate copula
based on pair copula construction are (i) vine copulas (vines), (ii) hierarchical or nested
Archimedean copulas (HAC), and (iii) hierarchical Kendall copulas (HKC). The objective
of the paper is to compare these three constructions using same or similar pair copulas and
to observe to which extent the tail probabilities may depend on the choice of the multivariate
copula model.

For parametric estimation we use a Bayesian model with informative priors for margins
and pair copulas obtained empirically from a broader empirical study of 27 national indexes
in Kangina et al. (2016) and Knyazev et al. (2016). Weak or non-informative priors were
suggested for the hierarchical copula parameters. Due to complicated expressions for mul-
tivariate copula models, Gibbs sampling was hard to implement and a version of random
walk Metropolis algorithm was utilized. R environment was used for all computations.

Sections 2 and 3 include a brief description of pair copula models and three hierarchi-
cal structures to be compared. Section 4 is dedicated to the results of model selection and
parametric estimation for index study, and Section 5 contains the numerical results: cal-
culations of extreme co-movements of index returns, which are defined as probabilities of
simultaneous extreme drop of all four indices.
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2. Pair Copulas

2.1 Basic Definitions

Copula function is a binary mapping satisfying the following four conditions:

1. C : [0, 1]2 → [0, 1].

2. For any u, v ∈ [0; 1] C(0, v) = C(u, 0) = 0.

3. For any u, v ∈ [0; 1] C(1, v) = v, C(u, 1) = u.

4. For any 0 ≤ u1 ≤ u2 ≤ 1, 0 ≤ v1 ≤ v2 ≤ 1, C(u2, v2) − C(u2, v1) − C(u1, v2) +
C(u1, v1) ≥ 0.

If u = F (x) and v = G(y) are two marginal distributions of variables X and Y , by
virtue of Sklar’s theorem [5] any joint distribution of the vector (X,Y ) can be represented
as a copula Pr(X ≤ x, Y ≤ y) = C(F (x), G(y)). There exist many copula types, where
a particular case of C(u, v) = uv corresponds to independence. In survival analysis and
risk management applications paying special attention to the joint tail behavior, a special
role is played by the family of Archimedean copulas.

2.2 Elliptical Copulas

The most popular elliptical copula is Gaussian copula which combined with marginal dis-
tributions ui = Fi(xi) for the components of d-dimensional data vectorX = (X1, . . . , Xd)
defines the joint distribution of vector X as

F (x1, . . . , xd) = CR(u1, . . . , ud) = Φd,R(Φ−1(F1(x1)), . . . ,Φ
−1(Fd(xd))),

where Φ(x) is standard normal distribution and Φd,R is d-variate normal with zero mean,
unit variances and correlation matrix R. Off-diagonal elements of matrix R describe pair-
wise associations, so the strength of association may differ for different pairs of components
of vector X .

In applications it is often desirable to model heavy-tailed multivariate distributions and
tails of the joint distributions. In this situation, the Student t-copula should be used instead
of the Gaussian copula. If we use multivariate Student t-distribution with η degrees of
freedom and correlation matrix R, we obtain the Student copula or t-copula. As we saw
for the Gaussian copula, the choice of an elliptical copula model does not prescribe the
choice of marginals. They might be chosen separately.

F (x1, . . . , xd) = Cη,η1,...,ηd,R(u1, . . . , ud) = Td,η,R(T−1η1 (F1(x1)), . . . , T
−1
ηd

(Fd(xd))),

For inverse transforms we use univariate t-distributions with ηi degrees of freedom. In
case of d = 2 we obtain pair copulas, but the same construction also works for the case of
d > 2. In our study, elliptical copulas can be constructed directly for the set of four indices,
without a necessity to specify a pair copula model.

2.3 Archimedean Copulas

Let φ(t) be a continuous, strictly decreasing convex function from [0; 1] to [0;∞) such that
φ(1) = 0. We determine pseudo-inverse of φ as follows:

φ[−1](t) = max{φ−1(t), 0}. (1)
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So φ[−1](t) = φ−1(t) if 0 ≤ t ≤ φ(0) and φ[−1](t) = 0 if t > φ(0). Pseudo-inverse
is additionally defined for the values out of the range of the original function, which makes
it different from the regular inverse. If φ(t) → ∞ when t → 0 than the pseudo-inverse
function coincides with the inverse function. Pseudo-inverses serve to extend the inverse
transformation to the functions of limited range.

