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Abstract 
The �̅�  control chart is commonly used for monitoring the mean of a process. Its 
performance when the process parameters are estimated has been widely discussed in the 
literature. Most of these studies have focused on the unconditional in-control (IC) run 
length distribution. However, recent works showed that in the face of parameter estimation, 
the knowledge of the conditional IC average run length (𝐶𝐴𝑅𝐿0 ) distribution or the 
conditional false alarm rate (𝐶𝐹𝐴𝑅) distribution may be more useful. To this end, we study 
the performance of the �̅� chart where the mean is specified but the standard deviation is 
unknown and is estimated from a set of Phase I reference data, by providing a closed form 
expression for the cumulative distribution function (c.d.f.) of the 𝐶𝐹𝐴𝑅 (and the 𝐶𝐴𝑅𝐿0).  
Using these expressions, we construct a one-sided prediction interval for the 𝐶𝐹𝐴𝑅 for 
several Phase I (reference) sample sizes and show that the minimum number of reference 
samples that guarantees a desired typical nominal IC performance is large and infeasible 
in many practical settings. Following up, we propose corrections of the control limits in 
order to guarantee a desired IC performance for several numbers and sizes of reference 
samples. 
 
Key Words: �̅� Control Chart Performance, Conditional and Unconditional 
Performance, False Alarm Rate, Control Limits Adjustments, Guaranteed In-Control 
Performance, Average Run Length 
 
 

1. Introduction 
 
Control charts, created by Walter A. Shewhart while working for Bell Labs in the 1920s 
and first published in a book in 1931, are still one of the most used tools for monitoring the 
quality characteristics of a process (see, for example, Alsyouf et al. (2015)). The control 
chart to monitor a process mean, namely �̅� control chart is widely used in practice in many 
different areas such as manufacturing industries and medicine (see, for example, Albloushi 
et al. (2015)). The in-control (IC) process mean (𝜇0 ) and standard deviation (𝜎0) are 
important parameters in the designing of the �̅� control chart. Usually these parameters are 
unknown and they are estimated from 𝑚 reference samples each of size 𝑛 when process is 
in control. This phase or part of SPC is called Phase I. For an overview of Phase I statistical 
process control the reader is referred to Chakraborti et al. (2009) and Jones-Farmer et al. 
(2014). 
 
After the Phase I analysis (and hence the estimation of the process parameters and control 
limits), the �̅� control chart is used to start monitoring the process mean, based in incoming 
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or test data, and this part of the SPC is called Phase II. The performance of the Phase II �̅� 
control chart, when their Phase I parameters estimates (�̂�0 or �̂�0) are used, may be severely 
affected relative to the situation when 𝜇0 or 𝜎0 are known. Since Shewhart (1939, p. 76), 
this problem has been recognized and analyzed by several authors. For example, 
Quesenberry (1993), Chen (1997) and Chakraborti (2000) have showed that a lot of Phase 
I data are needed to get accurate control chart limits with unconditional performance 
comparable to the known parameter case. For reviews of the works on the effect of 
parameters estimation on the performance of control charts in general until 2006, see 
Jensen et al. (2006) and, for more recent developments, see Psarakis et al. (2014). 
 
In the present paper we study the conditional performance of the �̅� control chart when only 
the IC process standard deviation (𝜎0) is estimated (by �̂�0). According to Montgomery 
(2009), when the mean of the quality characteristic is controlled by adjustments to the 
machine, the use of the nominal (or target) values of the process mean, 𝜇0, (instead of 
estimate the process mean by �̂�0)  and estimate only the process standard deviation, 𝜎0 (by 
�̂�0 ) are sometimes helpful in achieving management goals with respect to process 
performance. Ghosh et al. (1981) also studied the �̅�  control chart in this case, but 
differently than us, they focused on the unconditional performance. In the present paper, 
we argue that the conditional performance approach is more useful to the user. 
 
