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Abstract
The literature on network science abounds with diverse community detection methods. Included

among them, modularity optimization has found widespread application and success. From a sta-
tistical physics perspective, modularity optimization and its variants are equivalent to ground state
determination of the Potts model. We extend this notion to include the external field in the Potts
energy function to impose constraints on the derived communities. The incorporation of external
information of a global nature has remained largely unstudied. We retain the probabilistic aspect
of the Potts model with an external field to define an MCMC sampling regime for the community
labels. We apply this novel method to a network of hospitals, some of which are specialized. Our
constraint is that each health care community (HCC) must contain at least one specialized hospital.
For one to make meaningful comparisons among discovered communities, a level of homogeneity
of resource availability is necessary. The specialized hospitals are equipped to implant implantable
cardiac defibrillators (ICDs) and, while all hospitals are partitioned into HCCs, we require that each
HCC contain at least one ICD capable hospital.

1. Introduction

Network analysis methods are widely employed by researchers intent on gaining a systems-
level understanding of relational and dependent data. Technological and infrastructure,
social, biological, and information sciences are a few of the major disciplines in which
network analyses have been successfully employed. Graph partitioning, or community de-
tection1, has experienced several landmark advances in methodology, chief among them the
clique percolation method [5], spectral partitioning [3], degree-corrected stochastic block
models [11], and modularity optimization [12]. These tools are specifically designed for
the unsupervised partitioning of the vertex set V of a network graph into unusually cohesive
subsets of vertices. With varied applications as sociology [20], computer architecture [8],
and biology [14], graph partitioning procedures are fast becoming indispensable devices
for scientific research.

Existing methods of community detection incorporate solely the network’s topology in
partitioning. In modularity optimization, for example, an objective function is defined on
the network and is maximized over the latent partition labels in order to discover cohesive
subsets of vertices. Unfortunately, direct application of a network modularity optimization
procedure is not particularly amenable to the imposition of constraints or incorporation of
external information on the communities themselves. In this article we propose a procedure
for obtaining high-quality, feasible communities by integrating constraints on the partitions
discovered by our method.

Our motivation is derived from our desire to partition a network of hospitals into health
care communities (HCCs). Hospitals constituting an HCC should exhibit a high frequency
of shared visits amongst one-another within the Medicare health service and are densely
connected in the network graph representation of the overall hospital network. A proper
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partitioning of the hospital network into HCCs requires that each HCC consist of at least
one specialized cardiac hospital known as a cardiac care facility. This additional informa-
tion is not intrinsic to the network connectivity itself and, therefore, must be directly in-
corporated into the community detection procedure. Existing work in this realm considers
incorporating additional information of the forms of individual entity labels and pairwise
constraints, i.e. that two vertices must be labelled similarly or differently, see [4]. Our addi-
tional information instead imposes a constraint on the composition of network communities
and, therefore, requires a novel approach be developed.

We derive our constrained community detection method from the first principles of
statistical physics to obtain a probabilistic model for the joint distribution of the latent
community labels and an associated sampling method. For illustrative purposes, suppose
that we aim to partition the vertex set into only two communities so that a latent community
label is a binary random variable. Note here that this is the exact scenario in Zachary’s
Karate Club network. A general probabilistic model for the joint distribution of a collection
of binary random variables is the Ising model, see [9]. Specifically, suppose that x =
(x!, x2, . . . , xp) is a configuration, i.e. instance or realization, of p binary variables. The
Ising model is given by

P (x) ∝ exp

−β
µ∑

k

hkxk +
∑
ij

Jijxixj

 , (1)

where β > 0 and µ ∈ R are constant, hk is the external magnetic field applied to xk,
and Jij is the interaction strength between xi and xj . The Ising model may be written
succinctly as

P (x) ∝ exp {−βH (x)} , (2)

where H (x) is the energy function, or Hamiltonian, of the Ising model. In general, Equa-
tion (2) is the form of a Gibbs distribution.

The energy function of our Gibbs distribution is composed, as above, of two parts: (1)
the external field which incorporates outside knowledge and (2) the interaction component
which assimilates the network connectivity, i.e. H (x) = µHE (x)+HI (x), whereHE (x)
is the external field and HI (x) is the interaction component. Proceeding with the Ising
model illustration,

HE (x) =
∑
k

hkxk (3)

and
HI (x) =

∑
ij

Jijxixj . (4)

The external field is aptly named because it quantifies the role of forces external to the inter-
actions within the system. We utilize the role of the external field as the courier of external
information on the latent network communities. We demonstrate our community detection
method using illustrative examples and subsequently employ our method in partitioning a
nationwide hospital network.

The organization of this article is as follows. In Section 2 we begin by presenting the
perhaps most commonly used approach to community detection, modularity for optimiza-
tion, and conclude with the development of our constrained objective function and allied
optimization procedure. In Section 3 we present a numerical experiment to demonstrate
the functioning of the external field in our constrained probabilistic optimization problem.
In Section 5 we apply our method to partition the hospital referral network into HCCs and
compare the result to the existing partition known as health referral regions (HRRs), see
[7]. Technical details and derivations appear in the Appendix.
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2. Function Optimization and Probability Models for Community Detection

Modularity optimization, see [6] and [12], is a procedure for community detection in which
the maximum of an objective function establishes the optimal partition of the vertex set
V . The modularity objective function is defined specifically for the purpose of grouping
together vertices which are better connected than expected and grouping seperately ver-
tices which are lesser connected than expected. This, of course, presupposes the notion of
expected connectivity and, thus, a null probability distribution over the network, see the
Appendix for details.

Network modularity is exclusively a function of a network’s adjacency matrix. An
adjacency matrix, in general, stores edge weights. In the case that the network is sim-
ple, unweighted, and undirected, as are the networks we consider here, then the adjacency
matrix is a symmetric binary matrix consisting of only zeros and ones. Specifically,

Aij =

{
1 if vertices vi and vj are connected
0 otherwise

(5)

The definition of the modularity function Q, see [6] and [12], is

Q =
1

2m

∑
ij

(
Aij −

didj
2m

)
sisj + 1

2
, (6)

where 2m =
∑

ij Aij is twice the number of edges in the network (m is the number of
edges), dk is the degree of vertex vk, and

sk =

{
1 if vk belongs to Community #1
−1 if vk belongs to Community #2

(7)

The degree dk of vertex vk is equal to the number of edges connected to vk and equals the
kth column (row) total, i.e. dk =

∑
j Akj . Equation (6) is easily modified to accommodate

several communities by redefining Q as

Q =
1

4m

∑
ij

(
Aij −

didj
2m

)
[2δ (xi, xj)− 1] , (8)

where xk is the community label for vertex vk and δ (·, ·) is the Kronecker delta.
The vector x = (x1, x2, . . . , xp) of community labels, where p is the number of vertices

in the network, is the variable over which Q is optimized to obtain the optimal community
assignment. Note that the role of the scaling factor 1/4m does not enter into the optimiza-
tion. In fact, neither do the terms with i = j. These terms are referred to as diagonal
because they are along the main diagonal of the outer product A− ddT /2m, where dT is
the transpose of d = (d1, d2, . . . , dp)

T .
Thus, we define Q′ as

Q′ =
∑
i6=j

(
Aij −

didj
2m

)
[2δ (xi, xj)− 1] (9)

as the quantity to be optimized. Fundamental to the remainder of this article is the obser-
vation that Equation (9) is the Hamiltonian of a Potts (Ising) model.

