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Abstract

Main method of dealing with rare variants in association testing is to collapse rare variants to

form a super variant. Some problems remain. Collapsing many non-causal variants will introduce

noise and reduce power of tests. Collapsing methods can be seriously impaired by misclassification

of collapsing regions. Collapsing deleterious and protective variants together will also reduce power

of tests. The classification of rare variants is subjective, if only rare variants are included in a study,

some important genetic information may be left out because of this.

We propose a test using both common and rare variants. A forward selection method will be

used to exclude non-causal variants in study. The selection is based on the correlation coefficient

for each SNP with the trait. The proposed tests perform well in different scenarios.

We also propose a family based test, which uses genetic information from within-family vari-

ation and between -family variation. The test will not only avoid population stratification, but also

increase power when population stratification is not severe.
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1. Rare variants

Common SNPs can only explain a small proportion of the observed heritable variability.

People usually think a SNP is rare if its minor allele frequency is less than 0.01. A com-

monly used method in dealing with rare variants is to collapse rare variants in a given region

into one variant, the detection of the collapsed rare variants becomes easier. Many different

ways of collapsing have been proposed. Some uses a indicator function on the rare vari-

ants in the region. It counts the number of people with at least one rare variants. Cohort

allelic sum test (Morgenthaler and Thilly 2007) compares number of individuals with rare

mutations between cases and controls. Some uses sum of rare variants instead of the in-

dicator function. It counts the number of rare mutations in a region for each individual.

Some puts weights on rare variants, and uses a weighted sum of rare variants. A choice

of weights is allele frequencies. Combined multivariate collapsing (Li and Leal 2008) is a

multivariate test with common variants and collapsed scores of rare variants. Weighted sum

statistic (Madsen and Browning 2009) collapses both rare and common variants by adding

different weights based on allele frequencies. Another choice of weights is odds ratios.

In ORWSS (Feng, Elston and Zhu 2011) weights are calculated based on odds ratios. An

implicit assumption of the collapsing of rare variants in a region is that these rare variants

more or less are all causal variants. However, when this is not the case, collapsing many

non-causal variants will introduce noise and reduce power of tests. Collapsing methods can

be seriously impaired by misclassification of collapsing regions (Li and Leal 2008).

1.1 Methods

Collapsing deleterious and protective variants together will reduce power of tests. The

classification of rare variants is subjective, if only rare variants are included in a study,
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some important genetic information may be left out because of this. Our goal is to develop

a new test to dress these problems.

A forward selection method will be used to exclude non-causal variants in the study.

The selection is based on the correlation coefficient for each SNP with the trait. A weighted

sum approach in collapsing rare variants. The deleterious and protective components are

separated by the correlation coefficients of SNPs and the trait. Step 1. Forward selection on

common SNPs with sum collapsing. Step 2. Forward selection on rare SNPs with weighted

sum collapsing. Step 3. Repeat step 2 for rare SNPs without bases from common SNPs of

step 1. The results are denoted as S(+,both), S(-,both) and S(+,rare)-S(-,rare). Step 4. Let

S(wSC) be the one among S(+,both), S(-, both), S(+, rare), and S(-,rare) with the largest

correlation coefficient with the trait vector. Let S(wSCd) be the one of S(+,both)-S(-,both)

and S(+,rare)-S(-,rare) with the largest correlation coefficient with the trait vector. The

test statistics are constructed by using logistic regression model if the traits are qualitative;

while a regression model will be used if the traits are quantitative. Finally, the p-value is

calculated by permutation procedure. Two tests are proposed: BwSC (weighted selective

collapsing) using S(wSC) and BwSCd using S(wSCd).

