
Multi-Class ROC Tree and Random Forest for Imbalanced
Data Classification

Jiaju Yan1, Bowen Song2, Wei Zhu1

1Stony Brook University, Stony Brook, NY, 11794

2Ocean University of China, Songlinglu Road, Qingdao, Shandong, PR China, 266100

Abstract
The imbalanced class problem in classification is highly relevant in many practical
scenarios such as the detection of a rare condition. One solution to this problem is to
design specific algorithms incorporating the imbalanced classes in the training process of
a classifier. In this paper, we propose a multi-class classification tree based on the area
under the ROC curve (AUC) to resolve the imbalanced classification problem. This tree
classifier aims to maximize the sum of AUC for all one versus all classifiers at the node
attribute selection stage, and maximize the harmonic mean of sensitivity and specificity
of all one versus all classifiers at the node threshold selection stage. The random forest
framework is further applied on the ROC tree with suitable modifications. Volume Under
Surface (VUS), the extension of AUC for multiple classes, is discussed in this paper and
used to measure the performance of classifiers. The simulation results show that this
ROC tree/forest method is superior to CART, random forest and SVM on imbalanced
classification problems, while the ROC random forest performs equally well as the usual
random forest and SVM on balanced classification problems.

Key Words: Imbalanced Data Classification, Multi-Class, ROC random forest, ROC
Tree, ROC Surface, Volume Under ROC Surface

1. Introduction

The imbalanced data problem in classification refers to a situation where the size
distribution of different classes are skewed rather than even. The usual classification
algorithms do not work well on severely imbalanced data sets, and they tend to assign all
observations to the majority class, rendering the minority class poorly classified.

Much works has been done to deal with the imbalanced data classification problem, with
the associated approaches in 4 main categories. The first category is the pre-processing
methods. Approaches in this category focuses on balancing the data before we apply
classification algorithms. This includes the sampling methods as well as generating
synthetic samples. A notable member in this category is the SMOTE algorithm that
generates synthetic samples for the minority class [1]. The second category is the post-
processing methods. Approaches in this category focuses more on modifying methods after
the classifiers are built, which are mostly ensemble methods. For example, the cascade
ensemble architecture in the Viola Jones algorithm is used to control the number of
observations assigned to the positive class [2]. The third category is the cost sensitive

JSM 2016 - Section on Statistical Learning and Data Science

1386

learning algorithms, which assigns different weight to the false positives and the false
negatives to minimize a cost function based on which [3]. The fourth category is the
algorithm specific approach, which refers to classification algorithms designed to deal with
imbalanced data classification problems. The ROC tree proposed in this paper belongs to
this category.

The idea of using the Area Under ROC Curve (AUC) in the tree splitting method is
proposed by Ferri et al. (2002) [4]. This method selects a feature and split point based on
the AUC corresponding to a classifier for every potential class labelling for the induced
child nodes. This is not really a ROC curve generated by varying the threshold but by
exhausting every possible labelling result to form a convex hull on ROC space and
choosing the edge as the ROC curve. For binary classification problem and two child
leaves tree structure, this method would be inaccurate. Hossain et al. (2008) [5] conducted
a study that also used the AUC measure to select a node based on the classification
performance and then uses the misclassification rate to choose a split point. The
misclassification rate here is the overall inaccuracy and therefore is not suitable for our
imbalanced data. However, we adapt their idea of the first part, using AUC to select
splitting attribute. As for the splitting threshold, we use the harmonic mean of specificity
and sensitivity, which is also known as the F1 score [6]. The F1 score is more suitable to
the imbalanced data set since it places equal emphasis on both classes. Therefore the
combination of AUC and F1 score is the node splitting method for our binary ROC tree,
which will be introduced in more details in Section 2.

In the situation of more than two classes, we adapted the One versus Rest strategy in our
node splitting method [7] and expanded the F1 score to multiple classes to the multiclass
ROC tree. The random forest framework with modification is applied to the multiclass
ROC tree to obtain the multiclass ROC random forest, which will be introduced in Section
3.