We refer the reader to the Appendix for two derivations of the modularity function.
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2.1 The Probabilistic Model of Constrained Communities

Having identified the objective function Q′ of a network partition, we seek an optimization
procedure to compute optimal community labels given the network’s connectivity. How-
ever, if information beyond the connectivity of the network is to be incorporated in assign-
ing community labels, the objective function Q′ for network modularity must be modified.

The authors of [4] proposed a semi-supervised method of constrained community de-
tection that directly alters the null model of the modularity function. Specifically, they
incorporate external knowledge of the form of (i) individual entity labels and (ii) pairwise
constraints, i.e. that two vertices must be labeled similarly or differently. Instead of placing
local constraints on a desired solution to the modularity problem, we search for a solution
which satisfies a global constraint. Global constraint satisfaction may be achieved through
a proper coding of the external field, which we present in the following. The incorporation
of external information of this nature has, to our knowledge, remained unstudied.

As stated earlier, Q′ can be recognized as the Hamiltonian of an Ising or Potts model
so we shall now write

HI (x) =
∑
i6=j

(
Aij −

didj
2m

)
[2δ (xi, xj)− 1] , (10)

where the subscript I indicates “interaction”. As discussed earlier, in the definition of HI

the diagonal terms in Q′ are omitted since they amount to a constant not depending upon
the community labels. The probabilistic model is thus

P (x) ∝ exp {θ [λHE (x) +HI (x)]} , (11)

for some penalty parameter λ ≥ 0 and inverse temperature θ > 0, where the function HE

is the external field of the system. As in Section 1, the model in Equation (11) may be
written succinctly as

P (x) ∝ {θH (x)} , (12)

where the Hamiltonian H = λHE (x) + HI (x). It is clear that λ = 0 implies that no
penalty is imposed. The external field is characterized by knowledge in the form of con-
straints that are not directly encoded in the connectivity of the network. Moreover, external
information is often in the form of a constraint on the composition of network communities.

Consider the following example: Suppose there exist p vertices in a network and that
r of the p vertices are special vertices, vertices whose community labels are relevant to
a constraint C positing that each discovered community contain at least one such special
vertex. Clearly, the number of communities |C| necessarily is such that |C| ≤ r.

For illustration, define a binary function χ (xk) of the label xk of vertex vk as χ (xk) =
1 if

• vk ∈ SV and

• there exists a community with no special vertices and

• there exist ≥ 2 special vertices in the community to which vk belongs,

and 0 otherwise. It is natural then to define

HE (x) =
∑
k

ekχ (xk) (13)
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where the ek are chosen to balance the corresponding interaction terms inHI . To this end,
note that

HI (x) = 2

p−1∑
i=2

p∑
j=i+1

(
Aij −

didj
2m

)
[2δ (xi, xj)− 1]

+2

p∑
j=2

(
A1j −

d1dj
2m

)
[2δ (x1, x2)− 1] (14)

so that the total contribution of all terms involving vertex v1 is

2

p∑
j=2

(
A1j −

d1dj
2m

)
= 2

d21
2m

. (15)

The total contribution of vertex v1 may be interpreted as the value when all vertices are
labeled identically. It is interesting to note that, for the class of simple graphs which we
consider, this is, up to the factor 2, the diagonal terms we discarded fromQ′ in definingHI .
This is not surprising, however, if one recalls that, when all vertices are labeled identically
Q′ = 0, i.e. ∑

i6=j

(
Aij −

didj
2m

)
= −

p∑
k=1

d2k
2m

. (16)

These diagonal
{
d2k/2m

}
terms provide a baseline weighting for terms in the external field,

as described below.
Finally, the external field becomes

HE (x) = −2
∑
k

d2k
2m

χ (xk) , (17)

where the minus sign makes the external field a penalization term. Therefore, the proba-
bilistic model is given by

P (x) ∝ exp

θ
−2λ

∑
k

d2k
2m

χ (xk) +
∑
i6=j

(
Aij −

didj
2m

)
[2δ (xi, xj)− 1]

 . (18)

The optimum arg maxP (x) defines the optimal community structure for the network.

2.2 The Subnetwork-induced Probabilistic Model of Constrained Communities

In this section, we discuss an application of the constrained probabilistic model on a sub-
network (such as the giant connected component, for example) with the aim of perturbing
a high-quality, unconstrained vertex labeling toward a high-quality, constraint-satisfying
solution. We choose to present this here to elucidate our subsequent procedures for the
optimization of Equation (18). We begin by discussing the subset-restricted probabilistic
model.

Given a subset of vertices with indices S, the vertex-induced subgraph associated with
S has adjacency matrix A(s) defined to be the sub-matrix of A induced by vertices with
indices k ∈ S. The corresponding vertex degrees d(s)k for k = 1, 2, . . . , |S| are computed
as column totals of A(s). Finally, define

m(s) =
1

2

∑
k∈S

d
(s)
k (19)
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so that the S-restricted interaction componentH(s)
I (x) is defined as

H(s)
I (x) =

∑
i6=j∈S

(
A

(s)
ij −

d
(s)
i d

(s)
j

2m(s)

)
[2δ (xi, xj)− 1] . (20)

The S-restricted external field is given by

H(s)
E (x) = −2

∑
k∈S

(
d
(s)
k

)2
2m(s)

. (21)

As before in Equation (11), the optimal S-induced community structure is the mode of
P(s) (x), where

P(s) (x) ∝ exp
{
θ
[
λH(s)

E (x) +H(s)
I (x)

]}
, (22)

and is explicitly written as

P(s) (x) ∝ exp

θ
−2λ

∑
k∈S

(
d
(s)
k

)2
2m(s)

χ (xk)

+
∑

i6=j∈S

(
A

(s)
ij −

d
(s)
i d

(s)
j

2m(s)

)
[2δ (xi, xj)− 1]

 . (23)

This is recognized as Equation (18) but with the superscript (s) to indicate the dependence
on the set of indices S.

The ability to locally apply the constrained probabilistic model to a subset of vertices
in a large network provides a powerful computation strategy. Suppose that x′ is the vector
of unconstrained community labels resulting from optimizing Equation (11) with λ = 0
over the entire network. One may view the constrained solution x′c of community labels
obtained by optimizing Equation (11) with λ > 0 as a perturbation of the unconstrained
solution x′. Viewing it as such, one could consider locally perturbing x′ directly as a
computational device for approximating x′c. We have found in applications, see Section
5, this often results in a constraint-satisfying, higher-modularity partition compared to a
solution obtained via a direct application of the constrained model in Equation (11) with
λ > 0 on large networks. This suggests the following three general strategies.

2.3 Three Strategies for Computing Constrained Optimal Communities

The three methods presented in the following are suggested procedures for obtaining a
high-quality community structure through optimizing Equation (18).