The most common performance measure of a control chart presented in the literature is the 
average number of samples until an alarm (or signal) is signaled by the chart. This is also 
called the average run length (𝐴𝑅𝐿) and it is the expected value of the discrete random 
variable called the run length (𝑅𝐿), which stands for the number of samples until an alarm. 
When process parameters are known, the 𝑅𝐿 follows a geometric distribution in which the 
parameter is the probability of a signal (𝑃(𝑆𝑖𝑔𝑛𝑎𝑙)). Note that, in this case, 𝐸(𝑅𝐿) =
𝐴𝑅𝐿 = 1 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙)⁄ . When the process is in-control (IC), the 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝐼𝐶) is called the 
False Alarm Rate (𝐹𝐴𝑅) and 𝐴𝑅𝐿 = 𝐴𝑅𝐿0 = 1 𝐹𝐴𝑅⁄ . In the case where the IC standard 
deviation has to be estimated (by �̂�0), 𝐴𝑅𝐿 and 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙), or 𝐹𝐴𝑅 when process is IC, 
are conditioned on the values of the estimated standard deviation (for example, 𝐴𝑅𝐿 =
𝐸(𝑅𝐿|�̂�0) and 𝐹𝐴𝑅 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝐼𝐶, �̂�0)), so in this cases, they are random variables (since 
�̂�0  is a random variable) with their own means and standard deviations ( 𝐴𝐴𝑅𝐿 =

𝐸(𝐸(𝑅𝐿|�̂�0)) = 𝐸(𝑅𝐿) and 𝑆𝐷𝐴𝑅𝐿 , respectively for  𝐴𝑅𝐿 ). To make explicit that the 
values of 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿 and 𝐹𝐴𝑅 are conditioned on the values of the estimated standard 
deviation (�̂�0), let´s denote them respectively by 𝐶𝐴𝑅𝐿 = 𝐸(𝑅𝐿|�̂�0), 𝐶𝑆𝐷𝑅𝐿 and 𝐶𝐹𝐴𝑅 =
𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝐼𝐶, �̂�0). In this case, 𝑅𝐿 does not follow a geometric distribution. However, 
conditioned on �̂�0, the conditioned run length distribution of the �̅� chart is geometric (with 
parameter 𝐶𝐹𝐴𝑅 , in the case of IC process). So note that, in this case, 𝐸(𝑅𝐿0|�̂�0) =
𝐶𝐴𝑅𝐿0 = 1 𝐶𝐹𝐴𝑅⁄ . Also note that, according to the Law of Total Expectation, 𝐴𝐴𝑅𝐿 =

𝐸(𝐶𝐴𝑅𝐿) = 𝐸(𝐸(𝑅𝐿|�̂�0)) = 𝐸(𝑅𝐿). 
 
Most researchers studying the effect of the parameter estimation on the performance of 
control charts have focused on the unconditional IC average run length ( 𝐴𝐴𝑅𝐿0 =
𝐸(𝐶𝐴𝑅𝐿0) = 𝐸(𝑅𝐿0)) as the main performance measure. However, in a given application, 
the user would most likely have a single reference sample to estimate the control chart 
parameters and thus the performance of the Phase II chart would depend on the estimates 
obtained from the reference sample. Thus, several authors like Trietsch and Bischak 
(1998), Chakraborti (2000 and 2006), Bischak and Trietsch (2007), Epprecht et al. (2015) 
and Saleh et al (2015b) have argued that a study focusing on the distributions of the random 
variables 𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅 is more useful to practitioners. In this context, we argue that 
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the IC performance should not only be measured with the overall average 𝐴𝐴𝑅𝐿0 =
𝐸(𝐶𝐴𝑅𝐿0) = 𝐸(𝑅𝐿0)), but since the 𝐶𝐴𝑅𝐿0 is a random variable, one should examine the 
probability that the 𝐶𝐴𝑅𝐿0 (or the 𝐶𝐹𝐴𝑅) is higher than a specified large value.  This 
exceedance probability can be a good measure of the in-control performance of the chart 
with estimated parameters.  For example, it is desirable that the probability that the  𝐶𝐴𝑅𝐿0 
exceeds 370 (the most common target for the number of sample until a false alarm in 
average) should be high, since if it’s small, then the �̅� chart is not performing well as it is 
desirable to have a large in-control 𝐴𝑅𝐿  such as 370. This is called the exceedance 
probability criterion and it was introduced by Albers et al. (2005). 
 
Focusing on the exceedance probability criteria, one of the main objectives of this work is 
to better understand the distributions of the 𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅 when the standard deviation 
is estimated. After all, the best scenario is when the 𝐶𝐴𝑅𝐿0  is large and the 𝐶𝐹𝐴𝑅 is small, 
but as noted earlier, these are random variables, so we can study their distributions and 
calculate some exceedance probability. In the latter sense, we consider a one-sided 
prediction interval for the 𝐶𝐹𝐴𝑅. Then, for several sample sizes, we obtain the minimum 
number of reference samples that guarantees, with a specified high probability (say, 90%), 
that the conditional false alarm rate does not exceed the nominal value by more than a pre-
specified small percentage (say, 10%).  This analysis is in the same spirit as in  Epprecht 
et al. (2015), who considered the 𝑆 chart. We will see that as in Epprecht et al. (2015), the 
minimum number of the reference samples needed to guarantee an acceptable in-control 
conditional performance of the �̅� chart, is quite large, larger than what has been suggested 
by earlier authors. 
 