In Section 4, we will introduce the expansion of AUC to multiple classes, the Volume
Under Surface (VUS) proposed by Landgrebe et al. [8], and compare the performance of
ROC random forest with SMOTE random forest on binary classification cases based on
UCI repository data. Furthermore, we will also compare the performance of ROC random
forest with other classification algorithms on simulated multi-class classification data.

2. Binary ROC Tree

2.1 Binary ROC Tree Structure
The structure of the ROC tree presented in this paper is similar to CART [9]. It is a binary
tree where each internal nodes has 2 children. Each internal node consists of 4 elements,
the splitting attribute, the splitting threshold, the left child and the right child. Each leaf
contains 3 elements, the label for this leaf, the training score for this leaf and the out-of-
bag score for this leaf. The tree building process is a recursive greedy strategy, in that we
use the data to find the best attribute and threshold in this node. The observations that
satisfy the splitting criteria are used to build the left child, while the rest utilized to build
the right child. In our node building process, we randomly divide the data into training and
testing sets, and use the training data to build the node and use the testing data to obtain
the out-of-bag score. The leaf class is the majority class in this leaf, and the leaf score is
defined to be the percentage of each class in this leaf.

JSM 2016 - Section on Statistical Learning and Data Science

1387

2.2 Node Selection Method
The node selection method in our ROC tree can be divided to 2 parts, the node attribute
selection and the node threshold selection. In the node attribute selection, we select the
attribute that yields the largest AUC, while in the node threshold selection, we select the
threshold that gives the largest harmonic mean of sensitivity and specificity, that is, the
largest F1 score.

2.2.1 Node Attribute Selection
In the node attribute selection part, we calculate the AUC of all potential attributes and
select the attribute that provides the largest AUC on current training data to be the node
attribute.

2.2.2 Node Threshold Selection
In the node threshold selection, we calculate the F1 score based on the sensitivity and
specificity of splits on each possible threshold. The threshold with the largest F1 score will
be chosen as the node threshold.

2.3 Stopping Criteria
Note that the tree building process is a recursive process, and therefore we define some
stopping criteria for the ROC tree. The stopping criteria are 1, when the node is pure or
almost pure, 2, when the number of observations in this node is lower than a threshold, 3,
when the maximum tree depth is reached, and 4, when the out-of-bag score differs a lot to
the training score. When the stopping criterion is reached, the node will be transferred to a
leaf and kept only its label and scores.

3. Multiclass ROC Tree/Random Forest

3.1 Multiclass Problem and Solution
The problem about the ROC tree in Section 2 is that it only works on binary classification
problems. We solve this problem by introducing the one vs rest AUC in the node attribute
selection stage and expanding the F1 score to multiple classes in the node threshold
selection stage.

3.1.1 One vs Rest AUC
Suppose there are k classes, we need to compute the AUC for each class against the rest
classes, which will give us k AUCs for each potential attribute. Then we calculate the sum
of all one versus rest AUC for each attribute, and select the attribute with the largest sum
of AUC to be the node attribute.

3.1.2 F1 Score for Multiple Classes
Here we use a simple expansion of the F1 score. In our multiple class F1 score, we calculate
the sensitivity and specificity for each one versus rest AUC at each possible threshold, and
then set the expanded F1 score to be the harmonic mean of all those sensitivity and
specificity.

The leaf score for multiclass ROC tree is the percentage of each class in this leaf, and the
leaf class is the majority class in this leaf.

JSM 2016 - Section on Statistical Learning and Data Science

1388

3.2 Multiclass ROC Tree Algorithm
The algorithm for node attribute selection is presented below.
Algorithm 1 Node_Attribute_Selection
Input(s): 𝑿, the matrix of training data; 𝝎, the corresponding label vector; 𝓐, the set of column

indices in 𝑿 as available attributes
Output(s): 𝒜, column indice of attribute with the highest total AUC; max_auc, the AUC sum of

this feature for all One vs All classifiers; AUC_sign, the vector of signals to tell
whether AUC for this class is smaller than 0.5