1.2 Simulation results

Data used in the simulation are generated following previous studies (Pan and Shen 2011

,Wang and Elston 2007). The target region contains four observed common SNPs and

an unobserved common SNP. It also contains 28 observed rare SNPs, and 8 of them

are randomly chosen as causal rare SNPs. Allele frequencies of common SNPs are ran-

domly chosen between 0.1 and 0.3; allele frequencies of rare SNPs are randomly cho-

sen between 0.001 and 0.005. The covariance between observed common SNPs is 0.4,

and the covariance between observed common SNP and the unobserved common SNP

is 04a, where a=1 or -1 with equal chance. Covariance between rare SNPs Zi and Zj is

0 : 4|i−j|, 1 ≤ i, j ≤ 28. Five hundred cases and five hundred controls are simulated with

one thousand replicates. The significant level is 0.05 for all scenarios. Type I error rates

are correct in all simulations. The powers are shown in tables 1-4. The first letter in the

names of the tests is either B or R, B stands for using both common and rare SNPs, R stands

for using rare SNPs only. After the first letter, the lower case letters describe the ways of

collapsing. For example, ind means collapsing using indicator function, sum means col-

lapsing using sum function, wsum means collapsing using weighted sum function, wor

means collapsing using weighted sum function with odds ratios as weights, and w means

our weighted sum function. After that SC means selective collapsing. Two more tests are

added in tables 2 and 4. They are Cs and Cm, Cs is the single marker test for common

SNPs with Bonferroni correction, and Cm is multiple marker test for common SNPs. The

proposed tests are BwSC and BwSCd.

2. Family data

Although many disease-associated common variants have been discovered through genome-

wide association studies, much of the genetic effects of complex diseases have not been

explained. Population-based association studies are vulnerable to population stratification.

A possible solution is to use family-based tests. However, if tests only estimate the genetic

effect from the within-family variation to avoid population stratification, they may ignore

the useful genetic information from between-family variation and lose power.
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Table 1: No common SNPs effect, the effects of rare SNPs are in the same direction

odds ratio 1.3 1.6 1.9 2.2 2.5 2.8 3.1

BwSC 0.316 0.509 0.654 0.775 0.892 0.927 0.970

BwSCd 0.201 0.340 0.445 0.586 0.734 0.825 0.885

Rind 0.227 0.376 0.522 0.630 0.737 0.810 0.851

Rsum 0.245 0.424 0.570 0.670 0.778 0.846 0.888

Bind 0.129 0.204 0.318 0.419 0.522 0.623 0.698

Bsum 0.147 0.243 0.343 0.470 0.565 0.674 0.751

RindSC 0.295 0.420 0.589 0.726 0.834 0.884 0.954

RsumSC 0.298 0.425 0.588 0.731 0.834 0.894 0.946

Bwsum 0.302 0.474 0.631 0.710 0.810 0.875 0.931

Bwor 0.090 0.170 0.226 0.295 0.416 0.408 0.580

Table 2: weak common SNPs effect, the effects of rare SNPs are in the same direction

odds ratio 1.3 1.6 1.9 2.2 2.5 2.8 3.1

BwSC 0.344 0.538 0.631 0.778 0.850 0.935 0.954

BwSCd 0.210 0.395 0.484 0.625 0.661 0.822 0.848

Rind 0.237 0.394 0.472 0.600 0.715 0.785 0.843

Rsum 0.247 0.418 0.543 0.636 0.747 0.811 0.869

Bind 0.278 0.364 0.436 0.517 0.618 0.677 0.760

Bsum 0.298 0.384 0.461 0.562 0.668 0.735 0.795

RindSC 0.236 0.430 0.565 0.702 0.781 0.888 0.910

RsumSC 0.238 0.446 0.605 0.705 0.815 0.892 0.920

Bwsum 0.341 0.534 0.658 0.703 0.846 0.870 0.911

Bwor 0.253 0.312 0.344 0.475 0.456 0.582 0.648

Cs 0.163 0.157 0.144 0.164 0.174 0.191 0.193

Cm 0.195 0.199 0.193 0.207 0.212 0.228 0.238

Table 3: No common SNPs effect, the effects of rare SNPs are in different directions

