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Abstract

The age of cyber warfare necessitates effective defensive plans for operational integrity of networked security assets.

Under a cyber attack, a decision maker needs to select the most effective defensive action (policy) from a set of feasible

policies brought forth by domain experts and/or automated policy generators. However, selecting an optimal policy

is non-trivial in practice because of complex dependencies among constituent components of a critical operational

system; temporally dynamic mission goals; and uncertain knowledge about the states of some components. To address

these issues, a Bayesian network based probabilistic framework was developed to assess the impact of a policy on

mission success. At the core is a probabilistic graphical mission model built on top of the assets terrain using domain

knowledge. The framework quantifies the probability of mission success under a policy as a score, and intuitively

explains the propagation of policy effects leading to the mission outcome, thus facilitating optimal policy selection. For

a mission composed of temporally ordered sub-tasks, the Bayesian network is dynamically pruned based on currently

completed steps.
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1. Introduction

Sophisticated cyber defense tools, capable of reacting in real time to cyber attacks, are in their infancy.

One of the key challenges facing a cyber infrastructure defense team is determining how to dynamically

deploy and control emerging cyber defense tools so as to ensure resiliency of a mission and avoid cyber

fratricide. While many, if not most, cyber defense tools are designed to operate according to a set of

(usually) pre-defined policies, these tools and policies are typically developed in isolation from one another

and with the primary goal of addressing a single type of attack, or preserving a single type of process.

Given the interconnectedness of our networks and the large number of dynamically changing missions,

cyber commanders need the ability to manage multiple instances of multiple cyber defense tools to maintain

mission resilience. Further, they need the ability to define and dynamically adjust the policies that control

cyber defense tools. Currently, there is limited understanding of both (1) the impact of our cyber defense

tools and resources on mission success, and (2) the impact of mission priorities and tasking on the behavior

and use of cyber defense tools.

This paper describes a Bayesian network (Darwiche 2010) based probabilistic graphical model (Koller

2009) to capture the causal relationships among cyber assets to facilitate probabilistic inferencing in order

to assess the impact of a cyber defensive policy on carrying out a desired mission. Decisions about how,

when, and where to deploy cyber defense tools should be made in the context of the missions that the

overall cyber system is supporting, taking into account mission needs (information, bandwidth, access to

specific applications, etc.), priorities, and the cyber threat environment. Defensive actions may be proactive

(e.g., active shaping of the cyber terrain to protect specific cyber resources in order to meet key mission

needs) or reactive (e.g., responding to an attack in real time), with a goal of ensuring robust or resilient

mission execution. The probabilistic graphical model developed here captures the priorities, goals, and cyber
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system needs of on-going missions, and use that information to quantify the feasibility of a cyber defense

policy (generated by a domain expert or an external policy generation engine) as the probability of mission

success under the policy. This framework allows a cyber commander to control cyber tools in a way that is

appropriate for the overall goals of a mission, and not merely in a way that is appropriate for the local goals

of computer resource (platform, network, application, data) protection.

2. Probabilistic Graphical Model

Probabilistic Graphical Models provide an efficient way to make inferences under uncertainty through a

combined application of probability theory and graph theory (Cowell 1999). These models have a rigorous

theoretical foundation, and provide a formal mechanism for exploiting conditional independence among

cyber terrain components (the nodes in the graphical model) for efficient computation of marginals of the

joint distribution over all the components, the states of which are treated as random variables. This formalism

is directly aligned with the domain of cyber defensive policy assessment where we are primarily interested

in inferring the probability of the mission being successful under a policy, which essentially sets a specified

set of cyber resources to desired states (ON or OFF). This inference task essentially entails marginalization

of the joint distribution over the states of the mission and the relevant cyber terrain components that the

mission depends on. A Bayesian Network is a class of probabilistic graphical model represented as a directed

graph with explicit parent-child dependencies among the nodes. Such a parent-child dependency allows the

network to model causal relationships which is important for the application domain of interest in this paper,

since the goal here is to assess the impact of a set of cyber resources on a mission on the whole.