1: max_auc=0
2: uniq_class=unique(𝝎)
3: 𝒜=0
4: AUC_sign=rep(0, length(uniq_class))
5: for 𝑖 in 𝓐
6: tmp_auc=0
7: for 𝑗 in 1:length(uniq_class)
8: tmp_label=rep(0,length(𝝎))
9: tmp_label[which(𝝎 == uniq_class[𝑗])]=1
10: auc_result= AUC_calculation(𝑿[,i], tmp_label)
11: if auc_result<0.5 then
12: auc_result=1- auc_result
13: tmp_auc=tmp_auc+ auc_result
14: end for
15: if tmp_auc>max_auc then
16: max_auc=tmp_auc
17: 𝒜 = 𝑖
18: end if

19: end for

20: for j in 1:length(uniq_class)
21: tmp_label=rep(0,length(𝝎))
22: tmp_label[which(𝝎 == uniq_class[𝑗])]=1
23: auc_result= AUC_calculation(𝑿[,𝒜], tmp_label)
24: if auc_result<0.5 then
25: AUC_sign [j]=1
26: end if
27: end for
15: return 𝒜, max_auc, AUC_sign
16: end

The algorithm for node threshold selection is presented below.
Algorithm 2 Node_Threshold_Selection
Input(s): 𝑿, the matrix of training data; 𝝎, the corresponding label vector; 𝒜, column indice of

attribute with the highest total AUC; AUC_sign, the vector of signal to tell whether
AUC for this class is smaller than 0.5

Output(s): thre_result, the threshold of for this split
1: thre_result=0
2: uniq_class=unique(𝝎)
3: tp_array=rep(0,length(uniq_class))
4: fp_array=rep(0,length(uniq_class))
5: uniq_splits=sort(unique(𝑿[, 𝒜]))
6: total_true=rep(0,length(uniq_class))
7: for 𝑖 in 1:length(uniq_class)
8: total_true[i]=length(which(𝝎 ==uniq_class[i]))
9: end for

JSM 2016 - Section on Statistical Learning and Data Science

1389

10: total_false=rep(nrow(𝑿),length(uniq_class)) – total_true
11: max_harmean=0
12: for 𝑖 in 1:length(uniq_splits)
13: indice=which(𝑿[, 𝒜]<uniq_splits[i])
14: for 𝑗 in 1:length(uniq_class)
15: if AUC_sign[j]==0 then
16: tp_array[j] = length(which(𝝎[indice]==uniq_class[j]))/total_true[j]
17: fp_array[j] = length(which(𝝎[indice]!=uniq_class[j]))/total_false[j]
18: else
19: tp_array[j] = length(which(𝝎[indice]!=uniq_class[j]))/total_true[j]
20: fp_array[j] = length(which(𝝎[indice]==uniq_class[j]))/total_false[j]
21: end if
22: end for

23: tmp_harmean=Harmonic_mean(c(tp_array,rep(1,length(uniq_class))-fp_array))
24: if tmp_harmean > max_harmean then
25: max_harmean = tmp_harmean
26: thre_result=uniq_splits[i]
27: end if

28: end for
29: return thre_result
30: end

Then we can have the algorithm for Multi-Class ROC Tree.
Algorithm 3 Multi_Class_ROC_Tree
Input(s): 𝑿, the matrix of training data; 𝝎, the corresponding label vector; 𝓐, the set of column

indices in 𝑿 as available attributes; cur_id, the current id of this node; max_depth, the
maximum depth for this tree; min_leaf, the minimum number of observations on each
node; train_ratio, the ratio of data to be used for training; 𝑵𝒂, the number of attribute
allowed in each node

Output(s): roc_tree, the data frame of the multi-class ROC tree
1: roc_tree=data.frame(id=cur_id, split_var="", thre="",lchild=0,rchild=0,nodelabel= -1,
 nodescore="",oob_score="")
2: Randomly generate the training indices and testing indices of the rows of 𝑿 based on the
train_ratio
3: Calculate the nodesocre and nodelabel based on the training data 𝑿[training_indice,]
4: Calculate the oob_score based on the testing data 𝑿[testing_indice,] for comparison
5: Check whether the stopping criteria is met or not. If it’s met, return roc_tree