odds ratio 1.3 1.6 1.9 2.2 2.5 2.8 3.1

BwSC 0.135 0.148 0.200 0.227 0.297 0.373 0.465

BwSCd 0.134 0.197 0.250 0.340 0.391 0.441 0.558

Rind 0.062 0.058 0.089 0.095 0.118 0.129 0.164

Rsum 0.054 0.062 0.092 0.083 0.113 0.118 0.158

Bind 0.062 0.060 0.059 0.074 0.085 0.010 0.128

Bsum 0.062 0.059 0.065 0.073 0.090 0.101 0.117

RindSC 0.090 0.150 0.214 0.221 0.314 0.352 0.395

RsumSC 0.094 0.151 0.202 0.210 0.335 0.353 0.449

Bwsum 0.107 0.096 0.096 0.136 0.179 0.221 0.270

Bwor 0.090 0.126 0.133 0.165 0.211 0.222 0.255
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Table 4: weak common SNPs effect, the effects of rare SNPs are in different directions

odds ratio 1.3 1.6 1.9 2.2 2.5 2.8 3.1

BwSC 0.133 0.182 0.256 0.332 0.357 0.479 0.480

BwSCd 0.190 0.217 0.308 0.386 0.468 0.568 0.548

Rind 0.045 0.077 0.068 0.103 0.115 0.120 0.157

Rsum 0.054 0.074 0.062 0.091 0.109 0.126 0.154

Bind 0.200 0.184 0.200 0.198 0.244 0.255 0.233

Bsum 0.190 0.182 0.200 0.197 0.243 0.226 0.229

RindSC 0.068 0.122 0.176 0.241 0.270 0.359 0.387

RsumSC 0.094 0.119 0.193 0.254 0.273 0.371 0.390

Bwsum 0.100 0.114 0.164 0.172 0.193 0.236 0.272

Bwor 0.201 0.245 0.260 0.311 0.334 0.398 0.405

Cs 0.156 0.131 0.155 0.139 0.186 0.149 0.146

Cm 0.211 0.185 0.214 0.192 0.221 0.211 0.190

2.1 Methods

In family-based association studies, FBAT, a general unified approach, has been proposed

to permit any type of genetic models, a general family design, different phenotypes and

multiple markers (Laird, Horvath, Xu 2000). Family-based tests are generally robust to

population stratification and those tests can avoid any population bias in other standard de-

signs. Recently, the multi-marker test FBATMM (Rakovski et al 2007), which is similar

to the Hotelling T 2 test, has been proposed for family-based studies. Another multi-marker

test FBATLC (Xu et al 2006) linearly combines single-marker test statistics using data-

driven weights derived by conditional mean model (Lange et al 2003). The weights are

least square estimates of genetic effects. The data-driven weights are regarded as fixed for

FBAT. These two methods have been implemented in the program FBAT, which has been

widely used in family-based association studies. The data-driven weights in FBATLC are

the estimates of genetic effect considering between-family variation. It is a biased estima-

tor and is sensitive to population structure. We investigate the data-driven weights used in

FBATLC and provide a new methodology to analyze the multiple correlated markers for

family-based association studies. We use FBATWS to denote the new test. It is based

on weighted sum of two association tests. One of which estimates the genetic effect from

both within-family and between-family variation and the other is from within-family vari-

ation only. The weights are computed automatically based on a measure of the population

stratification strength in family data. The proposed method can capture more important

information from multiple loci in the family data while maintaining robustness to popula-

tion stratification. Due to population stratification and linkage disequilibrium which cause a

bias for the estimate, a permutation procedure is employed conditional on the traits, parental

genotypes, and haplotypes.

The general idea of FBAT (Laird, Horvath, Xu 2000) is to regard the offspring genotype

as random conditional on the traits and parental genotypes. The test statistic is computed

from the distribution of offspring genotype under the null hypothesis. Let Tij denote the

coded trait for the jth offspring in the ith family and Xijk denote the coded genotype score

for the kth marker of the jth offspring in the ith family, where i = 1, . . . ,M , j = 1, . . . , N ,

and k = 1, . . . ,K . Following the standardized FBAT (Laird, Horvath, Xu 2000), let
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Uik =
∑

j

Tij(Xijk −E(Xijk)),

Vik = var(Uik) =
∑

j

∑

l

TijTilcov(Xijk,Xilk).