Let Cφ : I2 → I be a continuous non-decreasing function

Cφ(u, v) = φ[−1](φ(u) + φ(v)). (2)

A copula Cφ(u, v) is an Archimedean copula if the function φ(t) is its generator.

2.4 Classes of Archimedean Copulas

Three most popular subclasses of the Archimedean family are:
Clayton’s copula

φα(t) = t−α − 1.

P (X ≤ x, Y ≤ y) = CC(u, v|α) = max{(u−α + v−α − 1)−1/α, 0}.

Gumbel-Hougaard’s copula

φα(t) = (− log t)α;

P (X ≤ x, Y ≤ y) = CGH(u, v|α) = exp { − [(− log u)α + (− log v)α]1/α}.

The survival version of Gumbel-Hougaard’s copula uses survival functions 1 − u =
P (X > x) and 1 − v = P (Y > y) instead of marginals distributions, so that P (X >
x, Y > y) = CGH(1 − u, 1 − v)|α). This copula along with the Clayton’s copula is
especially convenient for modeling joint lower tails, which play a special role in risk man-
agement.

Frank’s copula

φα(t) = − log
[e−αt − 1

e−α − 1

]
P (X ≤ x, Y ≤ y) = CF (u, v|α) = − 1

α
log

[
1 +

(e(−αu − 1)(e−αv − 1)

e−α − 1

]
.

The choice of a specific Archimedean subclass to model pairwise dependence of the
variables is a very important part of the model selection. It is certainly most convenient
(though not necessary) to select one family of copulas to model all pairs. The most pop-
ular approach is to choose the best representative from each parametric subclass based on
an estimation procedure for association parameter α such as maximum likelihood (MLE)
or Bayes estimators, and then compare these best representatives to each other based on
information criteria (AIC, BIC, or DIC) as in Jondeau and Rockinger (2006), or other char-
acteristics of model fit (Kolmogorov-Smirnov or chi-squared distances) as in Fermanian
and Scaillet (2003). In the following subsection we discuss a different approach.
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2.5 Bayesian Model Selection

Following Bretthorst (1996) and Huard et al. (2006), we suggest to compare the data fit
provided by several pair copula models not at a single value of association parameter(s)
obtained by MLE, but rather over the entire range of possible association values. This can
be accomplished by specifying a prior distribution for association parameter(s) and inte-
grating the likelihood with respect to the prior distribution. The problem is the difference
of meaning and ranges of association parameters for different copula classes. If we want to
compare several classes of copulas in Bayesian framework, we need to establish the com-
mon basis of comparison. For that purpose we need to suggest a universal parameter, which
can be evaluated for all classes of copulas under consideration.

One of such universal parameters is Kendall’s concordance τ , which can be conve-
niently expressed in terms of association for many copula families. Sample concordance
τ̂ is a reasonable non-parametric estimator of τ . Using formulas expressing concordance
through association parameters, see, for example, Genest and Rivest (1993), we can cal-
culate values of τ induced by MLE for parameters of elliptic or Archimedean copulas and
compare them to the sample values of τ̂ . Proximity of model induced values of τ to the
sample value τ̂ may serve as a measure of the model fit and help to compare the model
performance, see also Persons et al. (2012). However, this comparison is still using single
values representing entire families.

We will assume that the classes of copulas we choose represent exhaustive and mutu-
ally exclusive hypotheses H1, H2, . . . ,Hm. Posterior probabilities of hypotheses Hk, k =
1, . . . ,m, for data D may be rewritten as

P (Hk | D) =

∫
P (Hk, τ | D)dτ =

∫
P (D | Hk, τ)P (Hk | τ)π(τ)dτ

P (D)
, (3)

where we will consider all m hypotheses a priori equally likely. If the dependence between
variables is positive for all hypotheses, we can assume τ ≥ 0 . In this case the natural
choice of prior for τ is beta distribution, and the choice of parameters for the prior can
be subjective or non-informative objective. However, in presence of relevant additional
data, similar in nature, the prior might be suggested by sample concordance for this data
consistently with empirical Bayes approach: P (D | Hk, τ) = Lk(D | α(τ)), P (Hk |
τ) = P (Hk) = 1

m , π(τ) ∼ Beta(â, b̂). If we have multiple pairs of variables included
in the study, estimates of parameters of the Beta distribution for empirical Bayes can be
obtained from all pairs of components.