2.3.1 The Direct Method

The direct method is the method of direct optimization of Equation (18) over the entire
network. This may be achieved through a variety of discrete optimization procedures,
however, we select a Gibbs sampler routine, discussed in Section 2.4, for this purpose. A
Gibbs sampler routine is a Markov Chain Monte Carlo (MCMC) procedure for obtaining
a sequence of samples from a joint distribution such as Equation (18). In particular, the
samples produced are nearby modes of the probability distribution. At each step of a Gibbs
sampler procedure, a single variable from the current configuration is re-drawn from the
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full conditional distribution of that variable given all other variables. In order to begin, a
Gibbs sampler requires an initial configuration.

We initiate the Gibbs sampler in accordance with the Louvain method, see [16], in
which each vertex is assigned a unique community label at initialization. In general, how-
ever, situations exist in which a different choice of initial condition is preferable. We shall
encounter such a scenario in Section 2.3.2. Of course, the direct method may be applied
with either λ = 0 or λ > 0 to achieve unconstrained or constrained communities, respec-
tively.

Consider for a moment the probability function P (x) in Equation (18). Suppose that L
is the set of possible community labels on a network of p vertices so that

P : Lp 7→ [0, 1] . (24)

The function P (x) may have a growing number of local maxima, i.e. modes, as the number
of vertices p in the network increases. It is at these local maxima where the Gibbs sampler
can find itself trapped and unlikely to recover. Thus, the results of several instances of
the Gibbs sampler must be compared to alleviate this issue. That is, it is common for
one to execute the optimization procedure multiple times in order to generate candidate
optima and then to select the maximum from this set. This is potentially computationally
prohibitive.

Therefore, the direct method with λ > 0 is our preferred method for constrained com-
munity detection on small networks so that the number of local maxima is manageable. In
the case of a small network, (i) the number of local maxima is feasible and (ii) running
several instances of a Gibbs sampler is tractable. We have found “small network” to mean
when the number of vertices |V | is, say, in the dozens. In this case, fewer and less expensive
restarts of the Gibbs sampler are required to identify a high-quality community labeling.

Experimentally, it appears that the local maxima issue to be exaggerated by the in-
clusion of the external field in the formulation of Equation (18). Never-the-less, we have
found that when λ = 0, so that the external field vanishes, the Gibbs sampler routine
has improved performance. That is, identifying unconstrained communities with the direct
method is more feasible and straight-forward. It is this insight which led us to explore our
second proposed method for optimization of Equation (18) as discussed in the following.

2.3.2 The Local Perturbation Method

We have found direct application of the constrained model (λ > 0) in Equation (18) on
small networks to be effective. Moreover, we have found application of the unconstrained
model (λ = 0) on large networks to be feasible. Thus, we propose a simple strategy for
perturbing the network-wide unconstrained solution into a constraint-satisfying solution.
In short, the local perturbation method entails one application of the direct method on
the entire network with λ = 0 and perhaps several applications of the direct method on
subnetworks with λ > 0. Details on the local perturbation method are provided in the
following.

Suppose that x′ is the unconstrained vertex labeling as discovered by optimizing Equa-
tion (18) over the network with λ = 0. In other words, x′ is the result of applying the
direct method with λ = 0 to the entire network. Suppose that within x′ there are |C|
unique labels, i.e. |C| communities. We next identify the communities Cv in violation of
the constraint C and if Cv = {} then the constrained solution x′c = x′, otherwise, some
reconfiguration of x′ is necessary to satisfy the constraint C.

If reconfiguration of x′ is necessary, then we iterate over each of the |Cv| communities,
applying the following procedure at each step k. To begin, suppose that ck is a community
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in violation of the constraint C. We identify a community c′k with the property that if it
were to relinquish a special vertex to community ck, it would remain in compliance with
C, i.e. it currently contains at least two special vertices. Given ck and having identified c′k,
we are prepared to execute local reconfiguration. Note: We have indicated a heuristic for
selection of c′k in Section 5.

We begin local reconfiguration by identifying the vertex indices S corresponding to all
vertices contained in ck or c′k and apply the local method by optimizing Equation (22). The
optimum x′s of Equation (22) with λ > 0 results in a vertex labeling which locally satis-
fies the constraint. Recall that Equation (22) is simply a re-writing of Equation (18) and,
therefore, we have ultimately just applied the direct method with λ > 0 to a subnetwork.
We have found it favorable to initialize the Gibbs sampler with the vertex labels of ~x′ cor-
responding to S. That is, when the Gibbs sampler is to begin operating on the subnetwork
with vertex indices in S, it is initialized with a vertex labeling for the vertices with indices
in S consistent with the unconstrained labeling computed previously for the entire network.

We overwrite the elements of x′ with indices in S by the elements of x′s to produce x∗.
It should be noted that the change in Q′ resulting from adjusting x′ to x∗ is

∆Q′ = 2
∑
i6=j

(
Aij −

didj
2m

)[
δ
(
x′i, x

′
j

)
− δ

(
x∗i , x

∗
j

)]
(25)

= 2
∑

i6=j∈S

(
Aij −

didj
2m

)[
δ
(
x′i, x

′
j

)
− δ

(
x∗i , x

∗
j

)]
(26)

which indicates that the change in modularity for the entire network is a function solely of
the terms in Q′ for which both indices i, j ∈ S. At this point, the number of communities
Cv in violation of the constraint C has been reduced by one. This procedure is executed
for each k = 1, 2, . . . , |Cv| resulting in a vertex labeling x′p which is a perturbation of the
unconstrained solution x′ and one which serves as a proxy for x′c, the constrained solution
to Equation (11).

To reiterate, the above method serves as a device for approximating the optimum x′c of
the constrained model, i.e. with λ > 0, by perturbing the optimum x′ of the unconstrained
model, i.e. when λ = 0.

2.3.3 The Hybrid Method

In the previous two sections we discussed the direct method which involves direct optimiza-
tion of Equation (18) with λ = 0 for unconstrained communities and λ > 0 for constrained
communities. To acquire constrained communities over the entire network, one can either
(i) apply the direct method with λ > 0 at the outset or (ii) first apply the direct method with
λ = 0 to derive unconstrained communities and then perturb the unconstrained commu-
nities using the local configuration method which itself involves application of the direct
method with λ > 0 to a sequence of subnetworks. Again, we choose to perform opti-
mization with a Gibbs sampler which requires initialization. In the direct method section,
Section 2.3.1, we recommend initializing each vertex with its own label. Moreover, in the
local perturbation method section, Section 2.3.2, when applying the direct method to a sub-
network, we recommend initializing each vertex to be in accordance with the unconstrained
label previously acquired.

The hybrid method is simply a modification of the initialization of vertex labels during
the local reconfiguration stage. Instead of initializing vertex labels as was done Section
2.3.2 during local reconfiguration, one could elect to initialize each vertex in the subnet-
work with its own label, in effect discarding the information derived during the uncon-
strained community detection phase. The primary difference between the two competing
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initializations is that initializing each vertex in the subnetwork with its own label, as in the
hybrid method, allows for more that two communities to be identified in the subnetwork.
This is due to the fact that within the Gibbs sampler of Section 2.4, if a vertex has a label
that is the last of its kind and it is reassigned to another label, the former label is out of
existence and no other vertex will ever again be assigned it. Thus, the number of com-
munities is a non-increasing function of the iteration step number of the Gibbs sampler.
In total, the local perturbation method’s initialization will discover at most two communi-
ties in the subnetwork, whereas, the hybrid method’s initialization may discover more than
two communities in the subnetwork. Never-the-less, it is unlikely that the two choices for
initialization will produce different results.