With a large number of families, FBAT statistic for the kth marker:

Zk =

∑

i Uik
√
∑

i Vik

is approximately N(0, 1).
Another approach to the multi-marker family-based association testing is to linearly

combine single-marker test statistics using data-driven weights (FBATLC) (Xu et al 2006).

Conditional on the traits and parental genotypes, the weights can be derived by the condi-

tional mean model of trait T for the kth marker as follows:

E(Tij) = αk + βkf(Xijk)

where f(Xijk) = E(Xijk) for offspring in the informative families and f(Xijk) =
Xijk for the others (include offspring in the non-informative families and all parents). Let

w = (w1, . . . , wk) where wk = β̂k/SE(β̂k) is the standardized least square estimator of

βk. Then the multi-marker FBATLC test statistic:

FBATLC =
wTZ√
wTΣw

is approximately N(0, 1), where Z = (Z1, . . . , Zk)
T is the vector of single FBAT

test statistic and Σ can be derived from the conditional pairwise haplotype distribution in

offspring or from the empirical estimator of the covariance matrix (Rakovski et al 2007).

Although the data-driven weights are independent of Z under H0 because the FBAT test

is computed conditional on traits and on parental genotypes, the power of FBATLC will

be highly dependent on the estimate of the optimal weights. In the conditional mean model,

the weights are estimates of genetic effects using population data, which can be regarded as

estimates of the genetic effects using between-family variation. It has been shown that this

estimator is biased unless there is no population stratification. Intuitively, the more accurate

the estimate is, the closer the weights to the optimal weights, and the more power the test

can gain. However it will lose power if the effect of population stratification is significant.

Thus, we proposed a new multi-marker test FBATWS using adaptive weights to combine

two test statistics based on the estimate of the existing population stratification.

The strength of population stratification will be measured by

v =
1

k

∑

k

Dk − E(Dk)

SD(Dk)

where Dk = |Zk − wk| for k = 1, . . . ,K . Then the test statistic can be written as:

FBATWS =
1

1 + v
wTZ +

v

1 + v
ZTZ

Under the null hypothesis: no genetic effect and no population stratification, Zk and wk

are independent standard normal random variables. Therefore, Dk is a folded normal ran-

dom variable with E(Dk) = 2/
√
π and V ar(Dk) = 2 − 4/π. It is clear that the strength

of population stratification increases as DK increases. When population stratification is
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strong, FBATWS will automatically put more weight on the second term to maintain ro-

bustness against spurious positives. On the other hand, when the effect of population strat-

ification is relatively weak, FBATWS will automatically put more weight on the first term

to make use of both sources of genetic variation: between-family and within-family. In

latter case, the degrees of freedom of the test will be reduced, and power of the test will be

increased. Because LD structure will be maintained in the permutation procedure, in order

to improve the computational efficiency, FBATWS does not consider LD structures. The

second term ZTZ can be written as:

ZTZ = UTdiag(V )−1U

where U = (
∑

i Ui1, . . . ,
∑

i Uik) and V = (vk1k2). This is an empirical estimator of

the covariance matrix Σ, where

vk1k2 =
∑

i

(
∑

j

Tij[Xijk1 − E(Xijk1)]
∑

j

Tij[Xijk2 − E(Xijk2)]).