Hence, considering the fact that such a large number of reference samples would be 
unfeasible in many practical settings, we finally propose some adjustments to the control 
limits of the �̅� chart, so as to limit to a specified small probability, the probability that the 
𝐶𝐹𝐴𝑅 exceeds a pre-specified bound which may be tolerated by the user.  Using a similar 
formulation, Gandy and Kvaloy (2013), Aly et al. (2015) and Faraz et al (2015) used the 
bootstrap method to make such adjustment for many types of charts, but not for the 
situation in which we are considering here.  Moreover, we obtain exact formulas for the 
adjustments in the normal distribution case which can be implemented without 
bootstrapping.  It may be noted that using an exceedance probability control criterion, 
Albers and Kallenberg (2004a, 2004b, 2005) also proposed control limit corrections, bude 
differently than us, for the 𝑋 chart (individual data) in the case where the process mean and 
the process standard deviation are both estimated. To this end, they derived an 
approximation for the distribution of 𝐶𝐹𝐴𝑅 instead of deriving exact expressions like us. 
 
The key to our results is the cumulative distribution function (c.d.f.) of the 𝐶𝐹𝐴𝑅 (and the 
𝐶𝐴𝑅𝐿0).  We derive exact expressions for the c.d.f.’s under normality and do not consider 
any asymptotic methods or approximations (or simulations) unlike many authors studying 
the problem of parameter estimation for the �̅� control chart. 

Finally, it should be noted that the present paper is a part of a bigger work in which we also 
study other cases of parameter estimation, including the case when the process mean is 
estimated and we also analyse the out-of-control performance after the adjustment of the 
limits. 
 
The paper is organized as follows: In Section 2, we consider the �̅� control chart when the 
process standard deviation is estimated. We derive exact expressions for the 𝐶𝐹𝐴𝑅 and the 
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c.d.f. of the 𝐶𝐹𝐴𝑅. Prediction bounds for the 𝐶𝐹𝐴𝑅 is considered in Section 3.  In Sections 
4 and 5 we consider the minimum number of reference samples and the adjustment to the 
control limits in order to achieve a specified in-control performance. Finally, conclusions 
are presented in Section 6. 
 
2. The �̅� Control Chart model when Process Standard Deviation is Estimated 

First note that in the ideal (but unreliable) case, the process mean and standard deviation 
are both known. The general expressions for the upper and low control limits (𝑈𝐶𝐿 and 
𝐿𝐶𝐿) of the �̅� chart are 

𝑈𝐶𝐿 = 𝜇0 + 𝐿
𝜎0 

√𝑛
,                                                           (1) 

𝐿𝐶𝐿 = 𝜇0 − 𝐿
𝜎0 

√𝑛
                                                            (2)                                                                

where 𝜇0 is the in-control process mean and 𝜎0 is the in-control process standard deviation.  
This situation is referred to as Case KK. 

 
In many cases, however,  just the standard deviation 𝜎0  is unknown but the mean is 
specified or known.  This is referred to as Case KU.  In this case, the process standard 
deviation is typically estimated from 𝑚 historical (reference) samples each of size 𝑛 when 
process is in control from a Phase I analysis.  Let �̂�0 denote this estimator.  Mahmoud et 
al. (2010), after having analyzed several estimators of the standard deviation (𝜎0) in terms 

of the mean squared error, recommended that �̂�0 = 𝑆𝑝 = √
1

𝑚
∑ 𝑆𝑖

2𝑚
𝑖=1  where 𝑆𝑖

2 =

1

𝑛−1
∑ (𝑋𝑖,𝑗 − �̅�𝑖)

2𝑛
𝑗=1  and �̅�𝑖 =

1

𝑛
∑ 𝑋𝑖𝑗

𝑛
𝑗=1  (where 𝑖 = 1,2,… , 𝑚 , 𝑗 = 1,2,… , 𝑛  and 𝑋𝑖𝑗  is 

the 𝑗-th observation of the 𝑖-th Phase I sample of size 𝑛 For this reason, in the present work, 
we considered �̂�0 = 𝑆𝑝. We also assume that 𝑋𝑖𝑗 is normally distributed and independent 
(𝑋𝑖𝑗~𝑁(𝜇0, 𝜎0)). 
If the operator of the chart wishes to set limits in function of a nominal false alarm rate, 
namely 𝛼𝑛𝑜𝑚, then 𝐿 = 𝑧𝛼𝑛𝑜𝑚

2
= Φ−1 (1 −

𝛼𝑛𝑜𝑚

2
) where Φ−1 is the inverse of the standard 

normal cumulative distribution function. The usual 3-sigma limits correspond, thus, to a 
nominal false alarm 𝛼𝑛𝑜𝑚 = 0.0027, be it explicitly desired by him/her or just ignored. 
 