2.3.4 Choice of Approach

In Sections 4 and 3 the networks considered have dozens of vertices and are said to be
small. In this case, we utilize the direct method and directly compute constrained commu-
nities by optimizing Equation (11) with λ > 0. On the other hand, the hospital network
of Section 5 has thousands of vertices, is considered large, and is susceptible to local op-
tima traps. Thus, we employ the local perturbation procedure outlined above in which the
unconstrained solution is obtained and then perturbed. The boundary between “small” and
“large” networks depends on factors including computing power and network topology. As
discussed in the following section, a discrete optimization such as modularity optimization
is a hard problem. It is typical for one to employ several instances of a chosen com-
putational optimization method to arrive at a set of proposed optimal solutions and then
select the maximum thereof. Clearly, this is computationally prohibitive but is necessary in
searching for a global maximum if the network topology dictates that the surface of Equa-
tion (18) has many local maxima. With a smaller network size, we have found that these
two issues are not as restrictive as they are in larger networks and demonstrate our method
in both scenarios in the following sections.

2.4 The Constrained Community Detection Estimation Algorithm and Gibbs Sam-
pler Routine

From the expression P (x) in Equation (18) and the computation in Equation (14), it is
straightforward to show that

P (xk|x−k) ∝ exp

2θ

−λ d2k
2m

χ (xk) +

p∑
j 6=k

(
Akj −

dkdj
2m

)
[2δ (xk, xj)− 1]

 ,

(27)
where x−k = (x1, . . . , xk−1, xk+1, . . . , xp) for k = 1, 2, . . . , p. This closed-form expres-
sion for the full-conditional distribution of xk is instrumental to our sampling/optimization
procedure. Suppose that L is the set of all possible community labels for vertex vk and de-
fine ~pk to be the vector of probabilities computed from Equation (27) for each xk ∈ L. Evi-
dently, the external field down-weights a label’s probability of being assigned to vertex vk if
it is not consistent with the constraint. Finally, it is clear that xk|x−k ∼ Multinomial (~pk).
In the following we outline a Gibbs sampler to produce samples around the mode of P (x)
for use in a simulated annealing optimization routine.

The starting point of our algorithm for obtaining the optimal community labels is an ini-
tial assignment of each vertex to its own community, i.e. vertex vk is assigned community
label k. Let Lt be the community labeling at time t and L′t be a list of the unique commu-
nity labels at time t. We define two loops: an outer loop which iterates over t = 1, 2, . . . , T
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and an inner loop which interates over k = 1, 2, . . . , p, where, again, p is the number of
vertices in the network.

Within the inner loop corresponding to generic vertex vk at time t, iterate over all pos-
sible assignments L′t and evaluate Equation (27) for each tentative assignment. Here, one
may select a constant inverse temperature θ, as we have in selecting θ = 1 in our applica-
tions. Let ~ptk be the vector of probabilities arising from this inner-most loop. We choose to
reassign vertex vk to the label which results from a single draw from the Multinomial

(
~ptk
)

distribution since, as discussed earlier, xk|x−k ∼ Multinomial
(
~ptk
)
. For large T , the result

of the algorithm converges to samples from the joint probability model in Equation (11)
and, in particular, from around its mode. It should be noted that upon termination of the
outermost loop, and hence the procedure, the number of communities has been identified.
Akin to the initial phase of the Louvain method, see [16], the number of communities is
reduced from p (one per each vertex) to the size of L′T .

The role of the external field is more explicitly evident in the formulation of Equation
(27) and after the explanation of the sampling procedure above. For example, consider
again the inner-most loop as described above in which the multinomial probabilities are
computed. It is clear here that the external field down-weights a tentative label reassignment
which does not move the solution toward feasibility. Intuitively, the external field provides
a repulsive force away from a labeling which does not incorporate the external information
or satisfy the constraint.

Modularity optimization is well-known to be a hard problem and, in particular, the
decision problem version of modularity maximization is in the class NP-complete, see [15].
Strictly speaking, the problem of modularity optimization is stated as:
Modularity Optimization Problem: Determine a labeling x such thatH (x) ≥ H (x′) for
all labelings x′.

Whereas, the decision problem version of modularity optimization is stated as:
Modularity Optimization Decision Problem: Given K ∈ R, does there exist a labeling
x such thatH (x) ≥ K?

Existing approximate optimization procedures include greedy search, simulated anneal-
ing, and spectral methods, see [12]. While these methods are relatively efficient, there is
no guarantee that the discovered community structure is optimal in the sense of modularity.
Never-the-less, the discovered community is used in lieu of an optimal solution.

The above Gibbs sampling routine, like the methods listed above, outputs a high-quality
solution in an efficient manner.

3. Developed Scenario

Suppose that Gn is a stochastic block model (SBM) on n = a1 + a2 + 2 vertices, a1 in one
block (Group #1), a2 in the other (Group #2), and 2 special vertices. The within and be-
tween group probability of connection is p and q = 1− p, respectively. Moreover, suppose
that the two special vertices are connected to every other vertex in Gn with probability 1,
including to each other.

Theorem 1 If a1 < a2 and p = 1 (q = 0) then (i) the unconstrained algorithm labels both
special vertices as Group #1 and (ii) the constrained algorithm labels the special vertices
as one in Group #1 and the other in Group #2.

Proof 1 See Section 7.3 in the Appendix.

Alternate to the theorem above, if p < 1 (q > 0) then there is a positive probability that
the unconstrained solution will satisfy the constraint. Regardless, the constrained solution
satisfies the constraint for any p, see Section 7.3 and Figure 1.
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Figure 1: With a1 = 15, a2 = 17 and by setting q = 1 − p and varying p ∈
{0.6, 0.7, 0.8, 0.9, 1.0} we calculate the fraction of misclassified labelings of the special
vertices by the unconstrained (red) and successful labeling of the special vertices by the
constrained (blue) phases of our algorithm.

4. Illustrative Exercise

We present an exercises in the following which illustrate the role of the external field in our
constrained community detection procedure. The illustration involves a network inferred
from real, observational data. In this case, the network contains |V | = 34 vertices and is
considered small. Therefore, we employ the direct method for community detection in the
illustration, see Section 2.3.

Consider Zachary’s observation of a karate club, see [19], in which a conflict arose
between two members and the resulting fissure in the network was observed. Of the p = 34
participants in the club, the feuding members are represented in the network as vertices v1
and v34 and, with the exception of a single vertex, Zachary’s analysis correctly predicted
community membership with a maximum flow - minimum cut algorithm. One could see
here that our method for constrained community detection could be valuable in the sense
that if we designate the vertices v1 and v34 of the members in conflict as special vertices,
then the external information dictates that one special vertex belongs in each discovered
community.

Because the uninformed (unconstrained) modularity optimization procedure discovers
communities in which vertices v1 and v34 are labeled differently, satisfying the constraint,
it is identical to the constrained optimum, see Figure 2.

