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Abstract

We describe a Bayesian adaptive design for estimating the maximum tolerated dose curve as a

function of a baseline covariate using two cytotoxic agents. Parametric models are used to describe

the relationship between the doses, baseline covariate, and the probability of dose limiting toxicity

(DLT). Trial design proceeds by treating cohorts of two patients simultaneously using escalation

with overdose control, where at each stage of the trial, we seek a dose of one agent using the current

posterior distribution of the MTD of this agent given the current dose of the other agent and the next

patients baseline covariate value. At the end of the trial, we estimate MTD curves as functions of

Bayes estimates of the model parameters. We evaluate design operating characteristics in terms of

safety of the trial and percent of dose recommendation at dose combination neighborhoods around

the true MTD by comparing the design that uses the covariate to the one that ignores the baseline

characteristic.

Cancer Phase I trials, Maximum tolerated dose, Escalation with overdose control, Drug combi-

nation, Dose limiting toxicity, Continuous dose, Baseline covariate

1. Introduction

The combination of several cytotoxic and biologic agents in drug development and cancer

treatment can help reduce tumor resistance to chemotherapy by targeting different signaling

pathways simultaneously and improve tumor response when using additive or synergistic

drugs [1]. Although the majority of cancer phase I trials use drug combinations of several

agents, most of them are designed to estimate the MTD of one drug for fixed dose levels of

the other drugs. This approach may provide a single tolerable dose for the combination but

it may be suboptimal in terms of therapeutic effects in subsequent efficacy studies.

Trials where the dose levels of at least two agents are allowed to vary yield more than

one MTD, or even an infinite number of MTDs in the case of continuous dose levels. Es-

timating the resulting set of MTDs by designing a safe trial is the main goal of phase I

trials with dose combinations of several agents. Statistical methodologies for designing

such trials have been studied extensively in the past decade [2]-[13]. These methods as-

sume that the patient population is homogeneous in terms of treatment tolerance and every

patient should be treated at a dose combination corresponding to a pre-defined target prob-

ability of DLT. Therefore, individual patients differences in susceptibility to treatment are

not adapted. For single agent trials, strategies of drug allocation that accommodate indi-

vidual patient needs based on pharmacokinetics and the genetics of drug metabolism have

been used in [14]-[16]. Statistical designs permitting individualized MTD determination in

single agent cancer phase I trials have also been proposed and implemented in real trials by

a number of authors [17]-[21]. For drug combinations, an additional layer of complexity

in specifying the dose-toxicity relationship given a baseline covariate is needed. Using the

notation in [11], the general problem can be stated as follows. Let Ai, i = 1, . . . , k be k
drugs and Si ⊂ R+ be the set of all possible doses of drug Ai. Denote by x = (x1, . . . , xk)
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a dose combination of k drugs and S = S1 × · · · × Sk. Consider a dose-toxicity model

Prob(DLT|dose = x, Z = z) = Fz(x, ξ), (1.1)

where Z is the baseline covariate taking a value of 0 or 1, F is a known link function,

and ξ ∈ Rd is an unknown parameter. The MTD for a patient with baseline covariate z is

defined as the set Cz of dose combinations x such that the probability of DLT for a patient

with baseline covariate z given dose x equals to a target probability of DLT θ:

Cz = {x ∈ S : Fz(x, ξ) = θ} , (1.2)

In this work, we extend the design described by Tighiouart et al. [11] using escala-

tion with overdose control (EWOC) principle [21]-[23], by treating cohorts of two patients

simultaneously and accounting for patients baseline binary covariate. We use a reparam-

eterization that allows MTD curve to lie anywhere within the Cartesian plane determined

according to the range of continuous doses of the two drugs. Furthermore, a simplified

form of model (1.1) is considered by assuming that patients with different covariate values

will have parallel MTD curves. This assumption is mathematically convenient and allows

us to use parsimonious models due to the small sample size constraints in cancer phase I

trials.