2.1 The Conditional False Alarm Rate 
In Case KU, with �̂�𝟎 = 𝑺𝒑, the conditional probability of a signaling event (𝑺), during 
Phase II, is expressed as below. 

 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑆𝑝) = 1 − 𝑃 ( 𝜇0 − 𝐿
𝑆𝑝

√𝑛
≤ �̅�𝑘 ≤ 𝜇0 + 𝐿

𝑆𝑝𝑜𝑜𝑙𝑒𝑑

√𝑛
)                     (3) 

�̅�𝑘 is the mean of kth sample collected during Phase II, so �̅�𝑘 =
1

𝑛
∑ 𝑋𝑘𝑗

𝑛
𝑗=1  and 𝑘 = 𝑚 +

1,𝑚 + 2,𝑚 + 3,…  To maintain generality, let 𝜇 denote the process mean during Phase II, 
so �̅�𝑘~𝑁(𝜇,

𝜎0

√𝑛
). Note that if 𝜇 = 𝜇0, the process mean is in control. However, when 𝜇 =

𝜇1 ≠ 𝜇0, the process mean is out of control. Also let 𝑊 =
𝑆𝑝𝑜𝑜𝑙𝑒𝑑

𝜎0
 denote  the error factor 

of the estimate of the in-control process standard deviation 𝜎0 .  In the situation when 
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process is in control, the conditional false alarm rate (𝐶𝐹𝐴𝑅), which is the probability of a 
signal in the in-control case, can be expressed as below. 

𝐶𝐹𝐴𝑅 = 1 − (Φ(𝐿𝑊) − Φ(−𝐿𝑊)) = 2Φ(−𝐿𝑊)                              (4) 

Using the fact that  𝑌 = 𝑚(𝑛 − 1)𝑊2~𝜒𝑚(𝑛−1)
2  and the probability integral 

transformation, the c.d.f. of 𝑌, namely 𝐹𝑌(𝑌) (or 𝐹𝜒𝑚(𝑛−1)
2 (𝑌)), has the same distribution 

of a random variable 𝑈  uniformly distributed between 0  and 1 , we can write 𝑌 =

𝐹
𝜒𝑚(𝑛−1)

2
−1 (𝑈). So, it is clear that the 𝐶𝐹𝐴𝑅 in Case KU depends on one random variable 𝑌 

(or, equivalently, on 𝑈 or on W) and hence is itself a random variable. The 𝐶𝐹𝐴𝑅, using 
(4), can be written as: 

𝐶𝐹𝐴𝑅 = 2Φ (−𝐿√
𝐹
𝜒𝑚(𝑛−1)

2
−1 (𝑈)

𝑚(𝑛−1)
)                                                  (5)           

It is interesting to examine the 𝐶𝐹𝐴𝑅 as a function 𝑚, 𝑛 and 𝑈.  For example, Figure 1 
shows the curves of 𝐶𝐹𝐴𝑅  (in function of 𝑢 ∈ (0,1) ), for 𝑛 = 5, , 𝐿 = 3  which 
corresponds to 𝛼𝑛𝑜𝑚 = 0.0027 for varying 𝑚 = 10, 20, 50,100,500. The effect of the 
standard estimation on 𝐶𝐹𝐴𝑅 for different number of Phase I samples 𝑚 is clearly seen. 
The difference between the 𝐶𝐹𝐴𝑅 and the 𝛼𝑛𝑜𝑚 (the horizontal line) is larger for small 
values 𝑚  comparing to the same difference when 𝑚  is large for all values of 𝑈 . It is 
interesting to note that the 𝐶𝐹𝐴𝑅 = 0.0027 for all 𝑚 when 𝑢 is close to  0.53.  This means 
that if one is “lucky” to obtain an estimate which is close to the 0.53 quantile of the 𝜒𝑚(𝑛−1)

