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Abstract 
The design of a clinical trial to investigate a treatment for a rare disease is often 
complicated by the multi-systemic nature of the disease; no single endpoint can capture 
the spectrum of potential therapeutic benefits.  Multi-domain outcomes which take into 
account patient heterogeneity of disease presentation through measurements of multiple 
symptom/functional domains are an attractive alternative to a single endpoint. To obtain 
the totality of evidence for treatment efficacy over endpoints from various disease 
progression domains, an extension of a test for equality of two survival distributions 
based on weighted differences of Kaplan-Meier curves [Uno et al. (2015)] is proposed. 
The test is a weighted sum of domain-specific test statistics with weights selected 
adaptively via a data-driven algorithm.  The null distribution of the test is constructed 
empirically through resampling. We used data from clinical trials in a rare lysosomal 
storage disorder and in multiple sclerosis to illustrate the advantage of the combined 
testing procedure over the conventional methods. Simulations were conducted to 
demonstrate the statistical properties of the test and to compare to alternative methods. 
 
Key Words: multivariate test, non-parametric test, rare disease, treatment effect, multi-
domain outcome, adaptive weights 
 
 

1. Introduction 
 
In therapeutic areas such as rare disease and multiple sclerosis, the disease manifestation 
is often multi-systemic. For example, in MPS I, a mucopolysaccharide storage disorder, 
the deficiency of alpha-L-iduronidase can lead to the accumulation of 
glycosaminoglycans in a wide variety of tissues, thus a broad spectrum of clinical 
symptoms including cardiac disease, respiratory disease, joint stiffness, developmental 
delay, etc. In multiple sclerosis, a demyelinating disease of the central nervous system, 
the focal tissue injury of the brain and spinal cord can result in a constellation of chronic 
clinical symptoms including muscle weakness, impaired mobility, bladder/bowel 
dysfunction, cognitive and visual impairments, etc. Therefore, to investigate a treatment 
in these areas, no single endpoint can capture the spectrum of potential therapeutic 
benefits. Instead, multi-domain outcomes are an attractive alternative to obtain the 
totality of evidence for treatment efficacy over endpoints from various disease 
progression domains.  
 
There has been a rich literature on multi-domain tests. O’Brien (1984) proposed a 
generalized least squares (GLS) test and a nonparametric rank-sum test that extends the 
Wilcoxon rank-sum test in the multi-domain case. Wei and Lachin (1984) described a 
class of multivariate asymptotically distribution-free tests for incomplete multi-domain 
observations. The Wei-Lachin test applies to censored time-to-event data as well as 
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missing completely at random ordinal data. A comprehensive overview of estimators and 
tests for multivariate partially incomplete data from two populations is given by Lachin 
(1992), in which the Wei-Lachin test, Wei-Johnson test, GLS test, etc. were discussed 
and compared. More recently, Xu et al. (2003) proposed a test with adaptive weighting 
that combines dependent tests for linkage across multiple phenotypic traits. Asymptotic 
normality of the dependent test statistics is required and their covariance matrix can be 
estimated in the context of a linkage study in genetic epidemiology. Uno et al. (2015) 
developed a versatile test with similar adaptive weighting for equality of two survival 
functions based on weighted differences of Kaplan-Meier curves. A perturbation 
resampling method was utilized to empirically approximate the limiting distribution of 
the test statistics. In this paper, we extend the test with adaptive weighting for the multi-
domain outcome setting in the clinical trials context, and propose to use a permutation-
based procedure for statistical inferences. Our objective is to evaluate the utility of this 
test in analyzing clinical trial outcomes, and to compare it with conventional multi-
domain testing methods. 
 
This paper is organized as follows. In Section 2, we describe the specifics of the 
permutation test with adaptive weighting. A simulation study is presented in Section 3, 
and real data analysis of two clinical trials is discussed in Section 4. We summarize our 
findings and conclude in Section 5. 
 