Therefore, the second term ZTZ is one of the asymptotic tests in (Pan 2009), which has

been proposed recently to gain more power under strong LD structures. When the parental

haplotypes are known, a permutation procedure will be employed to compute the p-value

of FBATWS . For each child with fixed trait in any family, each parental haplotype is trans-

mitted to the child with equal probability, so that, for any given parental hypostyles, there

are four different permutations of the data. When the parental haplotypes are unknown,

inferring haplotype is needed. There are several methods to infer haplotypes. For exam-

ple, Thunder (Li et al 2010), Beagle (Browning, Browning 2009), Impute2 (Montgomery

et al 2013), and SNPtools (Wang et al 2013). Haplotype can also be inferred by using

sequencing reads (Delaneau et al 2013).

2.2 Simulation results

In the simulation study, we compare the power of the proposed test FBATWS with the

following three FBAT tests: (1) the single-marker test with Bonferroni multiple testing

adjustment FBATB, the Bonferroni adjusted p-value Padj = 1−(1−Pmin)
K , where Pmin

is the minimal p-value among the single-marker tests (2) the multi-marker test FBATMM

(Rakovski, Xu, Lazarus, Blacker, Laird 2007), which is similar to the Hotelling T 2 test, (3)

the multi-marker test FBATLC (Xu, Rakovski, Xu, Laird 2006) that linearly combines the

single-marker test statistics using data-driven weights.

One goal of the simulation study is to examine whether the proposed multi-marker

test is robust to the underlying LD structure. We consider six different LD structures and

assume additive genetic effect.

Next, our simulation study will be based on real LD structure. We download the Hap-

lotypes data from 170 unrelated samples of JPT+CHB (Japanese in Tokyo, Japan + Han

Chinese in Beijing, China) in the HapMap3 Phased Haplotypes. We consider three genes

CHI3L2 (in the region of 15.78kb), CTLA4 (in the region of 10kb) and IL21R (in the re-

gion of 47.69kb), which have also been analyzed in other simulation studies (Chapman,

Whittaker 2008, Jiang, Dong, Dai 2009, Wang, Abbott 2008, Wang, Elston 2007). Their

LD pattern can be visualized on the HapMap site. We perform the simulation study using

SNPs with minor allele frequency (MAF) > 0.01, and we remove the redundant SNPs that

are perfectly correlated with other SNPs. We have 12 SNPs left for CHI3L2, seven SNPS

for CTLA4 and 10 SNPs for IL21R. We calculate haplotype frequencies from the sam-

ples of each gene and generate the parents of each family based on the known haplotype

frequencies. The disease marker is randomly chosen as unobserved SNP. Other SNPs are
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Table 5: Type I error rates for four FBAT tests in simulated structures

LD structures LD=L1 LD=L2 LD=L3 LD=L4 LD=L5 LD=L6

B 0.047 0.036 0.051 0.042 0.052 0.039

MM 0.047 0.045 0.068 0.054 0.057 0.050

LC 0.050 0.057 0.058 0.045 0.055 0.047

WS 0.052 0.052 0.059 0.038 0.052 0.048

observed as haplotype data and the quantitative phenotypes of offspring in each family are

generated from a quantitative phenotype model. Two scenarios (500 trios under one pop-

ulation and two populations) are considered in the simulation study with 1000 simulation

replicates and a significance level of 0.05. To generate quantitative phenotypes for samples

from one population, let µp = 0; for samples from two distinct populations, let µp be 0.5

or −0.5.

Type I error rate for the case of six mimicked LD structures is shown in Table 1. All

tests have a correct Type I error rate. It is expected that the proposed method will have a

correct Type I error rates due to the permutation procedure. The result of power comparison

is shown in Figure 2.

Four FBAT tests are considered for power comparisons with six different LD structures.