This paper is organized as follows. Section 2 will describe the dose-toxicity model

and trial design for continuous dose levels. In Section 3, we evaluate the performance of

the proposed method by assessing the safety of the trial design and the efficiency of the

estimate of the MTD curve. Discussions will be in Section 4.

2. Model

2.1 Dose-Toxicity Model

Consider the problem of identifying tolerable dose combinations of two cytotoxic agents

A and B given a patient with a binary baseline covariate value of z. We consider the

dose-toxicity model of the form

Prob(δ = 1|x, y, z) = F (β0 + β1x+ β2y + β3z + β4xy), (2.1)

where δ is the indicator of DLT, δ = 1 if a patient given the dose combination (x, y)
exhibits DLT within one cycle of therapy and δ = 0 otherwise, x ∈ [Xmin, Xmax] is the

dose level of agent A, y ∈ [Ymin, Ymax] is the dose level of agent B, z is a binary baseline

covariate, and F is a known cumulative distribution function. Suppose that the doses of

agents A and B are continuous and standardized to be in the interval [0, 1]. We will assume

that the probability of DLT increases with the dose of any one of the agents when the other

one is held constant for z = 0, 1. A necessary and sufficient condition for this property to

hold is to assume βi > 0, i = 1, 2 and the interaction term β4 is nonnegative. The MTD

Cz is defined as a set of combinations (x∗, y∗) such that

Prob(δ = 1|x∗, y∗, z) = θ. (2.2)

The target probability of DLT, θ is set relatively high when the DLT is a reversible or non-

fatal condition, and low when it is life threatening. Using (2.1) and (2.2), the MTD Cz is

Cz =

{

(x∗, y∗) ∈ [0, 1]2 : y∗ =
F−1(θ)− β0 − β1x

∗ − β3z

β2 + β4x∗

}

. (2.3)
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We reparametrize model (2.1) in terms of the following parameters: ρ00, the probability of

DLT at the minimum available doses of agents A and B for a patient with covariate value

z = 0; ρ100, the probability of DLT when the level of drug A is Xmax, the level of drug

B is Ymin and z = 0; ρ101, the probability of DLT when the level of drug A is Xmax, the

level of drug B is Ymin and z = 1; ρ010, the probability of DLT when the level of drug A
is Xmin, the level of drug B is Ymax and z = 0; and the interaction parameter β4. We will

assume that 0 < ρ100, ρ101, and ρ010 < 1. It follows that

β0 = F−1(ρ00)

β1 = F−1(ρ100)− F−1(ρ00)

β2 = F−1(ρ010)− F−1(ρ00)

β3 = F−1(ρ101)− F−1(ρ100). (2.4)

The MTD given in (2.3) can be expressed in terms of these new parameters as

Cz =















(x∗, y∗) ∈ [0, 1]2 : y∗ =

F−1(θ)− F−1(ρ00)− (F−1(ρ100)− F−1(ρ00))x
∗

− (F−1(ρ101)− F−1(ρ100))z

F−1(ρ010)− F−1(ρ00) + β4x∗















.

(2.5)

Let Dn = (xi, yi, zi, δi), i = 1, . . . , n be the data after enrolling n patients in the trial. The

likelihood function under the reparametrization is

L(ρ00, ρ100, ρ101, ρ010, β4|Dn) =
n
∏

i=1

(H(ρ00, ρ100, ρ101, ρ010, β4;xi, yi, zi))
δi

× (1−H(ρ00, ρ100, ρ101, ρ010, β4;xi, yi, zi))
1−δi

(2.6)

where

H(ρ00, ρ100, ρ101, ρ010, β4;xi, yi, zi) =

F (F−1(ρ00) + (F−1(ρ100)− F−1(ρ00))xi + (F−1(ρ010)− F−1(ρ00))yi

+ (F−1(ρ101)− F−1(ρ100))zi + β4xiyi)

(2.7)

2.2 Prior and Posterior Distributions

Equations (2.4) imply that 0 < ρ00 < θ since βi > 0, i = 1, 2. We consider the priors