2. The Permutation Test with Adaptive Weighting  
 
2.1 The Framework 
Assume that in a clinical trial, two treatment groups are to be compared based on 𝐾𝐾 
domains of continuous outcomes. Let 𝒀𝒀𝑖𝑖𝑖𝑖 = �𝑌𝑌𝑖𝑖1𝑗𝑗,⋯ ,𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖� denote the outcomes from the 
𝐾𝐾  domains for the 𝑗𝑗 th patient in the 𝑖𝑖 th treatment group, where 𝑖𝑖 = 0,1  represents the 
control or the treatment group, and 𝑗𝑗 = 1,⋯ ,𝑛𝑛𝑖𝑖. Assume 𝒀𝒀𝑖𝑖𝑖𝑖’s are independent random 
vectors with distribution functions 𝐹𝐹𝑖𝑖(𝑦𝑦1,⋯ ,𝑦𝑦𝐾𝐾). Without loss of generality, assume that 
for all 𝐾𝐾 domains, a larger value of an outcome indicates a better clinical benefit.  
 
The statistical hypothesis of interest is the following: 

𝐻𝐻0:𝐹𝐹1(𝑦𝑦1,⋯ ,𝑦𝑦𝐾𝐾) = 𝐹𝐹0(𝑦𝑦1,⋯ ,𝑦𝑦𝐾𝐾)   
𝐻𝐻1:𝐹𝐹1(𝑦𝑦1,⋯ ,𝑦𝑦𝐾𝐾) ≻𝑠𝑠 𝐹𝐹0(𝑦𝑦1,⋯ ,𝑦𝑦𝐾𝐾) 

for all (𝑦𝑦1,⋯ ,𝑦𝑦𝐾𝐾) ∈ ℝ𝐾𝐾 . Here we wish to detect the stochastic ordering of two 
multivariate distributions, that is, 𝐹𝐹1𝑘𝑘(∙) ≤ 𝐹𝐹0𝑘𝑘(∙) for each marginal distribution function 
𝐹𝐹𝑖𝑖𝑖𝑖 of 𝐹𝐹𝑖𝑖, 𝑖𝑖 = 0,1, 𝑘𝑘 = 1,⋯ ,𝐾𝐾, with at least one strict inequality. 
 
2.2 Testing Procedure 
We extend the testing methods of Xu et al. (2003) and Uno et al. (2015) to a multi-
domain test setting in a general clinical trial context and propose to use a permutation-
based procedure for statistical inferences. As a key assumption in Xu et al. (2003) and 
Uno et al. (2015), asymptotic joint normality (process) of the marginal statistics (process) 
requires that the covariance be estimated consistently and accurately. It was possible to 
estimate the covariance matrix in the genetic epidemiology linkage studies, or to 
empirically approximate the limiting distribution using a perturbation resampling 
technique for the Kaplan-Meier survival process. However, in the general clinical trial 
setting, it may not always be straightforward to estimate the covariance, or to estimate it 
accurately. Therefore, we use a permutation procedure to bypass this difficulty and 
preserve the dependence structure.  
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Let 𝑍𝑍𝑘𝑘 be the marginal test statistic comparing the treatment group versus control for the 
outcomes of the 𝑘𝑘 th domain, 𝑘𝑘 = 1,⋯ ,𝐾𝐾 . Define 𝑉𝑉(𝑐𝑐) = ∑ 𝑊𝑊𝑘𝑘(𝑐𝑐)𝑍𝑍𝑘𝑘𝐾𝐾

𝑘𝑘=1 , where 
𝑊𝑊𝑘𝑘(𝑐𝑐) = max{𝑍𝑍𝑘𝑘 , 𝑐𝑐} , 𝑐𝑐 ∈ [0, 𝜂𝜂]  is a data-driven parameter, and 𝜂𝜂  is a pre-specified 
parameter. The test procedure below constructs a test statistic based on {𝑉𝑉(𝑐𝑐), 0 ≤ 𝑐𝑐 ≤ 𝜂𝜂} 
and chooses 𝑐𝑐 adaptively (similar to Xu et al. 2003, Uno et al. 2015): 

1. Simulate the null joint distribution of 𝒁𝒁 = (𝑍𝑍1,⋯ ,𝑍𝑍𝐾𝐾) via permutation, 
hence the approximated null distribution of 𝑉𝑉(𝑐𝑐) indexed by 𝑐𝑐 (reference 
set 𝑫𝑫); 