We will not need to calculate the denominator of the posterior in (3). It suffices to
calculate the weights

Wk =

∫ 1

0
Lk(D | α(τ))π(τ)dτ =

∫ 1

0
Πn
i=1cα(ûi, v̂i | α(τ))π(τ)dτ, (4)

where cα(ûi, v̂i) is the corresponding copula density for estimated marginals. Instead of
this integral, using Monte-Carlo approach and drawing samples from the Beta prior, evalu-
ate

Ŵk =
1

N

N∑
j=1

Πn
i=1cα(ûi, v̂i | α(τj)). (5)

Then we choose the class with the highest weight and obtain the Bayes estimate of the
association parameter using MCMC.
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3. Multidimensional Copula Constructions

Elliptical copulas allow for direct multivariate copula construction with no restriction to
d = 2. However, direct extension of Archimedean copulas to higher dimensions requires
exchangeability of the marginals, which seriously restricts the possibility to model different
strength of association between the variables. We will consider three different constructions
which make it possible to apply Archimedean copulas for d = 3 and d = 4 without
exchangeability assumption.

3.1 Vine Copulas

Let us begin with d = 3 and consider the problem of modeling joint distribution P (X ≤
x, Y ≤ y, Z ≤ z) using marginals u = F (x), v = G(y), w = H(z) and pair copulas. Let
us designate one out of three variables (say, Y ) as the central variable, whose associations
with both X and Z are most important. Modeling the association between X and Z will
have a lower priority. This ”hierarchy” of dependence structure is inevitable, and can be
established either from context, or by preliminary estimation of the strength of pairwise
associations. Two equivalent ways to graphically illustrate the hierarchy of pairwise asso-
ciations are suggested in a centered vine diagram in Figure 1. Primary links between the
variables are indicated by solid lines, and the secondary links by dashed lines.

 

 

 

 

 

 

 

 

 

 

 

  

  

Y 
 

X Z 

Figure 1: Vine structure, d = 3.

We will model primary associations for pairs (X,Y ) and (Y,Z) using two pair copulas:

C1(u, v) = C1(F (x), G(y)); C2(v, w) = C2(G(y), H(z)).

We also introduce the conditional copula C3(FX|Y , HZ|Y ) for the secondary link.
Therefore, we can express the triple joint density in terms of marginal densities, two

pair copulas for (X,Y ) and (Y,Z), and one additional copula, which is defined on condi-
tional distributions rather than on marginals. The following diagram describes the two-level
tree of associations, where at the first level we need two pair copulas, and at the second just
one conditional pair copula which uses conditional distributions instead of marginals as its
arguments:

(X,Y ), (Y,Z); (X,Z|Y ).

For dimension d = 4, we can use the vine structure above but also have to cope with
an additional variable W , which should be linked to the dependence diagram for three
variables. We will have to add a new link. The new link connects W either with the central
variable Y or with a non-central Z (or X) - whatever association is more important. This
distinction brings about classification of vine diagrams into two popular types: C-vines and
D-vines. This importance can be determined by contextual meaning of the variables or by
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rough estimation of the strength of their association. The diagram in Figure 2 corresponds
to a C-vine, where Y plays the role of the central variable, primary links are shown by
solid lines (star symbol indicates the new link), secondary links - by dashed line, and the
third-level links by a dotted line. Figure 3 shows a so-called D-vine, where the variables
are linked in a straight chain. Three-level trees of the process for a C-vine and D-vine
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Figure 2: C-vine for d = 4.
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Figure 3: D-vine for d = 4.

respectively are:

(X,Y ), (Y,Z), (Y,W); (X,Z|Y ), (Z,W|Y); (X,W |Y,Z).

and
(X,Y ), (Y,Z), (Z,W); (X,Z|Y ), (Y,W|Z); (X,W |Y,Z).

with the highlighted differences between C-vine and D-vine caused by the star-designated
link in Figure 2 and Figure 3, see Aas et al. (2009).