6: Sample 𝑵𝒂 features from 𝓐 and set them to be 𝓐′
7: Find the attribute 𝒜 using training data 𝑿[training_indice,], the attributes set 𝓐′, the label
vector 𝝎[training_indice] and function Node_Attribute_Selection (Algorithm 1)
8: Find the threshold thre_result using the attribute 𝒜, training data 𝑿[training_indice,] and
corresponding label vector 𝝎[training_indice] and function Node_Threshold_Selection
(Algorithm 2)
9: Build the left child by calling Multi_Class_ROC_Tree (Algorithm 3) recursively. Let the left
child id to be cur_id*2, left child max depth = max_depth – 1. Append the return dataframe with
the data frame roc_tree

10: Build the right child based using same function. Let the left child id to be cur_id*2+1, right
child max depth = max_depth – 1. Append the return dataframe with the data frame roc_tree
11: return roc_tree
12: end

3.3 Multiclass ROC Random Forest Algorithm

JSM 2016 - Section on Statistical Learning and Data Science

1390

The random forest algorithm [10] was modified and applied towards the multiclass ROC
tree. The original random forest algorithm proposed by Leo Brieman was an ensemble
framework to combine weak learners. For each individual tree building process in random
forest framework, it introduced two kinds of randomness. At each node building stage, it
randomly selectes part of the available attributes as possible candidates for the node
attribute. Then for each tree, only part of the observations is selected to build the tree. The
introduction of these two types of randomness ensures that every tree in the random forest
will not be identical. After a certain number of trees are built, the random forest use a
bagging method to combine the trees, which will assign each tree equal weight and ask
them to vote for the class. The class with the majority votes will be chosen as the prediction
result of the random forest. The multiclass ROC random forest apply the framework of
random forest as follows.

Algorithm 4 Multi_Class_ROC_Random_Forest
Input(s): 𝑿, the matrix of training examples; 𝝎, the corresponding label vector; 𝑵𝒕, the number of

trees to be generated; 𝑵𝒂, the number of attributed needed for each node
Output(s): 𝓕, the final forest
1: set 𝓕 to NULL
2: for 𝑖 = 1 to 𝑵𝒕
3: sample a set of row indices from the original data with replacement noted as
bagging_indice
4: train 𝑡𝑟𝑒𝑒𝑖 by this sampled data 𝑿[bagging_indice,], 𝝎[bagging_indice,] with
Multi_Class_ROC_Tree (Algorithm 3)
5: append 𝑡𝑟𝑒𝑒𝑖 to 𝓕
6: end for

7: return 𝓕

8: end

However, if we directly apply the bagging method on imbalanced data sets, the final result
will tend to assign every observations to the majority class, since the class score of each
leaf is based on the percentage of each class. Therefore we introduce the prior percentage,
which help balance the leaf scores. For each observation, we sum up the scores for each
class from every tree in the forest, and then divided them by the prior percentage of each
class to balance the class score. The class with the largest balanced score will be the class
for this leaf. The detail prediction algorithm is presented below.

Algorithm 5 ROC_Forest_Prediction
Input(s): 𝓕, the ROC forest; 𝒙, a new observation; pred_type, the type of prediction needed;

prior_prob, the prior distribution of each class
Output(s): 𝜔̂, the predicted label for 𝒙 or 𝑝̂, the predicted probability for 𝒙
1: set score as an empty data frame
2: for each 𝑡𝑟𝑒𝑒𝑖 in 𝓕:
3: score[𝑖,]=ROC_Tree_Prediction(𝑡𝑟𝑒𝑒𝑖 , 𝒙 ,pred_type,id=1)
4: end for

5: sum up score for each class and calculate the score sum percentage for each class as 𝑝̂
6: 𝑝̂=𝑝̂/prior_prob/sum(𝑝̂/prior_prob)
7: If pred_type=="score" then

8: return 𝑝̂
9: else
10: 𝜔̂=which.max(𝑝̂)
11: return 𝜔̂
12: end if
13: end

JSM 2016 - Section on Statistical Learning and Data Science

1391

4. Performance Evaluation

4.1 Multiclass Classification Evaluation Methods
The performance of imbalanced binary classification can be evaluated by the ROC curve
and AUC. However the original ROC curve only works in binary classification problems,
so new measures needs to be defined to evaluate the performance of multi-class
classification.