2.1 Bayesian Network for Policy Assessment

Availability of relevant resources in a timely manner is key to carrying out a cyber mission. All resources

may not be equally critical, however, for completing a mission. For example, some of the resources may

have redundancies which would make the mission more robust against the failure of such an entity. In some

cases, the unavailability of a set of resources may not completely jeopardize a mission, but may result in

partial failure or performance degradation. An effective way to quantify such a spectrum of outcomes is in

a probabilistic setting where the probability of success of a mission is computed as an outcome based on

the state of the underlying cyber terrain. Hence, a probabilistic graphical model encapsulating the causal

inter-dependencies among the cyber resources and the overall mission, with the ability to assess the impact

of the loss of a set of resources on achieving the goals of the mission is highly beneficial in exploring

various resource allocation and management policies. In such a graphical representation, a directed edge is

drawn from a vertex A to another vertex B if the state of B is influenced by the state of A. No edges are

drawn between two nodes if there is no influence of either one on the other. The majority of such resource

dependency graphs for a cyber mission are acyclic in nature. This motivated the use of a Bayesian network,

based on a directed acyclic graph, for performing what-if analyses on a cyber terrain model should a set of

resources become unavailable. This framework allows cyber defensive policies to be evaluated in terms of

their consequences in the context of a mission.

The estimation of the effect of availability of resources on the completion of a mission can be cast

as a top-down or causal reasoning problem where the states of the resources (the nodes that cause an

outcome - the mission status) are specified and the effect (the probability of success of the mission) is to

be inferred. A natural way to formulate this task is to treat each of the resources and the goals of the mission

as random variables, and define causal relationships among them. If R = {r1, r2, . . . , rNR
} denotes the set

of NR resources, and M denotes the mission, then we are interested in estimating the probability P(M|R′)

for some R′ ⊆ R. The obvious way to compute P(M|R′) is to compute the joint distribution P(M,R)
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and then marginalize over R \ R′. In practice, NR can be quite large, making the direct marginalization

over the joint distribution computationally impractical. However, this computation can be simplified by

taking advantage of any conditional independencies among the resources. An efficient way to compute the

probability of a mission conditional on a set of resources is through belief propagation in a Bayesian network

model exploiting all such conditional independencies.

In our approach, a Bayesian network, which is a directed acyclic graph is used to model the relationships

among the resources and the mission tasks in an intuitive way, where a directed edge A → B represents

the relationship that the cyber resource B depends on the resource A. Nodes A and B are conditionally

independent given a node C if P(A|B,C) = P(A|C). This is denoted by the notation A y B|C. In this case, no

edges are drawn between A and B. This graph structure is embedded in a probability space to quantify the

effect of a parent node on a child by associating a conditional probability distribution with each child node in

the graph. The simpler the structure of such a graphical model, the simpler will be the inferencing process.

The current research focuses on resource dependencies without any cycles, which cover the overwhelming

majority of cyber missions. Hence, acyclic constraint of a Bayesian network does not pose any limitation.

In our application domain, the number of vertices in the graph is dictated by the number of resources and

subtasks, and hence fixed for a given cyber terrain. Hence, the only way to simplify the graph structure is

by reducing the number of edges when appropriate, and the key is to exploit all conditional independence

properties. To this end, it is assumed that the graphical model satisfies the Markov condition

vi y nd(vi)|pa(vi)∀vi ∈ {M,R} (1)

where nd(vi) denotes the non-descendant nodes of the vertex vi in the Bayesian network, and pa(vi) denotes

the parents of vi. Equation (1) states that any node in the network is independent of its non-descendants

given its immediate parents. This is a reasonable assumption to make for the resource models in the

current application domain. These independence properties influence the structure of the Bayesian network.

The dependency structure of the Bayesian network allows us to factorize the multivariate joint distribution

P(M,R) into univariate statistics (the conditional probabilities of the nodes), and the causal Markov condition

(Equation (1)) significantly simplifies the specifications of these node level conditional probabilities. In

essence, we can now compute the joint distribution as

P(M,R) =

N
∏

i=1

P(vi|pa(vi)) (2)

where {vi}
N
i=1 is the set of all the nodes in the Bayesian network, and pa(vi) refers to the immediate parents

of the node vi.