3.2 Hierarchical (Nested) Archimedean Copulas (HAC)

Let us suppose that u = F (x), v = G(y), w = H(z) are three marginal distributions in
case of d = 3. Hierarchical copula construction

C((u, v), w) = C2[C1(u, v), w] (6)

uses two different generators φ1 for the inner (cluster) copula C1 and φ2 for the outer
(nesting) copula C2. Not only their association values α1 and α2, but also the subclasses
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Figure 4: Hierarchical Archimedean copulas, d = 3.

of Archimedean copulas (e.g., Clayton, Frank, Gumbel-Hougaard’s families) could be dif-
ferent for C1 and C2. The suggested hierarchical clustering/nesting diagram is shown in
Figure 4. Using generator representation, since C1(u, v) = φ

[−1]
1 (φ1(u) + φ1(v)) and

C2(C1, w) = φ
[−1]
2 (φ2(C1) + φ2(w)),

C((u, v), w) = φ
[−1]
2 [φ2 ◦ φ[−1]1 (φ1(u) + φ1(v)) + φ2(w)]. (7)

Additional conditions are required for the key element of this construction, the superposi-
tion ψ(t) = φ1 ◦ φ[−1]2 (t) to guarantee that C((u, v), w) is a legitimate copula function.

In case of four variables one may consider two following possibilities of initial clus-
tering depending on the importance of pairwise associations. In Figure 5 the hierarchy
diagram corresponds to a fully nested model

C(((u, v), w), t) = φ
[−1]
3

(
φ3 ◦ φ[−1]2 [φ2 ◦ φ[−1]1 (φ1(u) + φ1(v)) + φ2(w)] + φ3(t)

)
, (8)

and in Figure 6 - to a non-nested model

C((u, v), (w, t)) = φ
[−1]
3

(
φ3 ◦ φ[−1]1 [φ1(u) + φ1(v)] + φ3 ◦ φ[−1]2 [φ2(w) + φ2(t)]

)
. (9)

If pair copula in a HAC construction belong to the same class (e.g., all Clayton’s or
all Frank’s), then generators in all links may be parametrized as φi = φαi and conditions
for (7), (8), and (9) being legitimate copulas can be formulated in terms of αi, see Hofert
and Maechler (2011). For applications in higher dimensions see also Hofert and Scherer
(2011), Okhrin and Ristig (2014), and Puzanova (2011).
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Figure 5: Hierarchical Archimedean copulas, fully nested.

3.3 Hierarchical Kendall Copulas (HKC)

This construction introduced in Brechmann (2014) utilizes Kendall’s distribution function
KC(t) = P (C(U, V ) ≤ t) defined for Archimedean copulas as KC(t) = 1 − φ(t)

φ′(t) . For a
simple illustration let us suppose that a triple copula C(u, v, w) is built in two steps:
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1. Choose a cluster (inner) copula C1(u, v), estimate its association parameter, and calcu-
late KC1(t).

2. Choose a nesting (outer) copula C2 and use C(u, v, w) = C2(KC1(t), w).

This construction can be used not only for Archimedean copulas, but in the latter case
the calculation of Kendall’s distribution can be done straightforwardly through its genera-
tor.

Comparison of all three constructions on index data for d = 4 is provided in Section
5. Differences between these methods become more dramatic in higher dimensions. Vine
copulas offer much flexibility in combining various types of copulas in one model and pro-
viding a huge variety of dependence hierarchies (compare C-vines and D-vines for different
component ordering).

4. Stock Index Study

Our goal is to build a four-dimensional copula model for four indices (CAC, HIS, JSE,
SPX). We will first select a model for the margins, then decide on the model for pair cop-
ulas. Finally, for Archimedean copulas we will choose the best way to link pairs into a
hierarchical structure. We will separately do it for vines, HAC, and HKC based on the data
for the period from 2009 to 2011. Then in Section 5 we will compare the results of applying
these models to estimation of the tails of joint distributions. We also perform out-of-sample
model validation using new data for the period from 2012 to 2015.