4.1.1 Generalized Form of Notations
In [11], these measures for 𝑙 classes classification problem are defined as following.

 Average Accuracy:
∑

𝑡𝑝𝑖+𝑡𝑛𝑖
𝑡𝑝𝑖+𝑡𝑛𝑖+𝑓𝑝𝑖+𝑓𝑛𝑖

𝑙
𝑖=1

𝑙
 which measures the average accuracy of

each class

 Precision𝜇: ∑ 𝑡𝑝𝑖
𝑙
𝑖=1

∑ 𝑡𝑝𝑖+𝑓𝑝𝑖
𝑙
𝑖=1

 which measures the micro-average accuracy for positive

predictions

 Recall𝜇: ∑ 𝑡𝑝𝑖
𝑙
𝑖=1

∑ 𝑡𝑝𝑖+𝑓𝑛𝑖
𝑙
𝑖=1

 which measures the micro-average true positive rate

 Precision𝑀:
∑

𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑝𝑖

𝑙
𝑖=1

𝑙
 which measures the macro-average accuracy for positive

predictions

 Recall𝑀:
∑

𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑛𝑖

𝑙
𝑖=1

𝑙
 which measures the macro-average true positive rate

Note that in multi-class classification, the Precision𝜇 and Recall𝜇 will be the same since
∑ 𝑡𝑝𝑖 + 𝑓𝑝𝑖

𝑙
𝑖=1 is the sum of predicted positive for each class, which is the number of

observations, and ∑ 𝑡𝑝𝑖 + 𝑓𝑛𝑖
𝑙
𝑖=1 is the sum of real positive for each class, which is also

the number of observations.

4.1.2 Volume Under Surface (VUS)
The VUS is an extension of the AUC. In binary classification, the ROC curve shows the
performance of a classifier on a plot with y axis as TPR and x axis as FPR for class 1. And
the FPR for class 1 can also be regarded as 1 – TPR for class 0. Therefore the axis in the
ROC curve plot can be regarded as TPR for different class.

Subsequently, in multi-class classification problems, a coordinate system similar to ROC
curve can be built to measure the performance of classifiers [12]. In an L class classification
problem, the dimension of this system will be L and the axis is the TPR for each class. And
the classifier will be a surface in this space. The ROC curve in 2D is a degenerate form of
this surface. Hence similar to AUC, the Volume Under Surface can be defined to evaluate
the performance of a classifier, which involves the calculation of the volume of a convex
hull.

4.2 Comparison with SMOTE Algorithms on UCI Repository Data

JSM 2016 - Section on Statistical Learning and Data Science

1392

In this section we compare the performance of ROC tree/random forest with the classical
SMOTE algorithm [1] combined with random forest and Ferri’s ROC Tree [4] on the
following UCI repository data shown in Table 1.

Table 1: Chosen binary classification UCI repository data set
Name Observation

Number
Feature Number Minority Class Percentage

Letter Recognition A 20000 16 3.95
Optical Recognition of
handwritten digits 0

5620 64 9.86

Pen-based Recognition
of handwritten digits 0

10992 16 9.4

Ionosphere 351 34 35.9

We ran 10 fold cross validation 10 times on the data and got the following performance.
The ROC random forest and SMOTE random forest both contain 100 trees so that their
performance is comparable.