The unobserved casual SNP has an equal chance to be positively or negatively correlated

to those observed SNPs in all scenarios. In Figure 2, FBATB (B), FBATMM (MM),

FBATLC (LC), and FBATWS (WS) are indicated by the blue dot-dashed line, the green

dotted line, the red dash line, and the black solid line, respectively. In the first simulation

study, the goal is to compare the performance of the proposed method with other FBAT

methods. We fix the window size for each scenario and assume the sample come from the

same population. An examination of the results show that FBATWS has a consistently

higher power in all cases, followed by FBATLC , FBATMM , and FBATB . FBATB is

considered as the most conservative test in this study, because the independent assump-

tion is violated. FBATMM improves the power by considering the variance-covariance

matrix. On the other hand, it also suffer from the relatively high degrees of freedom, espe-

cially when the region under consideration is large. FBATLC with one degrees of freedom

improves the power by using the optimal weights to combine single-marker tests and over-

comes the degrees of freedom problem raised by FBATMM . In a genetic region with

strong LD, we do not have any clue of how the underlying casual marker is related to the

observed SNPs. The optimal weights in FBATLC are biased estimates of genetic effects

(Abecasis, Cardon, Cookson 2000). Therefore, using incorrect estimation of genetic ef-

fect as weights in FBATLC will lose some power. FBATWS improve the power by not

only considering the optimal weights to combine single-marker tests like FBATLC , but

also automatically adjusting the weights based on the estimate of the genetic effect from

between-family variants and within-family variants.

Type I error rates for the simulated HapMap data on CHI3L2, IL21R, and CTLA4

are given in Table 2. Type I error rate of all tests are well controlled under 0.05 level of

significance. We also found that FBATB has a lower type 1 error rate than other tests,

because the strong LD structure existed in all three regions.

The results of power comparison in one population and two populations are shown in

Figures 3 and 4. The underlying casual marker is randomly selected each time, which make

the LD structures relatively complicated in these scenarios.

Four FBAT tests are considered for power comparisons under different LD structures
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Table 6: Type I error rates of four FBAT tests using HapMap data, ∗ denote the case in the

mixed populations of two.

LD structures CHI3L2 CTLA4 IL21R CHI3L2∗ CTLA4∗ IL21R∗
B 0.023 0.024 0.027 0.029 0.026 0.034

MM 0.049 0.036 0.041 0.051 0.040 0.042

LC 0.044 0.035 0.042 0.045 0.050 0.039

WS 0.040 0.037 0.037 0.037 0.041 0.054

of three genes CHI3L2 (in the region of 15.78kb), CTLA4 (in the region of 10kb) and

IL21R (in the region of 47.69kb). The unobserved casual SNP is randomly selected in

all scenarios. In Figures 3 and 4, FBATB (B), FBATMM (MM), FBATLC (LC), and

FBATWS (WS) are denoted by the blue dot-dashed line, the green dotted line, the red dash

line, and the black solid line, respectively.

We consider all samples from one population first. FBATWS has a relatively high

power in most scenarios. For gene CHI3L2, where SNPs are dense and highly correlated

with each other, FBATWS is the most powerful test, followed by FBATLC , FBATMM

and FBATB when the heritability is relatively low. As heritability increases, FBATMM

achieves the highest power and FBATWS is the second among all tests. This implies

FBATWS is more sensitive to the genetic effect with low heritability. FBATMM is

adept to deal with genetic region with strong LD and high heritability. For the gene

CTLA4, where the number of markers is relatively small and LD pattern is relatively

weak, FBATWS is again the most powerful test, followed by FBATLC , FBATB and

FBATMM . For the gene IL21R, where SNPs are loose and LD pattern is relatively weak,

FBATWS is the most powerful test, followed by FBATB, FBATLC , and FBATMM .

For genetic region with weak LD like CTLA4 and IL21R, FBATMM lose its potential

power due to the issue of degrees of freedom. In all scenarios of two populations, the re-

sults are similar that FBATWS is the most powerful test except for simulated data based

on gene CTLA4 with high heritability. In practice, most undiscovered genetic variants have

low heritability. The power of tests depends on the LD patter. In general, FBATWS au-

tomatically adjusted the weights to combine the estimates of genetic effect from various

source of genetic variants, therefore is a powerful test for family-based association stud-

ies. It is robust to population stratification and the underlying LD structure. Our simulated

results demonstrate that FBATWS is a potentially powerful test among multi-marker tests.
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