4.1 Model for Margins

Independent of the choice of the hierarchical structure, all pair copula parameters are esti-
mated using empirical Bayes approach. The first step is to transform raw data for each of
the national indices CAC, HIS, JSE, and SPX, converting time series of daily index prices
Si, i = 1, . . . , n into stationary matched samples of normalized residual logarithmic re-
turns ti, filtering out effects of autocorrelation and heteroskedasticity, as in Gordeev et al.
(2012) and Knyazev et al. (2016).

ti =
εi√
hi
, εi = Ri − β0 − β1Ri−1, hi = β2 + β3hi−1 + β4ε

2
i , Ri = log

Si
Si−1

,

where βk are coefficients of ARIMA/GARCH model estimated for each index time series
independently. As it was shown in Gordeev et al. (2012), assumption of normality usually
does not hold for such samples. A better model for the margins is provided by an asym-
metric t-distribution with degrees of freedom η and parameter of asymmetry λ: ti ∼ Tη,λ
defined in Hansen (1994).

We will use the results of a broader study of 27 indices from Knyazev et al. (2016). The
empirical Bayes estimates in Table 1 for four indices considered in the present paper were
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Figure 6: Hierarchical Archimedean copulas, non-nested.
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obtained in Kangina et al. (2016) and the resulting models were tested via Kolmogorov-
Smirnov goodness-of-fit test.

Table 1: Parameters of t- Margins

Index η λ p-value
CAC (France) 24.50 0.03 0.17
HIS (Hong Kong) 23.95 -0.04 0.12
JSE (South Africa) 18.00 -0.08 0.58
SPX (USA) 7.40 -0.13 0.08

4.2 Pair Copulas

For pair copula selection we use the same study of 27 indices (378 pairs). Applying
Bayesian model selection from Subsection 2.5 with empirical Beta priors on Kendall’s
τ , we obtain results in Table 2, showing for how many pairs out of 378 a certain pair copula
model demonstrated the best fit from Bayesian model selection point of view.

Table 2: Number of Pairs with the Best Fit

Pair copula model Number of pairs
Clayton 0
Gumbel-Hougaard (survival) 5
Frank 13
Gaussian 160
Student t 200

These results confirm the finding of Persons et al. (2012), suggesting that elliptical
models, especially Student t-copulas, provide a better overall fit for national index data.
This is not necessary true when we use different criteria of model selection such as AIC or
BIC. Therefore we will use t-copulas in our final comparison with Archimedean models.
The choice of Archimedean model suggested in Kangina et al. (2016) and supported by Ta-
ble 2 is Frank’s copula. Therefore for every pair of indices out of four (total of six pairs) the
parameter of association α is estimated under assumption of Frank’s copula model. Simi-
lar estimation was done for Clayton’s and survival Gumbel-Hougaard’s models, which are
known to better model the joint distribution tails, but it goes out of the scope of this paper.
Table 3 shows the results of Frank’s pair copula parametric estimation in the decreasing
order of association.

4.3 Vines: Conditional Copula Parameters

In order to build a vine copula model, one has to determine the best possible vine structure
for dimension d = 4. We will use information approach and judge the fit of the model
by the lower value of AIC and also by the error of the generalized method of moments:
comparing the discrepance δ = |τ̂ − τ(α)| between the empirical Kendall’s concordance τ̂
and the model induced value of τ(α). These two measures yield rather consistent results.

We have two choices: C-vine or D-vine, and we have to determine the relative place-
ment of the nodes in the vine. To help with initial determination of the vine structure, we
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Table 3: Frank’s Pair Copula Parameter α

Pair Frank’s α
CAC, SPX 6.36
CAC, JSE 5.49
JSE, SPX 3.53
HIS, JSE 2.98
CAC, HIS 2.65
HIS, SPX 1.84

can draw a diagram of association between four indexes Figure 7 using empirical Kendall’s
concordance τ̂ calculated for each matched pair of samples ti. The best choice according

Figure 7: Diagram of Association.

to AIC is provided in Figure 8, while its conditional copulas and their concordances are
shown in Figure 9. A D-vine in Figure 10 gives a very close value of AIC.