Table 2: Algorithm Performance on UCI repository data set
Data Set Letter A Opt Digit 0 Pen Digit 0 Ionosphere
 Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC
Ferri’s
Gain
Ratio

99.5±0.2 98.9±1.4 98.9±1.8 94.2±1.4 99.6±0.3 99.6±0.5 92.0±4.7 90.4±7.0

Ferri’s
AUC
Split

99.5±0.1 99.3±0.7 99.5±0.3 98.5±1.8 99.6±0.2 99.4±0.6 89.6±5.0 89.7±6.7

Proposed
ROC
Random
Forest

99.4±0.1 99.9±0.02 99.6±0.2 99.9±0.03 98.9±0.3 99.8±0.1 91.0±4.3 96.7±3.1

SMOTE
Random
Forest

99.7±0.1 99.9±0.02 99.7±0.2 99.9±0.04 99.8±0.1 99.9±0.1 90.3±5.0 96.9±2.9

From this table we can see that the performance of ROC random forest is at the same level
with the SMOTE random forest when measured by AUC, and both of which outperformed
Ferri’s method [4] in terms of AUC.

Compared to the SMOTE algorithm, the ROC random forest is much faster since it does
not require any pre-processing steps on the data. Let the n be the number of training
observations at one node, and k the number of unique classes, m the number of features,
and s the average number of possible splits along each feature. Then the time complexity
of building a ROC tree node is O(m(nlog(n)+kn)) [13], while the time complexity of
building a CART tree node is O(m(nlog(n)+sn)). In most numerical features, the number
of possible splits s is close to the number of training observations, so the ROC tree node
building is faster than CART theoretically, as the total running time depends on each single
splits.

JSM 2016 - Section on Statistical Learning and Data Science

1393

4.3 Comparison with Traditional Algorithms on Simulated Data
In this section we compare the performance of multiclass ROC tree/random forest with
traditional algorithms on imbalanced data sets, and we can see that this algorithm we
proposed works well on imbalanced data sets. There are many situations in multi-class
classification, and here we compared the performance of Multi-Class ROC Tree, Multi-
Class ROC Random Forest, CART, random forest, support vector machine and random
guess on 2 situations. The number of classes is set to be 4, with 1 dominate class of 4750
observations (95% of the total data), and 2 minor classes of 100 observations each (2% of
the total data), and 1 rare class of 50 observations (1% of the total data). The random guess
is generated by a multi-nominal distribution with probability as the class distribution. The
CART is fit using the rpart package in R, the random forest is fit using the randomForest
package in R, and the support vector machine is fit using the e1071 package in R. All the
performance is measured by the out of bag testing data, which is generated using the same
method as the training data.

4.2.1 Setting 1: 2 dimensions
In this setting, we generate observations from Gaussian distribution with 2 dimensions so
that it is easy to visualize the data. All the variables have a variance of 1. Class 1 is centered
at (0, 0), Class 2 at (2, 2), Class 3 at (-2, -2), Class 4 at (-2, 2).

The performance of Multi-Class ROC Tree, CART and random guess is showed in Table
3. The ROC tree has slight advantage over CART in Recall𝑀 and VUS.

Table 3: Performance of Classifiers on Setting 1
 Average

Accuracy
Precision𝜇 Precision𝑀 Recall𝑀 VUS

ROC Tree 0.9809 0.9618 0.7345 0.5794 0.09657
CART 0.9817 0.9634 0.8110 0.5360 0.08933
Random
Guess

0.9513 0.9026 0.2476 0.2473 0.04167

4.2.2 Setting 2: 10 dimensions
In this setting, high dimension data is used to check the performance of multi-class ROC
Tree. All the data are normally generated with variance 1 and the centers for each class is
listed below.

 Class 1: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 Class 2: (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
 Class 3: (-1, -1, -1, -1, -1, -1, -1, -1, -1, -1)
 Class 4: (-1, 1, -1, 1, -1, 1, -1, 1, -1, 1)

The following table 4 shows the performance of each classifier on this setting. CART didn’t
predict any observation to class 4 so the Precision𝑀 is NA. The Multi-Class ROC Tree
outperformed both CART and random forest with 10 trees. The ROC random forest has
large advantage over other classifiers.