2. Let 𝑣𝑣(𝑐𝑐) be the observed value of 𝑉𝑉(𝑐𝑐), its p-value 𝑝𝑝(𝑐𝑐) can be obtained 
for each 𝑐𝑐; 

3. Let 𝑝𝑝𝑏𝑏 be the most significant 𝑝𝑝(𝑐𝑐), i.e. 𝑝𝑝𝑏𝑏 = min{𝑝𝑝(𝑐𝑐): 𝑐𝑐 ∈ [0, 𝜂𝜂]};  
4. Let 𝑃𝑃(𝑐𝑐) and 𝑃𝑃𝑏𝑏 be the random counterpart of 𝑝𝑝(𝑐𝑐) and 𝑝𝑝𝑏𝑏, and take 𝑃𝑃𝑏𝑏 

as the test statistic; 
5. The null distribution of 𝑃𝑃𝑏𝑏  can be approximated by generating a large 

number of 𝒁𝒁’s via permutation: for each realized 𝒁𝒁, compute 𝑉𝑉(𝑐𝑐) and 
use reference set 𝑫𝑫 to obtain the corresponding 𝑃𝑃(𝑐𝑐) and 𝑃𝑃𝑏𝑏;  

6. The p value based on test statistic 𝑃𝑃𝑏𝑏 is given by 𝑝𝑝𝑝𝑝(𝑃𝑃𝑏𝑏 < 𝑝𝑝𝑏𝑏). 
The parameter 𝜂𝜂  in the above procedure can be any pre-specified positive constant. 
Extensive simulation studies show that 𝜂𝜂 = 4  should be a reasonable choice, which 
provides stable results, as the 𝑍𝑍𝑘𝑘’s would rarely be larger than 4 under 𝐻𝐻0. 
 
Heuristically, a good test should possess the property that under 𝐻𝐻0, the distribution of 
the test statistic has a relatively short tail, but under a general one-sided alternative 
hypothesis 𝐻𝐻1, a long tail, so that the observed statistic is likely to be large and thus reject 
𝐻𝐻0. Under the normal distribution assumptions, a test statistic constructed as a linear 
combination of the 𝑍𝑍𝑘𝑘’s has a short tail under 𝐻𝐻0, but has low power against a general 
one-sided 𝐻𝐻1 ; a test statistic using 𝑍𝑍𝑘𝑘  itself as the weight has a fat tail chi-squared 
distribution under 𝐻𝐻0 , hence not very powerful against specific alternatives. The 
proposed weighted sum 𝑉𝑉(𝑐𝑐) = ∑ max{𝑍𝑍𝑘𝑘 , 𝑐𝑐}𝑍𝑍𝑘𝑘𝐾𝐾

𝑘𝑘=1  is a flexible statistic in that under 
𝐻𝐻0, it behaves like a linear combination of the 𝑍𝑍𝑘𝑘’s with a short tail, while under 𝐻𝐻1, 
behaves like a long tailed chi-squared statistic.   
 
2.2.1 Marginal test statistic 𝑍𝑍𝑘𝑘  
Since the adaptive weight is defined as 𝑊𝑊𝑘𝑘(𝑐𝑐) = max{𝑍𝑍𝑘𝑘, 𝑐𝑐}, 𝑐𝑐 ∈ [0, 𝜂𝜂], 𝑍𝑍𝑘𝑘 and 𝑐𝑐 should 
be of comparable magnitude to ensure sensitivity. Although our test procedure does not 
require a joint normal distribution of the 𝑍𝑍𝑘𝑘’s, it is advisable to use normal-like statistics 
to achieve the aforementioned desired property. Convenient choices include the student 
𝑡𝑡 statistic or the standardized Wilcoxon rank-sum statistic. Both will be explored in the 
simulation study (Section 3) and the real data analysis (Section 4). 
 