Figure 8: C1. Best Choice of C-vine.

4.4 HAC and HKC: Cluster and Nesting Association Parameters

Assuming that copulas on all hierarchy levels belong to the same class and vary only by
the value of parameter α, we take into the account that for (7) to represent a copula, for
any class from Subsection 2.3 it is sufficient that α1 > α2 > α3 for the nested model (8)
and α1 > α3;α2 > α3 for the non-nested model (9) (see Hofert and Maechler (2011)).
Therefore we first estimate the inner associations αi, and then the outer associations αj , for
which we suggest a weak prior αj ∼ Unif [0, αi]. The choice of the hierarchy is based on
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Figure 9: Conditional Copulas for the Best C-vine.

Figure 10: D1. Best Choice of D-vine.

a simple rule applied to the diagram in Figure 7: for any of the four triplets possible, the
pair with the highest concordance value forms the inner link.

For HKC construction, Kendall’s distribution function for the Frank’s copula may be
represented as

K(t) = t+
(1− eαt)

α
log

(e−αt − 1

e−α − 1

)
.

For quadruplets the hierarchy of concordance dictates the choices summarized in Table
4. The first choice is a non-nested model with two cluster parameters α1 and α2, and
one nesting parameter α3. The second is a completely nested model with three levels of
hierarchy.

Table 4: Nesting Copula Parameters in HAC and HKC

Triplet α1 α2(HAC) α3(HAC) α2(HKC) α3(HKC)

((CAC, SPX), (HIS, JSE)) 6.36 2.98 2.97 2.98 4.58
(((CAC, SPX), JSE),HIC) 6.36 4.27 1.90 4.99 3.19

From AIC standpoint, the non-nested model provides a slightly better fit for HAC and
the nested model fits HKC better.

5. Tail Probabilities

Figure 11 demonstrates a diagonal cross-section of joint CDF of normalized index log-
return residuals. Black curve corresponds to the empirical CDF, green line to the best vine
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model, blue line to best HAC, and red to the best HKC (all with Frank’s pair copula). Ma-
genta line corresponds to four-dimensional Student t-copula with correlations R estimated
by the method of moments and degrees of freedom η = 7 (the best integer approximation
to MLE). Figure 12 zooms in at the joint left tail (simultaneous drops of four indices from
1 to 3 standard deviations).

Figure 11: Estimates (2009-2011). Diagonal cross-section of joint CDF.

Figure 12: Estimates (2009-2011). Left tails.

The last two figures demonstrate the results of out-of-sample model vaildation. Figure
13 demonstrates a diagonal cross-section of joint CDF of normalized residuals for 2012-
2015. Black curve corresponds to the actual empirical CDF for this period, and the model
lines with parameters estimates from 2009-2011 demonstrate the predictions. Figure ??
zooms in at the joint left tail.
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Figure 13: Prediction (2012-2015). Diagonal cross-section of joint CDF.

Figure 14: Prediction (2012-2015). Left tails.

6. Conclusions

Results presented in this paper suggest that studying non-linear effects and extreme co-
movements of financial variables can explain the behavior of complex multinational in-
vestment portfolios in different ways than the traditional correlation analysis. Modeling
national stock indexes with the help of copula models provide valuable insights on their
dependence structure beyond correlation used in Markowitz model. The effects of thisn
dependence structure may be observed for relatively low dimension of four.

Numerical results also suggest that:

• Elliptical copulas provide more robust choices for bivariate models.

• Tail probabilities depend on the hierarchical structure: best choice is provided t-
copulas. For Archimedean copulas HAC seem to provide the best structure.

• Models have surprisingly good predictive quality.
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Finally, Bayesian approach has several advantages:

• Incorporation of prior information obtained for geographically and temporally di-
verse financial environments.

• Stable results resolving some issue with MLE in high parametric dimensions.

• Carefully chosen priors promise certain advantages.
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