2.1.1 An Example Scenario

Figure 1 illustrates a Bayesian network for a simplistic and fictitious cyber mission. In this scenario, a

company has offices in San Francisco and Boston, with their main file server located in Boston. They also

maintain a backup file server on the cloud. The mission is to access a file using a computer at the San

Francisco location. The Bayesian network in Figure 1 models this mission. This is a directed graph with

arrows pointing from parents to children where a child node is functionally dependent on its parents. Thus,

the directed arrow from the node “Internet” to “BOS Router” implies that the router at the Boston office

depends on its access to the Internet in order for it to be functional. The cyber assets are shown as ovals, and

logical operations are depicted as gray double circles. The node corresponding to the mission is a rectangle.

By default, all the assets are shown in green, indicating that they are all fully functional. If any of the nodes

become inoperational, they are colored red.
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Figure 1: Example of a simplistic mission

According to this network, in order for the above described mission to succeed, the computer being used

to support the mission (node “SF Comp”) has to be functional, as well as either the cloud based backup file

server (node “Cloud Serv”) or the file server at the Boston office (node “BOS Serv”) has to be operational.

These parent nodes of the mission in turn have their own dependencies. For example, the functionality of

“SF Comp” depends on the state of the wireless access point in the San Francisco office, represented by the

node “SF WAP”. Using the Markov property of Equation (1), the joint probability distribution

P
(

Internet, Cloud Serv, BOS Router, SF Switch, BOS Serv, SF Serv, SF WAP, SF Comp, Mission
)

=

(

P(Internet).P(Cloud Serv | Internet).P(BOS Router | Internet).P(S F S witch | Internet).

P(BOS S erv | BOS Router).P(S F S erv | S F S witch).P(S F WAP | S F S witch).(S F Comp | S F WAP).

P(Mission | Cloud S erv, BOS S erv, S F Comp)
)

2.2 Bayesian Network Construction

The Bayesian network describing a cyber mission model over a specified cyber terrain is constructed based

on knowledge of domain experts. The dependencies among the raw cyber resources relevant to a mission are

obtained from domain specifications. The state space for each resource is assumed to be discrete and finite.

A majority of the resources have a binary state space, and they can either be ON or OFF corresponding

enumerated values of 1 and 0 respectively. However, arbitrary number of states are allowed. This is

useful for modeling system degradation, where a resource may not be fully operational (ON) or completely

inoperational OFF but may function at a reduced level of efficiency.

There are two main steps to defining a Bayesian network to model a cyber mission. The first step is

to define the causal dependencies among the resources. This determines the topology of the network by

JSM 2016 - Section on Statistics in Defense and National Security

1364



constructing directed edges between (parent, child) tuples where the parent has a causal effect on the child.

The second step is to define the conditional probability table (Darwiche 2010) for each node, which encodes

the strengths of the causal influences of all the parents on the node. In our case, both of these steps are

carried out using the experience and expertise of a domain expert, since usually there is not enough relevant

data available for automated structure learning for the Bayesian network.

2.2.1 Modular Bayesian Network

In a complex Bayesian network, it is not uncommon to find multiple nodes dependent on a set of common

ancestral nodes in an identical way. Figure 2 illustrates a case.

(a) (b)

(c) (d)

Figure 2: Example of object oriented Bayesian network

Fig 2(a) shows a directed graph representing a mission model consisting of resources shown in green

circles. Here, the nodes G and H have common dependencies as shown in the grey box in Figure 2(b).
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They both depend on the resources A, B, C, D and E in the same way. When such a common dependenciy

is frequent enough in a Bayesian network, it is encapsulated as a higher level function module, and the

Bayesian network is subsequently described in terms of these high level modules. Figure 2(c) shows a

function module called Func1 that encapsulates the common dedpency depicted in Figure 2(b), and Figure

2(c) shows the original Bayesian network in Figure 2(a) redefined in terms of the function module Func1.