2.2.2 Choice of the threshold parameter 𝑐𝑐  
For a fixed 𝑐𝑐, say 𝑐𝑐 = 2, under 𝐻𝐻0, since 𝑍𝑍𝑘𝑘 is approx. standard normal, 𝑊𝑊𝑘𝑘(𝑐𝑐) ≈ 2 for 
most 𝑘𝑘’s, and so 𝑉𝑉(𝑐𝑐) should have a short tail; under 𝐻𝐻1, a large 𝑍𝑍𝑘𝑘 results in 𝑊𝑊𝑘𝑘(𝑐𝑐) ≈
𝑍𝑍𝑘𝑘 and the observed 𝑉𝑉(𝑐𝑐) would be large. It is not clear though that 𝑐𝑐 = 2 would still be 
a good choice when most of the 𝑍𝑍𝑘𝑘’s are positive but not large. If we set 𝑐𝑐 = 0, then 𝑉𝑉(𝑐𝑐) 
has a long tail and behaves like a chi-squared statistic; or if 𝑐𝑐 = 4, 𝑉𝑉(𝑐𝑐) has a short tail 
and behaves like a linear combination statistic. Therefore, it is not straightforward as to 
how to choose a fixed value of 𝑐𝑐 a priori. The test procedure above provides an automatic 
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and objective way to adaptively choose parameter 𝑐𝑐 , so that better power may be 
achieved with the flexibility.   
 

3 Simulation Study 
 
3.1 Simulation Setting 
In this section, we demonstrate our proposed method with the simulated data. In the 
simulation, we explore two endpoints in a randomized placebo-controlled clinical trial. 
The clinical outcomes were generated from bivariate normal distribution with various 
treatment effect size assumptions. Specifically, we simulate two continuous, normally 
distributed outcomes with variance 1 and correlation 𝜌𝜌 =-0.8, -0.4, -0.2, 0, 0.2, 0.4, 0.8. 
Treatment effect for each outcome takes the values of 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 
1.6. So there are 45 unique treatment effect combinations for the two outcomes. We 
consider 𝑛𝑛 = 25 or 𝑛𝑛 = 50 per arm as hypothetical trials for rare disease. Set 𝜂𝜂 = 4 and 
𝑐𝑐 is adaptively determined along an equally spaced grid from 0 to 𝜂𝜂 with 50 possible 
values. Simulations were repeated 500 times for each simulation scenario. For higher 
accuracy, type I error rate was estimated from 1000 runs. We compare O’Brien test (OB), 
Wei-Lachin test with Gehan weights (WLWX), with log-rank weights (WLLR), 
permutation test with adaptive weighting using student 𝑡𝑡  statistic (SNT) and using 
Wilcoxon rank-sum statistic (SWX).  
 
3.2 Simulation Results 
The type I error rates are reported in Table 1. WLLR test tends to inflate the type I error 
rate the most, although the inflation shrinks as the sample size increases. OB test controls 
the type I error reasonably well with a few exceptions, and its performance does not seem 
to improve with a larger sample size. When the sample size is 25 per arm, permutation 
tests SWX and SNT have type I error slightly exceed the nominal level in several cases, 
but they preserve the error rate well for moderate sample sizes when n=50 per arm.  
 
Table 1: Type I Error Rate 

n=25 per arm 
𝛼𝛼 = 0.05 𝜌𝜌 = −0.8 𝜌𝜌 = −0.4 𝜌𝜌 = 0 𝜌𝜌 = 0.4 𝜌𝜌 = 0.8 

OB 0.040 0.046 0.041 0.052 0.046 
WLWX 0.046 0.057 0.049 0.059 0.058 
WLLR 0.060 0.063 0.064 0.062 0.064 
SWX 0.051 0.047 0.051 0.054 0.053 
SNT 0.046 0.042 0.049 0.053 0.053 

n=50 per arm 
𝛼𝛼 = 0.05 𝜌𝜌 = −0.8 𝜌𝜌 = −0.4 𝜌𝜌 = 0 𝜌𝜌 = 0.4 𝜌𝜌 = 0.8 

OB 0.050 0.048 0.053 0.050 0.055 
WLWX 0.047 0.048 0.058 0.051 0.053 
WLLR 0.054 0.048 0.048 0.053 0.060 
SWX 0.051 0.045 0.046 0.048 0.050 
SNT 0.045 0.046 0.049 0.046 0.051 