2  
distribution, then the  𝐶𝐹𝐴𝑅 will be equal to 𝛼𝑛𝑜𝑚 = 0.0027.  If not, different estimates 
from different sets of in-control data from the same/different practitioners can produce 
vastly different 𝐶𝐹𝐴𝑅 values some much larger and some smaller than the nominal value.  
This is evidence of what has been called “practitioner-to-practitioner” variation.  Also, note 
that the 𝐶𝐹𝐴𝑅 curves are not equi-distant from 0.0027 on the upper and the lower sides of 
𝑢 close to 0.53 which means that getting an estimate in the lower tail, further from roughly 
the median is more problematic (much higher false alarm rate than the nominal) than the 
one on the upper tail (lower than nominal false alarm rate).  In some cases, the difference 
is relatively very big.  This behavior is because, as we will see in this paper, the distribution 
of 𝐶𝐹𝐴𝑅 is skewed and with less samples to estimate the standard devotion, less precise 
the estimation is. 
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Figure 1: 𝐶𝐹𝐴𝑅 as function of 𝑢 for 𝑛 = 5, 𝑚 = 10,20,50,100,500 and 𝛼𝑛𝑜𝑚 = 0.0027 
(L = 3) 

Given that the in control conditional run length (𝑅𝐿0 ) distribution of the �̅�  chart is 
geometric with parameter 𝐶𝐹𝐴𝑅 (see, for example, Chakraborti (2000)), then its expected 
value, the conditional in-control average run length 𝐶𝐴𝑅𝐿0, is: 

 𝐸(𝑅𝐿0|�̂�0) = 𝐶𝐴𝑅𝐿0 =
1

𝐶𝐹𝐴𝑅
                                                (6) 

Note that 𝐸(𝐶𝐴𝑅𝐿0) = 𝐸(𝐸(𝑅𝐿|�̂�0)) = 𝐸(𝑅𝐿0) is the unconditional in control average 
run length and it has been the most commonly used metric to measure the in control 
performance of a control chart (see, for example, Faraz et al. (2015)). 
 
2.2 The cumulative distribution function of 𝑪𝑭𝑨𝑹 and 𝑪𝑨𝑹𝑳𝟎 
As shown in Equation (6), the  𝑪𝑨𝑹𝑳𝟎 is a monotonic decreasing function of 𝑪𝑭𝑨𝑹, so 
the cumulative distribution function (c.d.f.) of 𝑪𝑭𝑨𝑹 (𝑭𝑪𝑭𝑨𝑹(𝒕)) is related with the c.d.f 
of 𝑪𝑨𝑹𝑳𝟎 (𝑭𝑪𝑨𝑹𝑳𝟎

(𝒕)) as shown below: 

𝐹𝐶𝐹𝐴𝑅(𝑡) = 𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡) = 𝑃(𝐶𝐴𝑅𝐿0 ≥ 𝑡−1) = 1 − 𝐹𝐶𝐴𝑅𝐿0
(𝑡−1)           (7) 

From Figure 1 it can be seen that 𝐶𝐹𝐴𝑅 is a monotonically decreasing function of  𝑢. Also 
the 𝐶𝐹𝐴𝑅  is an invertible function and so it is possible to find the expression of its c.d.f. 
from Equation (5) as shown below.  

𝐹𝐶𝐹𝐴𝑅(𝑡) = 𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡) = 𝑃 (2Φ (−𝐿√
𝐹
𝜒𝑚(𝑛−1)

2
−1 (𝑈)

𝑚(𝑛 − 1)
) ≤ 𝑡) 
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= 𝑃 (Φ (−𝐿√
𝑌

𝑚(𝑛 − 1)
) ≤

𝑡

2
) = 𝑃 (−𝐿√

𝑌

𝑚(𝑛 − 1)
≤ Φ−1 (

𝑡

2
)) 

= 𝑃 (𝑌 ≥ 𝑚(𝑛 − 1)(−
Φ−1 (

𝑡
2
)

𝐿
)

2

) = 1 − 𝑃 (𝑌 ≤ 𝑚(𝑛 − 1)(−
Φ−1 (

𝑡
2
)

𝐿
)

2

) 

      = 1 − 𝐹χ𝑚(𝑛−1)
2 (𝑚(𝑛 − 1)(−

Φ−1(
𝑡

2
)

𝐿
)

2

)                                   (8)                                                       

Where 𝑡 is any possible value for 𝐶𝐹𝐴𝑅 (0 ≤ 𝑡 ≤ 1). 