Thus, the original causal network is decomposed into a set of logical functional units, and a set of raw

resources that do not fit into any functional unit. The functional units constitute high level building blocks for

the model. Such a decomposition allows higher level description of the mission in terms of these functional

units, resulting in significantly more compact representation of the model compared to one in terms of raw

resources only. Such a high level representation is also easier to comprehend and debug since the higher

level functions resulting from the aggregation of a set of raw resources abstract away low-level non-intuitive

inter-dependencies. In a complex dependency graph, it is also likely that the graph obtained by the first

level of modularization manifests potential for defining even higher level functions composed of the first

tier function modules and/or raw resources. The Bayesian network framework in our implementation allows

arbirary levels of nested function hierarchies for a fully generalized network structure specification.

In addition to the above mechanism, higher level function blocks are also defined to encapsulate functions

that can be used to abstract away many behind the scene dependencies that may not be directly relevant in

defining a specific mission model.

Map 
 Server

Mission

Image 
 Database

Smoke 
 detector

Power 
 supply

Hadoop 
 Cluster

Database 
 Server

Switch

Router1

Router2

Router3

Map 
 Server

(a) b

Figure 3: Example of abstraction of low level dependencies via a high level function. (a) a high-level

Bayesian network describing a mission model, (b) expanded view of the high level function Map Server

used in (a).

For example, consider a mission where the goal is to perform geo-spatial analysis of an image that

requires the availability of a map server and an image database server. The Bayesian network in Figure
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3(a) represents this mission model. Figure 3(b) shows the Bayesian network behind the high level function

Map Server used in the mission model. Since the Map Server is likely to be useful in other missions as

well, defining this high level function allows a compact representation of any mission that depends on the

Map Server. It is envisioned that a library of such re-usable high level functions would be developed for an

application domain based on the expertise of domain experts. The construction of the high level functional

modules is currently more of an art than science. The determination of the functional granularity is subjective

and is determined manually.

2.3 Inferring The Impact Of A Policy

The goal of the Bayesian network presented here is to quantify the impact of a cyber defense policy on a

mission, and compare a set of policies in order to select the one that is most suitable to achieve the goals

of the specific mission at hand. A policy is defined as state specifications for a set of cyber resources that

the mission depends on. For example, if an attack on a web server is detected, a policy may be to turn off

web services on the host machine. In the current context, the state of a resource is binary. It is either On

or Off. The Bayesian network allows incorporation of contextual knowledge about any resource, such as its

reliability, via the conditionanl probability tables or the probability of a root node to be in an ON state. Also,

the framework is perfectly general to allow incorporation of resources with an arbitrary number of discrete

states. Once the Bayesian network is constructed for a given mission M that depends on a set of resources

R = {r1, r2, . . . , rNR
}, the impact of a policy that requires setting the state of a subset of resourcesR′ ⊆ R is the

probability of mission success P(M|R′). This is computed using the belief propagation algorithm proposed

in the seminal work by Pearl (Pearl 1982) and extended by Kim and Pearl (Kim 1983). This probability

is thresholded by a domain dependent threshold parameter to flag the mission as failed or successful. The

probability of mission success is the metric used to compare different policies and select an optimal one.

2.4 Incorporating Current State of The Mission

In many cases, a mission can be decomposed into a set of functional sub-tasks, where a mission is considered

to be complete once all the sub-tasks are completed. These sub-tasks may have sequential temporal

dependence; may be independent of each other; or the mission may depend on a mixture of both types

of subtasks.

T1 T2 T3

Mission

T1 T2 T3

Mission

T1 T2 T3

Mission

(a) (b) (c)

Figure 4: Dependencies of a mission on parent sub-tasks

Figure 4 illustrates these different scenarios. In Figure 4(a), the mission is decomposed into a set of

sub-tasks with sequential dependence. The sub-task T3 depends on the sub-task T2, which in turn depends

on T1. The overall mission depends on T3. Figure 4(b) shows a case where the mission depends on a set
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of sub-tasks T1, T2, and T3 that are independent of each other. Figure 4(c) is an example of a mixed case,

where the subtask T2 is dependent on the sub-task T1 but T3 is independent of T1 or T2.