ρ00/min(ρ100, ρ010) ∼ β(a0, b0), ρ100 ∼ β(a1, b1), ρ101 ∼ β(a2, b2), ρ010 ∼ β(a3, b3),
β4 ∼ γ(a, b) with mean E(β4) = a/b and variance V ar(β4) = a/b2. Vague priors for

these parameters are achieved by taking aj = bj = 1, j = 0, 1, 2, 3. A vague prior for

β4 is achieved by selecting a large variance. As described in [11], a vague prior for β4 is

similarly selected with mean of 21 and variance of 542. Using Bayes rule, the posterior

distribution of the model parameters is proportional to the product of the likelihood and

prior distribution

π(ρ00, ρ100, ρ101, ρ010, β4|Dn) ∝
n
∏

i=1

(H(ρ00, ρ100, ρ101, ρ010, β4;xi, yi, zi))
δi

× (1−H(ρ00, ρ100, ρ101, ρ010, β4;xi, yi, zi))
1−δi

× π(ρ00|ρ101, ρ010)π(ρ100)π(ρ101)π(ρ010)π(β4)

(2.8)

Features of this posterior distribution are estimated using WinBUGS [24] and JAGS.
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2.3 Trial Design

The algorithm for dose escalation is similar to the ones described in [11], [25]. It uses the

EWOC principle [21]-[23] where at each stage of the trial, we seek a dose of one agent

using the current posterior distribution of the MTD of the agent given the current dose of

the other agent and the next patients baseline covariate value. For instance, if agent A is

held constant at level x, the dose of agent B is y such that the posterior probability that

y exceeds the MTD of agent B given the dose of agent A = x and covariate value z is

bounded by a feasibility bound α. Cohorts of two patients are enrolled simultaneously

receiving different dose combinations. Specifically, the design proceeds as follows.

1. Let D2 = {(x1, y1, z1, δ1), (x2, y2, z2, δ2)} the first cohort of two patients such that

each patient receives the same dose combination (xi, yi) = (XminA, XminB) =
(0, 0) for i = 1, 2.

2. In the second cohort of two patients, patient 3 receives dose (x1, y3) and patient 4 re-

ceives dose (x4, y2), where y3 is the α-th percentile of π(ΓB|A=x1,Z=z3 |D2) and x4
is the α-th percentile of π(ΓA|B=y2,Z=z4 |D2). Here, π(ΓB|A=x1,Z=z3 |D2) is the pos-

terior distribution of the MTD of agent B given that the level of agent A is x1 and the

baseline covariate value of patient 3 is z3, given the data D2. π(ΓA|B=y2,Z=z4 |D2) is

defined similarly. ΓB|A=x and ΓA|B=y can be expressed in terms of ρ00, ρ100, ρ101,

and ρ010.

3. In the i-th cohort of two patients,

(a) If i is even, patient 2i− 1 receives dose (x2i−3, y2i−1) and patient 2i receives

dose (x2i, y2i−2), where y2i−1 = Π−1
ΓB|A=x2i−3,Z=z2i−1

(α|D2i−2) and x2i =

Π−1
ΓA|B=y2i−2,Z=z2i

(α|D2i−2).

(b) If i is odd, then patient 2i1 receives dose (x2i−1, y2i−3) and patient 2i receives

dose (x2i−2, y2i), where x2i−1 = Π−1
ΓA|B=y2i−3,Z=z2i−1

(α|D2i−2) and y2i =

Π−1
ΓB|A=x2i−2,Z=z2i

(α|D2i−2).

4. Repeat step 3 until n patients are enrolled to the trial subject to the following stopping

rule.

Stopping rule We stop enrollment to the trial if P (P (DLT|(x, y) = (0, 0), z) ≥ θ +
δ1|data) > δ2, i.e. if the posterior probability that the probability of DLT at the minimum

available dose combination in the trial exceeds the target probability of DLT is high for

z = 0, 1 where δ1 and δ2 are design parameters chosen to achieve desirable model operating

characteristics. At the end of the trial, we estimate the MTD curve using Bayes estimates of

the parameters defining this curve. For example, an estimate of the MTD curve for z = 0, 1
is obtained using (2.5) as

Ĉz =















(x∗, y∗) ∈ [0, 1]2 : y∗ =

F−1(θ)− F−1(ρ̂00)− (F−1(ρ̂100)
− F−1(ρ̂00))x

∗ − (F−1(ρ̂101)− F−1(ρ̂100))z

F−1(ρ̂010)− F−1(ρ̂00) + β̂4x∗















.