Table 4: Performance of Classifiers on Setting 2

JSM 2016 - Section on Statistical Learning and Data Science

1394

 Average
Accuracy

Precision𝜇 Precision𝑀 Recall𝑀 VUS

ROC Tree 0.9727 0.9454 0.5535 0.4797 0.07995
CART 0.9733 0.9466 NA 0.2907 0.04845
Random
Guess

0.9513 0.9026 0.2476 0.2473 0.04167

ROC RF
(100 trees)

0.6943 0.3886 0.3031 0.8121 0.1353

RF (100
trees)

0.9794 0.9588 0.9896 0.38 0.0633

SVM 0.9857 0.9714 0.9232 0.6191 0.1032

The table 5 shows the sensitivity and specificity of each class in detail for random forest,
SVM and ROC random forest.

Table 5: Sensitivity and Specificity of Classifiers on Setting 2
Algorith
m

Random Forest SVM ROC Random Forest

Class Sensitivit
y

Specificit
y

Sensitivit
y

Specificit
y

Sensitivit
y

Specificit
y

1 0.999368
4

0.192 0.996631
6

0.492 0.358736
8

0.984

2 0.24 0.999795
9

0.48 0.998367
3

0.95 0.757551

3 0.15 0.999591
8

0.5 0.998367
3

0.94 0.799183
7

4 0.18 1 0.5 1 1 0.822020
2

We can see that the ROC random forest actually puts equal weight to each class, and it tries
to maximize the sensitivity and specificity for each class, while SVM and traditional
random forest focus more on class 1 because it has the largest number of observations.

4.4 Summary
In this paper we propose a new tree based method to deal with the imbalanced data
classification problem that does not require any pre-processing steps. This method
performs as well as the SMOTE random forest on binary classification problems when
using the same parameters and measured by AUC, while it is much faster than SMOTE
random forest since it does not require any pre-processing steps. This algorithm also
works on multi-class classification problems, where it puts equal emphasis on the
sensitivity and specificity of each class, big and small alike. We can further adjust the
emphasis by fine-tuning the prior probability parameter in ROC random forest.

References

JSM 2016 - Section on Statistical Learning and Data Science

1395

[1] Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique."
Journal of artificial intelligence research (2002): 321-357.

[2] Viola, Paul, and Michael Jones. "Rapid object detection using a boosted cascade of
simple features." Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE, 2001.

[3] Elkan, Charles. "The foundations of cost-sensitive learning." International joint
conference on artificial intelligence. Vol. 17. No. 1. LAWRENCE ERLBAUM
ASSOCIATES LTD, 2001.

[4] Ferri, César, Peter Flach, and José Hernández-Orallo. "Learning decision trees using
the area under the ROC curve." ICML. Vol. 2. 2002.

[5] Hossain, M. Maruf, Md Rafiul Hassan, and James Bailey. "ROC-tree: A Novel
Decision Tree Induction Algorithm Based on Receiver Operating Characteristics to
Classify Gene Expression Data." SDM. 2008.

[6] Powers, David Martin. "Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation." (2011).

[7] Bishop, Christopher M. "Pattern Recognition." Machine Learning (2006).
[8] Landgrebe, Thomas, and R. Duin. "A simplified extension of the area under the ROC

to the multiclass domain." In Seventeenth annual symposium of the pattern recognition
association of South Africa, pp. 241-245. 2006.

[9] Breiman, Leo, et al. Classification and regression trees. CRC press, 1984.
[10] Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.
[11] Sokolova, Marina, and Guy Lapalme. "A systematic analysis of performance measures

for classification tasks." Information Processing & Management 45, no. 4 (2009): 427-
437.

[12] Landgrebe, Thomas, and R. Duin. "A simplified extension of the area under the ROC
to the multiclass domain." In Seventeenth annual symposium of the pattern recognition
association of South Africa, pp. 241-245. 2006.

[13] Fawcett, Tom. "An introduction to ROC analysis." Pattern recognition letters 27.8
(2006): 861-874.

[14] Galar, Mikel, et al. "A review on ensembles for the class imbalance problem: bagging-
, boosting-, and hybrid-based approaches." IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42.4 (2012): 463-484.

[15] Allwein, Erin L., Robert E. Schapire, and Yoram Singer. "Reducing multiclass to
binary: A unifying approach for margin classifiers." Journal of machine learning
research 1, no. Dec (2000): 113-141.

JSM 2016 - Section on Statistical Learning and Data Science

1396