 
Power of the tests when n=25 per arm is presented in Figure 1. Here the treatment effect 
values 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 corresponds to scenario codes 1, 2, 3, 4, 5, 6, 
7, 8, 9. For example, scenario 15 at the lower right corner in Figure 1 represents the 
scenario when the treatment effect is set as 0 for one domain and 0.8 for the other 
domain. Only scenarios up to scenario 55 are depicted for illustration.  
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Figure 1: Power of Multi-domain Tests and Marginal Wilcoxon Rank-sum Tests (n=25 
per arm) 

When we have little prior knowledge about the treatment effect in each domain, it is 
obvious that using marginal Wilcoxon rank-sum test may not be ideal as the power can 
be extremely low for a domain with small treatment effect. WLLR shows clear inferiority 
compared to WLWX and OB tests in most scenarios. Permutation tests SNT and SWX 
perform as well as WLWX test in almost all scenarios, and better in cases when the 
treatment effect of one domain is relatively small while that of the other domain is large. 
Table 2 reports the power of WLWX and SWX when 𝜌𝜌 = 0.8  for illustration. The 
performance pattern is similar for different correlation values, though the power across 
all tests tends to be higher. 
 
Table 2: Power of Multi-domain Tests and Marginal Wilcoxon Rank-sum Test (n=25 per 
arm, 𝜌𝜌 = 0.8). 

Treatment effect 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
Wilcoxon test 0.058 0.16 0.37 0.63 0.84 0.96 0.99 1 1 

0 0.058/ 
0.053 

0.11/
0.11 

0.19/
0.23 

0.28/
0.40 

0.41/
0.64 

0.53/
0.85 

0.64/
0.96 

0.76/
0.99 

0.85/
1.00 

0.2  0.19/
0.17 

0.31/
0.30 

0.42/
0.47 

0.54/
0.67 

0.67/
0.85 

0.79/
0.95 

0.88/
0.99 

0.93/
1.00 

0.4   0.43/
0.41 

0.56/
0.54 

0.69/
0.73 

0.82/
0.88 

0.89/
0.96 

0.94/
0.99 

0.96/
1.00 

0.6    0.69/
0.67 

0.81/
0.81 

0.89/
0.91 

0.95/
0.97 

0.97/
1.00 

0.99/
1.00 

0.8     0.90/
0.88 

0.95/
0.95 

0.98/
0.98 

0.99/
1.00 

1.00/
1.00 

1.0      0.98/
0.98 

0.99/
0.99 

1.00/
1.00 

1.00/
1.00 

1.2       1.00/
1.00 

1.00/
1.00 

1.00/
1.00 

1.4        1.00/
1.00 

1.00/
1.00 

1.6         1.00/
1.00 
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4 Application To Clinical Trials 
 
In this section, we apply the multi-domain tests to two clinical trial data sets. Both are 
Sanofi Genzyme sponsored phase 3 studies.  
 
4.1 MPS I Trial 
This is a phase 3, randomized, double-blind, placebo-controlled clinical study of 
recombinant human alpha-L-iduronidase (rhIDU) in patients with mucopolysaccharidosis 
I (MPS I). This trial includes patients 5 years of age or older who were capable of 
standing independently for 6 minutes, and walking at least 5 meters within 6 minutes. 
Weekly intravenous infusions were administered for 26 weeks. The efficacy endpoints of 
interest are the changes from baseline at week 26 of the forced vital capacity, 6-minute 
walk test, AHI (apnea/hypopnea during sleep) index, and shoulder flexion. In total 45 
patients were enrolled and treated, of which 37 patients (18 on treatment, 19 on placebo) 
had complete data on the 4 domains. We base our analysis on these 37 patients.  
 
The results are summarized in Table 3. If the four hypotheses were tested separately, only 
the first endpoint (forced vital capacity) had a significant p value. Multiple testing 
procedures such as the fixed sequence test and the Bonferroni-Holm procedure would 
reject the first hypothesis while controlling for the family-wise-error-rate (FWER) of 
0.025 for the one-sided hypothesis. Using the multi-domain testing methods, the overall 
hypothesis of equal joint distributions is rejected consistently. OB test seems less 
powerful than others. WLLR produced the smallest p value, but from the simulation 
study, it also tends to inflate the type I error rate. Permutation tests yielded reasonably 
small p values. 
 