(2.9)

where ρ̂00, ρ̂100, ρ̂101, ρ̂010, and β̂4 are the posterior medians given the data Dn.
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3. Simulation Studies

3.1 Simulation Set-up and Scenarios

We evaluate design operating characteristics by assuming a logistic link function F (u) =
(1 + e−u)−1 for the working and true models. In all simulations, the target probability of

DLT is fixed at θ = 0.33, the trial sample size is n = 40 patients with 20 patients in each

group, δ1 = 0.05 and δ2 = 0.8.

We present four scenarios for the true MTD curve. The first scenario is a case where the

two true MTD curves for two groups are parallel and close to the minimum doses as shown

in Figure 1(a). The corresponding true parameters are ρ00 = 0.01, ρ100 = 0.4, ρ101 = 0.8,

ρ010 = 0.4, and β4 = 10. The second scenario is a case where the two true MTD curves for

two groups are parallel but very close to each other. The third scenario is a case where two

true MTD curves for two groups are not parallel. The last scenario is a case where the two

true MTD curves are parallel but lie far away from each other and close to the maximum

doses.

In all scenarios, ai = bi = 1, i = 0, 1, 2, 3, which correspond to non-informative

priors for ρ00/min(ρ100, ρ010), ρ100, ρ101, and ρ010, and a vague prior for β4 is selected

with mean of 21 and variance of 540 as discussed in [25]. For each scenario, 1000 trials

were simulated with the logistic link function for the working and true models.

A variable feasibility bound α was started from 0.25 and increased by 0.05 each time

when we compute the dose for the next patient until α was reached to 0.5 [21], [25]. A

dose escalation is restricted to be no more than 20% of the dose range of the corresponding

agent.

3.2 Design Operating Characteristics

In order to assess the performance of this method when designing a prospective trial, we

evaluate its operating characteristics by comparing the following three designs.

• Design using a covariate (WC); patients are accrued to the trial sequentially and the

dose combinations given to the next cohort of patients is calculated assuming model

(2.1).

• Design ignoring the covariate (IC); patients are accrued to the trial sequentially and

the dose combinations given to the next cohort of patients is calculated assuming

model (2.1) without the covariate, i.e., as in [11, 25].

• Design using parallel trials (S); in each group, patients are accrued to the trial se-

quentially and model (2.1) without the covariate is implemented in each group.

We evaluate the performance of the methods by assessing the safety of the trial designs and

the efficiency of the estimate of the MTD curve.

3.2.1 Trial Safety

We assess trial safety by reporting the average percent of DLTs across all m = 1000 trials

and the percent of trials that have a DLT rate exceeding θ+0.1, which is usually considered

to be an indication of an excessive DLT rate.
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3.2.2 Trial Efficiency

We present an estimate of the MTD curve using the average posterior medians of the model

parameters. The estimate for z = 0, 1 is

C̄z =















(x∗, y∗) ∈ [0, 1]2 : y∗ =

F−1(θ)− F−1(ρ̄00)− (F−1(ρ̄100)− F−1(ρ̄00))x
∗

− (F−1(ρ̄101)− F−1(ρ̄100))z

F−1(ρ̄010)− F−1(ρ̄00) + β̄4x∗















.