To provide a more illustrative example with this same data, we investigate a scenario in
which the karate club exhibits a further bifurcation. Recall that the members corresponding
to vertices v1 and v34 are feuding and the karate club split accordingly. Now, suppose that
members corresponding to vertices v1, v33, and v34 are feuding (member number 33 has
entered the dispute) and that we are interested in the allegiances stemming from the dispute
given the current state of the network. In reflection of their dispute status, let vertices
v1, v33, and v34 be special vertices so that each of the three discovered communities should
contain at least one of them, see Figure 2. In this case, our constrained community detection
algorithm discovered the optimal solution, see Figure 2, deviating from the unconstrained
optimum.
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Figure 2: Left: Unconstrained community labels for the karate club network. Vertices v1
and v34 are circled. Right: Constrained community detection after subsequent feud and
split. Vertices v1, v33, and v34 are circled.

5. The Hospital Network

In this section, we employ our constrained community detection method on a network of
hospitals to define health care communities (HCCs). We begin this section with background
on a previous partition of the hospital network, i.e. health referral regions (HRRs), and
conclude with a comparison between HRRs and our newly-defined HCCs.

5.1 Health Referral Region Background

As described in [17], hospital referral regions (HRRs) represent health care markets for
tertiary medical care. Each HRR contains at least one hospital that performed major car-
diovascular procedures and neurosurgery between 1992 and 1993. Three steps were taken
to define HRRs and are summarized in the following. The first step was to identify the
hospitals that performed at least ten major cardiovascular procedures in both years. The
second step was to associate each of the remaining hospitals with a hospital from the first
step according to where most of its patients received cardiac care. The third step was to
reassign or merge groups primarily to achieve geographic continuity. These three steps
resulted in a partition of the 3, 436 hospitals into 306 HRRs.

Assignment of hospitals to geographically proximal HRRs according to early-1990s
data is logical since, according [18], the use of health care resources in the United States
is highly localized. Now, nearly twenty-five years later, health care has modernized and,
to an extent, become more globalized. To accommodate for this revolution in health care,
we seek to group hospitals primarily according to the topology of the hospital network,
as opposed to geographically. This is the primary discriminating attribute between the
previously defined HRRs and our newly defined HCCs.

5.2 The Hospital Network Data

In an observational study of p = 4734 hospitals, the shared patient care activity for n =
360, 896 Medicare participating physicians is obtained from insurance claims data. Each
physician is assigned to the hospital where that physician provided inpatient services or
where a plurality of that physicians patient panel had medical admissions, see [10]. Ac-
cordingly, the care activity for a hospital is defined to be the aggregation of the care activi-
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ties of all physicians assigned to that hospital. More specifically, associated with each pair
of physicians (“dyad”) involving the same patient(s) is a weight determined by the quantity
of patient visits shared between the two physicians involving the same patient. We aggre-
gate these weights to form a nationwide network of the p = 4734 hospitals, as described in
the following.

5.3 Hospital Network Construction

Let B be the p× p matrix of aggregated shared visits. That is, the element Bij is the total
weighted care delivered to the same patients by physicians associated with hospital i and
physicians associated with hospital j, see [18].

An edge between two hospitals is present in the network-graph representing the hospital
network if the two hospitals share a sufficient level of shared visits. Specifically, let Bij

denote the total number of shared visits between hospitals i and j and define τ as

τ = Quantile0.95 (Bij : 1 ≤ i < j ≤ p) , (28)

see Figure 3. We define an adjacency matrix A according to

Figure 3: Top Left: Histogram of log (Bij). Top Right: Network graph of the hospital
referral network. Bottom: Log-log plot of the degree distribution of the hospital referral
network.

Aij = 1 {Bij > τ} (29)
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so that the hospital network-graph is unweighted and undirected, see Figure 3. In addition
to defining edges for those weights exceeding the threshold τ , we include edges corre-
sponding to the maximum weight emanating from each vertex. The network-graph of the
hospital network demonstrates a power-law degree distribution, see Figure 3, and has den-
sity δ = 0.0017.

We define the constraint C to be that every health care community (HCC) contain at
least one cardiac care facility, and equip the external field of the probabilistic model ac-
cording to Section 2.1. Cardiac care facilities are those hospitals equipped for implantation
of an implantable cardiac defibrillator (ICD) and are termed “ICD capable”.

5.4 Constrained Community Detection of Health Care Communities

The full probabilistic model of Section 2.1 may be employed on this large network. How-
ever, as justified in Section 2.2, we recommend first computing unconstrained communities
by setting λ = 0 in Equation (11) and then perturbing the solution by local reconfiguration
on relevant subnetworks.

Due to the connectivity of the network, the discovered unconstrained (λ = 0) com-
munities tend to be geographically proximal, see Figure 4. In total, there exist |C| = 98
unconstrained communities with a distribution of sizes (number of vertices) and convex
hull areas (square latitudes) as seen in Figure 4. The number of communities is determined
through the identification of unconstrained communities by our procedure, see Section 2.4.

Of the |C| = 98 unconstrained communities, 17 do not contain a special vertex, a
cardiac care facility. One such community is located in central Washington and is indicated
in red in Figure 5.

At this stage we perturb the unconstrained solution to incorporate the constraint that
each community contain at least one cardiac care facility. Naturally, if the target central
Washington community in violation of the constraint is to gain a cardiac care facility, then
it must be that another community loses one, assuming that it has one to lose, i.e. it started
with at least two. In generating a list of candidate communities for relinquishing a cardiac
care facility to the target community we note that, since switching a cardiac care facility
from one community to another amounts to a sort of synthesis of the two communities,
we should select the community (among those with at least two cardiac care facilities)
that shares the weakest boundary with the target community. We define the weakness of a
boundary as the local conductance, see [1], between communities Si and Sj given by

condij =

∑
v∈Si

∑
u∈Sj

Auv

a (Si, Sj)
, (30)

where Auv is the (u, v)th element of the adjacency matrix for the network A and

a (Si, Sj) = min

∑
u∈Si

∑
v∈Si∪Sj

Auv,
∑
u∈Sj

∑
v∈Si∪Sj

Auv

 . (31)

We utilize local conductance to assess the weakness of a boundary instead of local modular-
ity due primarily to the fact that local modularity is not directly comparable across pairs of
communities, see the Appendix. Moreover, conductance equals zero when the communi-
ties are perfectly separated and, therefore, provides a good metric for community boundary
weakness.
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Figure 4: Top Left: Continental United States with hospitals colored according to com-
munity label. Top Right: Communities containing Massachusetts General Hospital (MGH)
and University of Vermont Medical School (UVM). Bottom Left: Histogram of community
sizes. Bottom Right: Histogram of log area of community, units of area in longitude by
latitude

5.4.1 Example

Consider, for example, two candidates for relinquishing a cardiac care facility (i) the west-
ern Washington community, as indicated in blue in Figure 5, which shares edges with
the central Washington community in violation of the constraint and (ii) a community in
southern California which shares no edges with the community in violation. The central
Washington community has a local conductance of cond = 0.1 with the western Washing-
ton community in contrast to a local conductance of cond = 0 with the southern California
community. It turns out that cond = 0.1 is the maximum local conductance among all
pairings of communities with central Washington and, therefore, the algorithm’s next step
is to merge the central Washington community with the western Washington community.