Figure 2 shows the c.d.f. of 𝐶𝐹𝐴𝑅 given by Equation (8) for values of 𝑛 = 5,  𝛼𝑛𝑜𝑚 =
0.0027 (𝐿 = 3 and for varying 𝑚 = 10,20, 50, 100, and 500 The effect of estimation 
(and the impact of the amount of Phase I data) on the 𝐶𝐹𝐴𝑅 is again clearly seen in Figure 
2. It can be seen that the distribution of 𝐶𝐹𝐴𝑅 is skewed to the right and when the number 
of reference sample, 𝑚, grows, more skewed the distribution is. 

 
Figure 2: c.d.f. of  𝐶𝐹𝐴𝑅  for different values of 𝑚 (the number of initial samples), 
𝛼𝑛𝑜𝑚 = 0.0027(L = 3) 
 

3. Prediction Intervals 

We next consider the problem of prediction of 𝐶𝐹𝐴𝑅 since it is a random variable.  For 
example, it may be of interest to know, in practice, in a given Phase II application, what 
the highest 𝐶𝐹𝐴𝑅 (an upper bound to the 𝐶𝐹𝐴𝑅) can be, with a certain (high) probability.  
Put in another way, for a given 𝑚 and 𝑛, that is some Phase I reference data, it may be of 
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practical interest to know the value of 𝐶𝐹𝐴𝑅 that has only a specified high probability 1 −
𝑝 (say, 90%) of not being exceeded.  This means that we need to find the value 𝛼𝑝 such 
that when the process is in control: 

𝐹𝐶𝐹𝐴𝑅(𝛼𝑝) = 𝑃(𝐶𝐹𝐴𝑅 ≤ 𝛼𝑝) = 1 − 𝑝                                    (9) 

Using Equation (8), it is possible to derive an exact expression of 𝛼𝑝 as shown below 

𝐹χ𝑚(𝑛−1)
2 (𝑚(𝑛 − 1)(−

Φ−1(
𝛼𝑝

2
)

𝐿
)

2

) = 𝑝 ∴ 𝛼𝑝 = 2Φ (−𝐿√
𝐹

χ𝑚(𝑛−1)
2
−1 (𝑝)

𝑚(𝑛−1)
)          (10) 

Tables 1 presents the values of 𝛼𝑝  for 𝑝 = 5% (the 0.95 quantile), 𝑝 = 10%  (the 0.9 
quantile) and for some values of 𝑚 and 𝑛. As it can be seen, when 𝑚 and/or 𝑛 are small, 
the values of 𝐶𝐹𝐴𝑅 that are exceeded only with a probability of 5% or 10% are much 
higher than the desired 𝛼𝑛𝑜𝑚 . For example, for 𝑚 = 10, 𝑛 = 2 and 𝑝 = 5%, 𝐶𝐹𝐴𝑅 =
0.05968, more than 22 timer larger than 0.0027. 

This means that, if one would like only a 5% or a 10% probability that the 𝐶𝐹𝐴𝑅 exceeds 
𝛼𝑛𝑜𝑚, for small values of 𝑚 and 𝑛, this is mostly not possible for typical values of 𝛼𝑛𝑜𝑚.   
For example, the lowest entries in the table, that occur when 𝑚 = 1000 and 𝑛 = 50 are 
still greater than a typical 𝛼𝑛𝑜𝑚 = 0.0027 So, id the user desire a 𝑝 = 5% or 𝑝 = 10%,  
with an 𝛼𝑛𝑜𝑚 = 0.0027, the user should actually focus in the 𝐶𝐹𝐴𝑅 values in Table 1 
(𝛼𝑝).   

Table 1 - 0.95-quantiles (𝒑 = 𝟓%) and 0.9-quantiles (𝒑 = 𝟏𝟎%) of 𝑪𝑭𝑨𝑹  

 
 

4. Finding 𝒎 for a Guaranteed In-Control Performance 

Another relevant question for the practitioner may be the minimum number 𝑚 of Phase I 
reference samples that guarantees, with a specified high probability 1 − 𝑝 (say, 0.9), that 
𝐶𝐹𝐴𝑅  does not exceed a desired 𝛼𝑛𝑜𝑚  by more than a given small percentage 𝜀  (e.g. 

n 5 10 20 50 100 500 1000
2 0.15103 0.05968 0.02713 0.01237 0.00809 0.00446 0.00386
5 0.02713 0.0146 0.00915 0.00593 0.00473 0.00348 0.00323

10 0.01335 0.00856 0.00618 0.00459 0.00393 0.0032 0.00304
20 0.00831 0.00605 0.0048 0.0039 0.0035 0.00304 0.00293
50 0.00551 0.00449 0.00387 0.0034 0.00318 0.0029 0.00284
2 0.08866 0.03639 0.01797 0.0092 0.00648 0.00401 0.00357
5 0.01797 0.01057 0.00716 0.00503 0.0042 0.00329 0.00311