(3.1)

where F (·) is the logistic function and ρ̄00, ρ̄100, ρ̄101, ρ̄010, and β̄4 are the average posterior

medians of the parameters ρ00, ρ100, ρ101, ρ010, and β4 from all m = 1000 trials, respec-

tively. The next measure of efficiency is the pointwise average relative minimum distance

from the true MTD curve to the estimated MTD curve. For i = 1, . . . ,m, let Ci be the

estimated MTD curve and Ctrue be the true MTD curve. For every point (x, y) ∈ Ctrue,

let

d
(i)
(x,y) = sign(y′ − y)×min{(x∗,y∗):(x∗,y∗)∈Ci}

√

(x− x∗)2 + (y − y∗)2 (3.2)

where y′ is such that (x, y′) ∈ Ci. This is the minimum relative distance of the point (x, y)
on the true MTD curve to the estimated MTD curve Ci. If the point (x, y) is below Ci, then

d
(i)
(x,y) is positive. Otherwise, it is negative. Let

d(x,y) = m−1
m
∑

i=1

d
(i)
(x,y) (3.3)

This is the pointwise average relative minimum distance from the true MTD curve to the

estimated MTD curve and can be interpreted as the pointwise average bias in estimating

the MTD. Let ∆(x, y) be the Euclidian distance between the minimum dose combination

(0, 0) and the point (x, y) on the true MTD curve and 0 < p < 1. The last measure of

efficiency we consider is

P(x,y) = m−1
m
∑

i=1

I
(

|d
(i)
(x,y)| ≤ p∆(x, y)

)

(3.4)

This is the pointwise percent of trials for which the minimum distance of the point (x, y) on

the true MTD curve to the estimated MTD curve Ci is no more than (100× p)% of the true

MTD. This statistic is equivalent to drawing a circle with center (x, y) on the true MTD

curve and radius p∆(x, y) and calculating the percent of trials with MTD curve estimate Ci

falling inside the circle. This will give us the percent of trials with MTD recommendation

within (100× p)% of the true MTD for a given tolerance p.

3.3 Results

3.3.1 Trial Safety

Table 1 shows that the average percent of DLTs varies between 3% and 46% across all

designs under the four scenarios (a)-(d). In general, the average DLT rate tends to be

lower when the true MTD curve is farther away from the minimum dose combination.

Furthermore, the percent of trials with an excessive rate of DLT as defined by a DLT rate

exceeding θ + 0.1 is 0.0% for all designs under the all four scenarios. This rate does not

exceed 0.02% across all the cases where the maximum rate occurs with the design using

parallel trials under the first scenario with true parameters of ρ00 = 0.01, ρ100 = 0.4,

ρ101 = 0.8, ρ010 = 0.4, and β4 = 10. Based on these findings, we conclude that the

methodology is safe in general.
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Table 1: Operating characteristics summarizing trial safety for three designs under four

scenarios
Scenario Design Average % DLT % Trials:

(ρ00, ρ100, ρ101, ρ010, β4) Overall Z = 0 Z = 1 DLT rate > θ + 0.1

(0.01, 0.4, 0.8, 0.4, 10)

WC 29.073 20.680 37.465 0.004

P 25.748 21.95 29.545 0.018

IC 30.098 14.05 46.145 0.004

(0.005, 0.1, 0.2, 0.1, 10)

WC 23.828 19.280 28.375 0.000

P 17.953 16.865 19.040 0.000

IC 25.718 19.070 32.365 0.000

(0.005, 0.2, 0.7, 0.01, 10)

WC 23.070 13.470 32.670 0.000

P 18.493 14.775 22.210 0.001

IC 24.900 8.595 41.205 0.000

(0.0001, 0.001, 0.05, 0.001, 10)

WC 16.143 5.360 26.925 0.000

P 10.485 6.430 14.54 0.000

IC 21.550 2.885 40.215 0.000

WC = With covariate, P = Parallel and IC = Ignoring covariates

3.3.2 Trial Efficiency

Figure 1 shows the true and estimated MTD curves for each group of patients under the four

scenarios (a)-(d) when using the proposed design with a baseline covariate, parallel trials,

and a design ignoring the baseline covariate. The estimated MTD curves were obtained

using (3.1) and DLT responses were simulated from the true logistic model. Figure 1 shows

that the estimated MTD curves are closer to the true MTD curves when accounting for a

significant baseline covariate using the proposed design and parallel trials. When ignoring

the covariate, the estimated MTD curve tends to be in between the true MTD curves. This

shows that when the two MTD curves are well separated, not accounting for a baseline

covariate results in suboptimal MTD curve estimation for one group of patients and a too

toxic MTD curve recommendation for the other group.