Now that the candidate community for integrating with central Washington has been
established, we are prepared to execute our constrained community detection algorithm on
the subgraph induced by the vertices of the two communities, see Section 2.2. We have
coded our procedure to accept a “warm start” on the community labels. That is, unlike the
unconstrained community detection procedure which initiated vertex labels arbitrarily, the
vertices in the constrained community detection algorithm begins with the labels assigned
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Figure 5: Left: Unconstrained communities. The red community does not contain an
ICD capable hospital, indicated by green circles. Right: Constrained communities. The
red community has incorporated western Washington and now contains an ICD capable
hospital.

by the unconstrained phase. Now, with the penalty invoked, the labels are reassigned to the
vertices in the subgraph by optimizing Equation (22). Upon termination, the unconstrained
labels are overwritten by the newly discovered constrained labels. See Section 2.2 for a
complete description of the above.

After having optimized the constrained model over the vertex-induced subgraph, one
may note that the central Washington community acquired not one, but two special vertices.
The constrained model enforces the minimal requirement that every community contain at
least one special vertex. That two were acquired, however, is not entirely surprising. During
the execution of the Gibbs sampler, see Section 2.4, a special vertex from western Wash-
ington community was relabeled from blue to red on account of the external field. Sub-
sequently, the Gibbs sampler routine continues to draw samples from the full conditional
probabilities in Equation (27) and, since the aforementioned special vertex had been reas-
signed to the central Washington community, several of its neighbors were reassigned, too,
on account of the interaction effect. As a result, several members of the original western
Washington community became members of the updated central Washington community,
including the other special vertex.

Now that the central Washington community is in compliance with the constraint that it
must contain at least one cardiac care facility, see Figure 5, we must repeat the above pro-
cedure for each of the remaining 16 communities remaining in violation of the constraint.
It turns out that one of the remaining 16 communities is an isolated dyad and we do not
impose the constraint in this case.

5.4.2 Change in Modularity

A key concern is how far the local reconfiguration method solution departs from the so-
lution that would be obtained if the direct method could be feasibly applied. In either
case, we begin by identifying the unconstrained (λ = 0) communities which are discov-
ered solely on the basis of network connectivity. Recall that previously, when introducing
the direct method, we stated that it may accept any initialization of vertex labels, includ-
ing the unconstrained solution. We view the constrained solution as a perturbation of the
unconstrained solution in which each community S′ that does not contain a special vertex
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obtains one from another community S. Upon S′ obtaining a special vertex from S, vertex
label reassignment takes place to compensate for the switch. The difference between this
and direct method on the entire network with the unconstrained solution as initialization,
is that the direct method allows for all vertices in the network to participate in the label
reassignment while the local reconfiguration permits only those vertices in S′ and S to par-
ticipate. Numerically, we have found the two competing procedures to produce constrained
solutions (that are perturbations of the unconstrained solution) which are similar in terms
of modularity score, but with the local perturbation method frequently out-performing its
competing procedure. Moreover, suppose that S∗ is a community not involved in the spe-
cial vertex switching. Our experiments indicate that vertices in S∗ remain unaltered in their
labeling during the application of the constrained model to the full network. This provides
further evidence for the utility of our local reconfiguration method for community label
reassignment.

The remaining scenario to consider, following an application of the local reconfigu-
ration procedure, arises when a community S′ in violation does not neighbor a candidate
community S containing a special vertex to dispense. In this case, one must directly recruit
a special vertex from a community at a distance. Consider the change in modularity ∆Q′

arising from relabeling a special vertex vk from xk to x′k given by

∆Q′ = 4
∑
j 6=k

(
Ajk −

djdk
2m

)[
δ
(
xj , x

′
k

)
− δ (xj , xk)

]
, (32)

see Equation (14). As before, if S′ is the community requiring a special vertex and S is the
community to which a candidate special vertex belong, the above sum is further simplified
to

∆Q′ = 4

 ∑
j 6=k:j∈S′

(
Ajk −

djdk
2m

)
−

∑
j 6=k:j∈S

(
Ajk −

djdk
2m

) . (33)

Hence, because the unconstrained solution is optimal in the sense of modularity, ∆Q′ ≤ 0
and we select the special vertex which maximizes this quantity. In fact, since the commu-
nity S′ is fixed (community S depends on the special vertex vk) during the selection of a
special vertex, the first term ∆Q′1 in Equation (33) above may be ignored. The remaining
term ∆Q′2 is approximately given by

∆Q′2 ≈ −4dk

[
1−

∑
j 6=k:j∈S dj

2m

]
(34)

which provides intuition on how the special vertex is selected. Specifically, the special
vertex to switch into S′ which minimizes modularity loss will have (i) low degree and
(ii) belong to a community S wherein vertices have high degree. Such a special vertex is
an internal isolate within its own community. It was not necessary for us to select such
internal isolates in defining HCCs. However, in general, one can easily foresee such a
scenario arising.

Clearly the constrained solution obtains a lesser modularity value than the uncon-
strained solution. The extent to which imposing a constraint reduces modularity is depicted
in Figure 6. The number of cardiac procedures for each ICD capable hospital is recorded
and the minimum is 10. Certainly, with a large number of ICD capable hospitals, i.e. a
large number of special vertices, the constrained solution is similar, if not identical, to the
unconstrained solution and, thus, the resulting modularity of the constrained solution is ap-
proximately the modularity of the unconstrained solution. We set a lower threshold for the
minimum number of cardiac procedures a hospital must perform in order to be considered
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an ICD capable hospital. As this lower threshold increases, the number of ICD capable
hospitals decreases.

Figure 6: Decreasing modularity as a function of the cardiac procedures threshold. The
threshold is the minimum number of cardiac procedures a hospital must perform to be clas-
sified as ICD capable. The y-axis represents the ratio of the modularity of the constrained
solution to the modularity of the unconstrained solution. Note that modularity of uncon-
strained solution is an upper bound of the modularity of optimal constrained solutions.

5.5 HCC and HRR Comparison

An existing, non-network based partitioning of the network of hospitals is into health re-
ferral regions (HRRs), see Figure 7, of which there are 306, see [7] and [18].

The HRRs are approximately a refinement of the partition discovered by our method
since 161/306 ≈ 52.4% of HRRs are wholly contained within an HCC, see Figure 7. We
contend that our partition of hospitals into HCCs, being principally defined, represents a
community structure more strongly coinciding with the topology, or homogeneity, of the
referral network while, at the same time, preserving the constraint that every community
contain at least one special vertex. This claim is substantiated by a contrast in modularity
values Qhrr = 0.603 and Qhcc = 0.812, where Qhrr is the modularity value resulting
from the HRR partition and Qhcc is the modularity value resulting from the HCC partition
as discovered by our constrained community detection procedure.

Moreover, we consider the non-network-based measure of variation in guideline consis-
tent usage of ICDs. Adherence to guidelines may be influenced by, for example, physician
awareness, familiarity, and agreement with the guidelines, see [2].