10 0.00981 0.00679 0.0052 0.0041 0.00363 0.00308 0.00297
20 0.00662 0.00511 0.00425 0.0036 0.00331 0.00296 0.00288
50 0.00474 0.00403 0.00358 0.00323 0.00307 0.00286 0.00281

p
 =

 1
0
%

p
 =

 5
%

m
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10%).  This can be formulated as follows: Given the values of 𝑛, 𝛼𝑛𝑜𝑚, 𝜀 and 𝑝 find the 
minimum number of in-control Phase I samples, 𝑚, such that  

𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)𝛼𝑛𝑜𝑚) = 1 − 𝑝                                        (11) 

This problem is similar to the one in the previous section, with the difference that now 𝛼𝑝  
is given and is equal to a tolerated upper bound to the false alarm rate, (that is, α𝑇𝑂𝐿 =
(1 + 𝜀)𝛼𝑛𝑜𝑚) and 𝑚 is the unknown parameter that needs to be found. Note that, since 𝑚 
is an integer, a perfect match is generally not possible, so, reformulating, 𝑚 should be the 
smallest integer such that 𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)𝛼𝑛𝑜𝑚) ≥ 1 − 𝑝.  

In order to find the values of 𝑚, we can try to find a formula for 𝑚 manipulating Equation 
(10) like it is shown in Equation (12). But this equation shows that finding 𝑚 is more 
involved because it is a function of a quantile of a chi-squared variable whose number of 
degrees of freedom, in turn, is a function of 𝑚.  Hence finding the required solution requires 
a search process.  

Φ−1 (
𝛼𝑝

2
) = 𝐿√

𝐹
𝜒𝑚(𝑛−1)

2
−1 (𝑝)

𝑚(𝑛 − 1)
∴ 𝐹

𝜒𝑚(𝑛−1)
2

−1 (𝑝) = 𝑚(𝑛 − 1)(
Φ−1 (

𝛼𝑝

2 )

𝐿
)

2

 

𝑚 =

⌈
⌈
⌈
⌈
 

𝐹
𝜒𝑚(𝑛−1)

2
−1 (𝑝)

(𝑛−1)(
Φ−1(

𝛼𝑝
2 )

𝐿
)

2

⌉
⌉
⌉
⌉
 

                                                      (12)       

where ⌈a⌉ denotes the smallest integer greater or equal to a.  

Table 2 shows the minimum number of in-control Phase I samples, 𝑚. We considered 
𝛼𝑛𝑜𝑚 = 0.0027, 𝑝 = 5%, 10% and some values of 𝑛 and ε. As can be seen in Tables 2 for 
small values of 𝑛 , one needs a large number of Phase I samples to guarantee such 
performance. These values are larger than the values proposed by other authors like Saleh 
et al. (2015). For example, for 𝑛 = 5 and the case in which the process mean is also 
estimated, Saleh et al. (2015) proposed 𝑚 = 1200. It can be seen in Table 2 that one will 
need much more than 1200 reference samples for 𝜀 = 5% and 𝜀 = 10% when 𝑛 = 5. 

Table 2 - Minimum number of in control Phase I samples, 𝐦, required for 𝑷(𝑪𝑭𝑨𝑹 ≤ (𝟏 + 𝜺)𝜶𝒏𝒐𝒎) =
𝟏 − 𝒑   
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5. Adjustment of the Limits for a Guaranteed In-Control Performance 

Since the required amount of Phase I data is very large and often impractical to guarantee 
a desirable in-control chart performance, in this section we present the adjustment of the 
control limits of the �̅� chart in order to ensure a low probability, 𝑝, that the conditional 
false alarm rate (𝐶𝐹𝐴𝑅) exceeds a tolerated false alarm rate (𝛼𝑡𝑜𝑙) even for small values 
of m and n. Quite usually 𝛼𝑛𝑜𝑚 is 0.0027, leading to the standard 3-sigma limits. Note that 
𝛼𝑡𝑜𝑙 is greater than 𝛼𝑛𝑜𝑚 by a percentage 𝜀.  This formulation allows the user the flexibility 
during implementation of the control chart. 