In our framework, a dynamic status is maintained of all the sub-tasks, and the Bayesian network for the

entire mission is pruned by collapsing the sub-network corresponding to a completed sub-task to a single

node having the state of that sub-task (success or failure). For example, if the task T2 in Figure 4(b) is

already completed and it failed, then the subgraph G(T2) corresponding to the dependencies of T2 on cyber

resources is collapsed to the single node T2 with its status. This reduces the complexity of computing

the impact of a set of resources on the overall mission, because, from now on, any resource rk such that

rk ∈ G(T2) \
(

G(T2) ∩
(

G(T1) ∪G(T3)
))

can be ignored in terms of its influence on the future of the mission.

3. Results

A graphical user interface (GUI) was developed to allow a user to interactively explore the impact of any

policy from a feasible collection of policies generated by an external policy generation engine or by a domain

expert. A policy essentially corresponds to setting the states of a set of cyber resources to desired values. The

GUI allows one to set the states of any set of cyber resources and analyze the effect on the overall mission.

Figure 5: GUI to set the states of resources

Figure 5 shows this user interface. The

set of available cyber resources relevant to the

Bayesian network is shown on the left. Right

clicking on a resource displays the available

states in a pop−up window (as shown in

the region marked with a red ellipse in the

figure), from which a desired state can be

selected by clicking on it. Once the states

of all the desired resources are set to relevant

values corresponding to a policy, the effect of

this policy can be visualized by clicking the

“Update” button below the list of resources.

Figure 6(a) and 6(b) show examples of

such exploratory visualization for a sample

mission that succeeds if the function module

SF to World succeeds, and at least one of

the function modules Access BOS Serv and

Access Virt Serv succeeds.

Figure 6(a) shows the effect of a policy that requires turning off the node named BOS Router, which

causes the node BOS Serv and the function module Access BOS Serv to fail, as indicated by the red color

for these nodes. However, the mission itself succeeds because the function modules SF to World and

Access Virt Serv reach successful states. Figure 6(b) shows the effect of turning off the nodes BOS Serv

and Virt Serv. In this case, the overall mission fails and the reason is clearly visualized as the propagation

of failures along red colored paths leading to the Mission node. The real value of this exploratory tool is

appreciated for more complex networks where it is practically impossible to manually ascertain the impact

of setting the states of a set of resources to specific values.
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(a)

(b)

Figure 6: Visualization for if-then exploratory analysis

4. Conclusion

This paper has presented a probabilistic graphical model based on a Bayesian network to capture the

interdependencies among the cyber resources that a given cyber mission depends on. The directed acyclic

graph based representation makes it intuitive for human cognition to comprehend the inter-dependencies,

and the probability space imposed on the graph facilitates a disciplined way to quantify the impact of a cyber

defense policy on a mission. Under adversarial cyber attack, usually there is more than one defensive policy

that can be adopted to mitigate the immediate risk, but not all of them have the same impact on the mission

as a whole. Some policies may cause unnecessary cyber fratricide, hence jeopardizing the mission, while

others may be overly conservative and cause avoidable delays, thus making the mission fail. The probabilistic

framework presented here allows an analyst to quantify the impact of a policy on mission success and thus

prioritize the different feasible policies in the context of the mission at hand. The user interface allows

an analyst to not only quantify the impact as the probability of mission success, but it also allows one to

visualize the chain of events that affect the mission in an adverse manner.
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The directed acyclic graph based model used here addresses the vast majority of cyber missions in

practice. However, there are rare situations where cyclic dependency relations need to be taken into account.

This is the focus of our future research. The goal is to expand the framework to relax the constraint of acyclic

dependency without sacrificing the advantages of a probabilistic graphical model.
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