Out of the 4734 hospitals included in our data, 1242 employ physicians performing
ICD surgeries. For each of these hospitals where ICD surgeries took place, the fraction of
guideline consistent use is determined. Our intention is to compare variation of guideline
consistent ICD use between HCCs (and HRRs) and within HCCs (and HRRs). To that end,
we compute the F statistics Fhcc and Fhrr for each of the two partitions where, in general,
the F statistic is given by

F =

∑
i ni
(
Ȳi· − Ȳ

)2
/ (K − 1)∑

ij

(
Yij − Ȳi·

)2
/ (N −K)

, (35)

JSM 2016 - Section on Statistics in Epidemiology

1422



Figure 7: Top Left: Partition of the United States map into health referral regions. Top
Right: Convex hulls of discovered health care communities. Because the communities are
primarily based in network connectivity, there is no guarantee of geographic contiguity and
thus some convex hulls span distances, as indicated by shading. Bottom: Histogram of
HRRs as approximate subsets of HCCs.

where Yij for i = 1, 2, . . . ,K and j = 1, 2, . . . , ni is the proportion of guideline consistent
ICD use for hospital j in community i, Ȳi· is the mean of guideline consistent ICD usage
in community i, Ȳ is the mean guideline consistent ICD usage of all N hospitals, K is the
number of communities, ni is the number of hospitals in community i, andN is the number
of hospitals with physicians who implant ICDs. We find that Fhcc = 1.269 (p = 0.048) and
Fhrr = 0.828 (p = 0.8787). These results indicate that our community detection proce-
dure has defined HCCs in such a way that the between community variability significantly
exceeds within community variability despite the partition having no direct dependence on
ICD use. However, the original definition of the HRRs does not permit such a claim.

6. Conclusion

Our method for informed discovery of optimally constrained communities is taken from the
perspective of statistical physics and establishes the role of the external field in constraining
the optimal solution to the space of feasible solutions.

There exists a disconnect between network science and health services research due in
part to the incongruence between mathematical elegance and real-world constraints. The
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present article provides an illustration of the application of both a pure method and one
with constraints. We solved the practical problem of partitioning a network of hospitals
with the constraint that each community contain at least one specialized hospital, a cardiac
care facility.

Though our method advances both the community detection literature and heath ser-
vices literature, it is not complete from the perspective of a health care policy maker since
many real-world constraints remain to be incorporated. For example, one may wish to,
given the geographic locations of hospitals, define a specific diameter of the discovered
communities. This paper is an initial foray into a line of thinking that we anticipate will
substantially advance the practical utility of community detection.

In terms of health policy, further analysis of the discovered communities may lead to
a better understanding of characteristics of hospitals within communities and detection of
factors that drive variations in health care. This is the subject of our future work.

7. Appendix

7.1 Observed versus Expected Edges: Derivation of Modularity

In the course of comparing network characteristics, often the degree sequence is held fixed.
If dk is the degree of vertex vk, i.e. the number of edges incident to vertex vk, then d =
(d1, d2, . . . , dp) is the degree sequence of the network where p is the number of vertices in
the network. The configuration model is a random graph model in which stubs, i.e. one end
of an edge, from an existing network are randomly and independently re-wired to produce
a new network with exactly the same degree sequence as the existing network. There are
2m stubs, i.e.

∑
k dk = 2m, where m is the total number of edges in the network, so that

the probability Pij of vertices vi and vj to be connected in the configuration model is given
by

Pij =
2didj

2m (2m− 1)
. (36)

The expected number of edges between vertices vi and vj is therefore

Eij = mPij =
didj

2m− 1
(37)

where m in mPij is present since there are m total re-wirings in the configuration model.
However, for large m the quantity 2m− 1 ≈ 2m and, thus, we write

Eij =
didj
2m

. (38)

The approximation of 2m− 1 with 2m is favorable, too, in that it induces unbiasedness in
the edge count. That is both ∑

ij

Eij =
∑
ij

didj
2m

= 2m (39)

and
∑

ij Aij = 2m, where Aij is the (i, j)th entry in the adjacency matrix for the network.
Specifically, we consider an unweighted network in which Aij = 1 if edge {vi, vj} exists
in the network and Aij = 0, otherwise. In total, Aij − Eij is precisely the number of
observed edges minus the number of expected edges between vertices vi and vj .

Finally, suppose that we are interested specifically in partitioning the vertex set into two
groups A and B. This gives rise to the modularity function

Q =
1

2m

∑
ij

(
Aij −

didj
2m

)
sisj + 1

2
, (40)
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where sk = +1 if vertex vk belongs to group A and sk = −1 if vertex vk belongs to group
B. Note that Q increases when Aij > didj/2m and vi, vj ∈ A or vi, vj ∈ B, i.e. when
there exist more edges than expected between vertices vi and vj and when they are labeled
similarly.

Since the vertex group labels are unknown, sk for k = 1, 2, . . . , p are, too, unknown and
are the arguments over which Q is maximized in order to determine the optimal grouping.
It is straight-forward to show that, Q may alternately be written

Q =
1

4m

∑
ij

(
Aij −

didj
2m

)
sisj , (41)

Moreover, neither does the factor 1/4m and thus we define Q′ as

Q′ =
∑
ij

(
Aij −

didj
2m

)
sisj (42)

which is recognizable as the Hamiltonian of an Ising model with interaction parameters
Jij = Aij − didj

2m . More than two groups may be considered by redefining

Q′ =
∑
ij

(
Aij −

didj
2m

)
[2δ (xi, xj)− 1] , (43)

where xk is the community label for vertex vk and δ (·, ·) is the Kronecker delta, at which
point the Q′ is recognized as the Hamiltonian of a Potts model.

7.2 Utility-based Construction of Modularity

We now consider an alternative determination of modularity. The authors of [13] define a
utility function which explicitly penalizes/rewards a given partition, or community assign-
ment, by considering the four possibilities of

(a) Aijδ (xi, xj) (within community edge),
(b) (1−Aij) δ (xi, xj) (within community non-edge),
(c) Aij (1− δ (xi, xj)) (between community edge), and
(d) (1−Aij) (1− δ (xi, xj)) (between community non-edge).

(44)

Clearly we favor (a) and (d) while opposing (b) and (c). The utility function is thus defined
as

R =
∑
ij

[aijAijδ (xi, xj)− bij (1−Aij) δ (xi, xj) (45)

−cijAij (1− δ (xi, xj)) + dij (1−Aij) (1− δ (xi, xj)) , (46)

for some parameterization of (aij , bij , cij , dij).
In the manner of [13], suppose that edges are weighted equally whether internal or

external, i.e. aij = cij , and similarly for non-edges, i.e. bij = dij , so that

R =
∑
ij

[aijAij − bij (1−Aij)] [2δ (xi, xj)− 1] . (47)

A convenient choice for the remaining parameters is aij = 1 − γPij and bij = γPij , for
some γ > 0, so that

R =
∑
ij

[Aij − γPij ] [2δ (xi, xj)− 1] . (48)
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With this choice, in order for the total energy of edges to equal the total energy of non-
edges, i.e. to satisfy ∑

ij

[Aij − γPij ] = 0, (49)

we have

γ =

∑
ij Aij∑
ij Pij

=
2m∑
ij Pij

, (50)

so that

R =
∑
ij

[
Aij − 2m

Pij∑
ij Pij

]
[2δ (xi, xj)− 1] , (51)

where it is recognized that Pij/
∑

ij Pij forms a probability distribution.
If we simply choose Pij ∝ didj , i.e. edge probabilities depend only on vertex degree,

then

R =
∑
ij

[
Aij −

didj
2m

]
[2δ (xi, xj)− 1] = Q′ (52)

since
∑

ij didj = 4m2. Clearly, we have arrived at the objective function Q′ of Equation
(43). Therefore, modularity is characterized (or most justified) when the true network
model depends only on the degree distribution in the case of a single homogeneous group.