When 𝐿 = 3 (the commonly used 3-sigma limits) is used, 𝑃(𝐶𝐹𝐴𝑅 ≥ (1 + 𝜀)𝛼𝑛𝑜𝑚) is 
large, especially when 𝜀, 𝑚 and 𝑛 are small. One solution for this problem is to make an 
adjustment on the control limits replacing 𝐿 by 𝐿(𝑝, 𝛼𝑡𝑜𝑙), where 𝐿(𝑝, 𝛼𝑡𝑜𝑙) represent the 
value for the control limit factor that guarantees that 𝑃(𝐶𝐹𝐴𝑅 ≥ 𝛼𝑡𝑜𝑙) = 𝑝 or 𝑃 (𝐶𝐴𝑅𝐿0 ≥
1

𝛼𝑡𝑜𝑙
) = 1 − 𝑝 (according to Equation (7)) for a given values of 𝛼𝑡𝑜𝑙 = (1 + 𝜀)𝛼𝑛𝑜𝑚, 𝑚 

and 𝑛. It is relevant for the practitioners to know the control limit factor, for a given value 
of 𝑚 and 𝑛, that guarantee a low  𝑝 probability of a conditional false alarm rate exceed. 
 
Since we derived a closed-form expression for the c.d.f of 𝐶𝐹𝐴𝑅 given by Equation (8), 
we can develop a closed-form expression for 𝐿(𝑝, 𝛼𝑡𝑜𝑙)  replacing 𝐿  by 𝐿(𝑝, 𝛼𝑡𝑜𝑙)  in 
Equation 12 rearranging the terms. 

𝐿(𝑝, 𝛼𝑡𝑜𝑙) =
Φ−1(

𝛼𝑡𝑜𝑙
2

)

√
𝐹

χ𝑚(𝑛−1)
2

−1 (𝑝)

𝑚(𝑛−1)

                                              (13) 

Tables 3 and 4 show the exact values of 𝐿(𝑝, 𝛼𝑡𝑜𝑙) for same values of 𝑚 and 𝑛 (for 𝑝 =
10%, 𝜀 = 0% and 𝛼𝑛𝑜𝑚 = 0.0027). Note the values in Table 3 leads to 𝑃(𝐶𝐴𝑅𝐿0 ≥
370.4) = 90% for a given values of  𝑚 and 𝑛.  

According to Table 4 for 𝑚 = 30 and 𝑛 = 5, we have 𝐿(10%, 0%) = 3.28. In the case of 
𝑚 = 30 and 𝑛 = 5, using 3-sigma limits (𝐿 = 3), one has 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) = 48.28%. 
In other words, there is a high probability (almost 50%) that the attained average in-control 
run length be smaller than 370.4. This is not the case for 3.28-sigma limits, with which 
this probability is only of 10%.  
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Table 3– Values of 𝑳(𝟏𝟎%,𝟎%) for 𝑷(𝑪𝑨𝑹𝑳𝟎 > 𝟑𝟕𝟎. 𝟒) = 𝟗𝟎%  

 

 

Table 4– More values of 𝑳(𝟏𝟎%,𝟎%) for 𝑷(𝑪𝑨𝑹𝑳𝟎 > 𝟑𝟕𝟎. 𝟒) = 𝟗𝟎%  

 
 

6. Conclusions 

In the present article, we studied the impact of the process standard deviation estimation 
on the in-control performance of the �̅� Control Chart. We verified that if the user uses the 
standard 3 sigma limits and estimates the process standard deviation with a small amount 
of Phase I reference data, chances are high that the chart will not have the nominal in-
control performance.  We conclude that when the 𝑚 (the number of reference samples) 
and/or the 𝑛 (size of each sample) are small, the values of the conditional false alarm rate 
that are exceeded only with a small probability of 5% or 10% are much higher than the 
typical desired nominal false alarm rate. Also we checked that for small values of 𝑛, one 
needs a large number of reference samples, 𝑚, in order to guarantee some specified in-
control conditional performance. So we provided some corrections on the control limits in 
order to achieve a desired in-control conditional performance given a fix value of 𝑚 and 
𝑛. 
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The main contribution of the present work is that the majority of the existing papers 
studying the effects of parameter estimation on the �̅� control chart have not focused on the 
case that is when just the process standard deviation is unknown (Case KU) and thus is 
estimated, like we did. Also most authors have focused on the unconditional average run 
length as a performance criterion. We, on the other hand, have focused on the conditioned 
average run length, since, once the process standard deviation is estimated, the performance 
of the chart will be conditioned to the value of the estimator. Finally, we provide exact 
formulas under normality which do not require the use of any approximations, asymptotic 
methods, bootstrapping or simulations (although we checked our results with simulations) 
to obtain the distribution of the false alarm rate of the �̅� chart.  
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