Figure 2 displays the pointwise average relative minimum distance from the true MTD

curve to the estimated MTD curve under the four scenarios (a)-(d) as defined by (3.3). This

is a measure of pointwise average bias of the estimate of the MTD. In the first scenario,

Figure 2(a) shows that the average bias varies between -0.10 and 0.10 where the higher

values are observed with the design ignoring the covariate. The pointwise average bias

is quite similar when using the design with covariate and parallel trials and the highest

absolute value is observed with the design ignoring the covariate. Similar findings are

observed under the third (Figure 2(c)) and the last scenarios (Figure 2(d)). In the second

scenario where the true MTD curves for z = 0 and z = 1 are very close (Figure 2(b)), the

highest absolute value is achieved at the edges of the true MTD curves for both groups of

z = 0 and z = 1 when using the design with covariate.

Figure 3 shows the pointwise percent of trials for which the minimum distance from

the true MTD curve to the estimated MTD curve is no more than (100 × p)% of the true

MTD for p = 0.2 as defined by (3.4). This can be interpreted as the percent of MTD

recommendation for a given tolerance p. Under the first scenario, Figure 3(a) shows that

the percent of trials with correct MTD recommendation within 20% of the true value of

the MTD varies between 61% and 99% with the design accounting for a baseline covariate

while it varies more widely between 29% and 100% with the design ignoring the covariate.
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Figure 1: True and estimated MTD curves from m = 1000 simulated trials under scenarios

(a)-(d)
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Figure 2: Pointwise average relative minimum distance from the true MTD curve to the

estimated MTD curve under scenarios (a)-(d)
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Figure 3: Pointwise percent of MTD recommendation for p = 0.2 under scenarios (a)-(d)

Similar pattern is found under the third (Figure 3(c)) and the fourth (Figure 3(d)) scenarios.

Under the second scenario (Figure 3(b)), the percent recommendation is similar between

all designs varying between 87% and 98% with the design with a covariate , 82% − 99%
with the parallel trials, and 90%− 99% with the design without the baseline covariate. The

percent recommendation increases as we move away from the minimum available dose

combination. In general, ignoring a practically important baseline covariate results in a

lower MTD recommendation rate relative to a design accounting for this covariate. These

findings support that the design is efficient in recommending the MTD curve estimates.

4. Conclusion

We described Bayesian adaptive designs for cancer phase I clinical trials using two drugs

with continuous dose levels in the presence of a binary baseline covariate. The goal is to

estimate the MTD curve in the two-dimensional Cartesian plane for a patients specific base-

line covariate value. The methodology extends the single agent trial design with a baseline

covariate and two agents design without a covariate. In each case, vague priors were used

JSM 2016 - Biopharmaceutical Section

1345



to quantify the toxicity profile of each agent a priori. We used an algorithm for dose es-

calation where cohorts of two patients are enrolled simultaneously and the patients receive

different dose combinations. We studied design operating characteristics of the method

under four practical scenarios by comparing this method with the design that ignores the

baseline covariate and design using parallel trials. In all simulations, we used a sample size

of n = 40 patients, 20 patients in each group. We found that in general, the methodology

is safe in terms of the probability that a prospective trial will result in an excessively high

number of DLTs when accounting for a significant covariate. We used several measures to

assess the efficiency of the estimate of the MTD. In the presence of a practically significant

baseline covariate, the design with a covariate had a smaller pointwise average bias and a

higher percent of MTD recommendation relative to a design which ignores the covariate

or when using parallel trials. When the two true MTD curves are very close, including a

baseline covariate in the model results in a slightly higher but still negligible bias and a

small reduction in percent of MTD recommendation relative to a design that ignores this

covariate. Therefore, we stand to lose little if we include a practically not important co-

variate in the model. While we are currently investigating the approach for pre-specified

discrete dose combination of the two agents, other extensions include accommodating late

onset toxicity and efficacy studies.
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