7.3 Illustration of Informational Capacity of Constraints

The network is comprised of p = a + b standard vertices and 2 special vertices. The a
vertices in group A and a vertices in group B are connected via a stochastic block model,
see [11], with within connection probability p and between connection probability q. We
choose to simulate the network with a stochastic block model for its explicit community
structure.

The following is an extreme example. Suppose that p = 1 and q = 0 so that groups
A and B are both cliques with no edges between them. The energy contribution of the
interaction effect may be partitioned as

HI (s) =
∑

i∈A,j∈A
+

∑
i∈B,j∈B

+2
∑

i∈A,j∈B

+
∑

i∈A,j∈SV
+

∑
i∈B,j∈SV

+
∑

i∈SV,j∈SV
, (53)

where it is understood that i 6= j. It is clear from the first three sums, in the process
of maximizing HI , that all vertices in A should be labeled A and similarly for B. The
question remains, to which groups should the two special vertices be assigned?

Let S4 be the fourth sum in Equation (53) and note that

S4 =
∑

i∈A,j∈SV

[
1− (a+ 1) (a+ b+ 1)

2m

]
[2δ (si, sj)− 1] . (54)

Let S4 (A,A) denote the value of S4 when both special vertices are labeled A. Then

S4 (A,A) = 2a

[
1− (a+ 1) (a+ b+ 1)

2m

]
. (55)

On the other hand, if one special vertex is labeledA and the other labeledB then S4 (A,B) =
0. Lastly, if both special vertices are labeled B then S4 (B,B) = −S4 (A,A).
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These observations together mean that the fourth and fifth sums in Equation (53), with
community labels A for both special vertices, is computed as

S4 (A,A) + S5 (A,A) = 2a

[
1− (a+ 1) (a+ b+ 1)

2m

]
−2b

[
1− (b+ 1) (a+ b+ 1)

2m

]
= 2 (a− b) + 2

(a+ b+ 1)

2m
[b (b+ 1)− a (a+ 1)] . (56)

Similarly, if both special vertices are labeled as B then

S4 (B,B) + S5 (B,B) = −2a

[
1− (a+ 1) (a+ b+ 1)

2m

]
+2b

[
1− (b+ 1) (a+ b+ 1)

2m

]
= −2 (a− b)− 2

(a+ b+ 1)

2m
[b (b+ 1)− a (a+ 1)] . (57)

Note that
b (b+ 1)− a (a+ 1) = (b− a) (a+ b+ 1) (58)

so that

S4 (A,A) + S5 (A,A) = 2 (a− b)

[
1− (a+ b+ 1)2

2m

]
(59)

and

S4 (B,B) + S5 (B,B) = −2 (a− b)

[
1− (a+ b+ 1)2

2m

]
. (60)

Note that

2m = a (a+ 1) + b (b+ 1) + 2 (a+ b+ 1)

=
(
a2 + b2 + 2ab+ 2a+ 2b+ 1

)
− (2ab− a− b− 1)

= (a+ b+ 1)2 − (2ab− a− b− 1)

≤ (a+ b+ 1)2 (61)

if a, b > 1. It follows that

S4 (A,A) + S5 (A,A) ≥ S4 (B,B) + S5 (B,B) (62)

if a < b. Henceforth, it is understood that a < b.
Although, it did not enter into the above computations, the sixth sum in Equation (53)

must now be considered and takes the values

S6 (A,A) = 1− (a+ b+ 1)2

2m
(63)

and S6 (A,B) = −S6 (A,A). This means that
6∑

k=4

Sk (A,A)− S6 (A,B) = 2 (a− b)

[
1− (a+ b+ 1)2

2m

]

+2

[
1− (a+ b+ 1)2

2m

]

= 2 (a− b+ 1)

[
1− (a+ b+ 1)2

2m

]
, (64)
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which by previous results is ≥ 0 if a− b+ 1 ≤ 0 or, in other words, a < b. We have thus
determined that the optimal, unconstrained community assignment for the special vertices
when p = 1, q = 0, and a < b is A.

In order to incorporate external knowledge that one special vertex should be labeled A
and the other labeled B we must introduce into the computations the external field. Recall
that the external field is given by

HE (s) = −2
∑
k

d2k
2m

χ (sk) . (65)

Let HE (A,A) = −4 (a+b+1)2

2m and HE (A,B) = 0 in accordance with the definitions of
χ (sk) andHE . Now, define

R (A,A) = λHE (A,A) + S4 (A,A) + S5 (A,A) + S6 (A,A) (66)

and
R (A,B) = λHE (A,B) + S4 (A,B) + S5 (A,B) + S6 (A,B) , (67)

for comparison in the determination of λ for enforcing the constraint of our external infor-
mation. Specifically, we want to know for what λ we have R (A,B) ≥ R (A,A).

We compute that

R (A,A) = −2λ
(a+ b+ 1)2

2m
+ 2 (a− b)

[
1− (a+ b+ 1)2

2m

]
+

[
1− (a+ b+ 1)2

2m

]
(68)

and

R (A,B) = −

[
1− (a+ b+ 1)2

2m

]
(69)

which implies that

R (A,A)−R (A,B) = −2λ
(a+ b+ 1)2

2m
+ 2 (a− b+ 1)

[
1− (a+ b+ 1)2

2m

]
, (70)

which is ≤ 0 precisely when

λ ≥
(a− b+ 1)

[
1− (a+b+1)2

2m

]
(a+b+1)2

2m

. (71)

In the case that λ exceeds the lower bound above, the constraint is enforced and the two
special vertices will be labeled differently.

7.4 Weakness of Boundary

In the course of enforcing our constraint in applying our constrained community detection
procedure, we begin with a community in violation, i.e. it does not possess a cardiac
care facility. We then identify all communities with at least two special vertices and rank
them according to the weakness of their boundary with the community in violation. We
rank according to the metric of local conductance and not local modularity for the reason
illustrated below.

Consider a subnetwork consisting of two disjoint cliques of sizes a and b and that the
community labels are such that all vertices in one clique are labeled A and all vertices in
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the other clique are labeled B. Note that this boundary is as strong as possible and should
have a weakness of 0. We compute the (local) modularity of this subnetwork to be

Q =
1

4m

∑
ij

(
Aij −

didj
2m

)
[2δ (xi, xj)− 1]

=
1

4m

[
−a(a− 1)2

2m
+ a (a− 1)

(
1− (a− 1)2

2m

)
+ 2ab

(a− 1) (b− 1)

2m

−b(b− 1)2

2m
+ b (b− 1)

(
1− (b− 1)2

2m

)]
, (72)

where 2m = a (a− 1) + b (b− 1). In the particular case that a = b we have

Q =
1

4m

[
2a (a− 1)

(
1− (a− 1)2

2m

)
+ 2a2

(a− 1)2

2m
− 2a

(a− 1)2

2m

]
(73)

=
a (a− 1)

2m
, (74)

which gives Q = 1/2 which is the maximum value over all choices of (a, b), see Figure 8.

Figure 8: Modularity of the network in the disjoint cliques example for cliques of size a
and b.
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