Table 3: Testing Results for MPS I Trial (N=37) 

Marginal Test Wilcoxon 𝒑𝒑 value 𝒕𝒕 test 𝒑𝒑 value 
𝐻𝐻1: Forced vital capacity 0.0036 0.0021 
𝐻𝐻2: 6-minute walk 0.0766 0.0772 
𝐻𝐻3: AHI index 0.1850 0.1160 
𝐻𝐻4: Shoulder flexion 0.4098 0.3778 

Multiple Testing Rejected 𝑯𝑯𝟎𝟎 Rejected 𝑯𝑯𝟎𝟎 
Fixed sequence test 𝐻𝐻1 only 𝐻𝐻1 only 
Bonferroni-Holm procedure 𝐻𝐻1 only 𝐻𝐻1 only 

Multi-domain Test 𝒑𝒑 value 
O’Brien (OB) 
 

0.0109 

Wei-Lachin with Gehan weight 
(WLWX) 

0.0030 

Wei-Lachin with Log-rank weight 
(WLLR) 

0.0008 

Adaptive weighting test using 
marginal student 𝑡𝑡 statistic (SNT) 

0.0067 

Adaptive weighting  test using 
marginal Wilcoxon statistic (SWX) 

0.0092 

  
 
4.2 Multiple Sclerosis 

JSM 2016 - Biopharmaceutical Section

1333



This trial is a phase 3, randomized, rater-blinded study comparing two annual cycles of 
intravenous alemtuzumab to three-times weekly subcutaneous interferon beta-1a (Rebif) 
in treatment-naïve patients with relapsing-remitting multiple sclerosis. The traditional 
clinical disability outcome for multiple sclerosis trials is the Expanded Disability Status 
Scale (EDSS) score. However, the EDSS score has now known to be insensitive to 
certain disability deteriorations, and is subject to low reliability between/within raters. In 
light of the limitations of the EDSS scores, additional measurements such as the timed 
25-foot walk test and the 9-hole Peg test have been incorporated to enhance the EDSS 
measurement. Therefore, we consider four endpoints of interest: the changes from 
baseline at month 24 of the EDSS score, the timed 25-foot walk test, and the 9-hole Peg 
test using dominant or non-dominant hand. 581 patients were treated with alemtuzumab 
12mg/day or Rebif, of which 533 (361 alemtuzumab and 172 Rebif) had complete data 
on the four endpoints.  
 
Table 4 shows the testing results. Marginally, the EDSS failed to show statistical 
significance comparing alemtuzumab to Rebif, but the timed 25-foot walk and the 9-hole 
peg test with non-dominant hand showed significance. Nevertheless, controlling for the 
FWER at a nominal level 0.025, none of the four hypotheses can be rejected by either the 
fixed sequence test or the Bonferroni-Holm procedure. The advantage of using multi-
domain tests is clear here, as WLLR and SWX yielded p values smaller than 0.025, thus 
statistically significant results. From the simulation study, WLLR tends to inflate the type 
I error rate, and the permutation tests SNT and SWX should be the preferred tests. In this 
particular example, SNT gives a non-significant result, which might be due to the fact 
that some of the endpoints (e.g. 9-hole Peg test) are highly skewed in distribution.    
 
Table 4: Testing Results for Multiple Sclerosis Trial (N=533) 

Marginal Test Wilcoxon 𝒑𝒑 value 𝒕𝒕 test 𝒑𝒑 value 
𝐻𝐻1: EDSS 0.8598 0.6719 
𝐻𝐻2: Timed 25-foot walk 0.0179 0.2586 
𝐻𝐻3: 9-hole Peg test dominant hand 0.0983 0.0528 
𝐻𝐻4: 9-hole Peg test non-dominant 
hand 

0.0134 0.0081 

Multiple Testing Rejected 𝑯𝑯𝟎𝟎 Rejected 𝑯𝑯𝟎𝟎 
Fixed sequence test None None 
Bonferroni-Holm procedure None None 

Multi-domain Test 𝒑𝒑 value 
O’Brien (OB) 
 

0.0855 

Wei-Lachin with Gehan weight 
(WLWX) 

0.0433 

Wei-Lachin with Log-rank weight 
(WLLR) 

0.0233 

Adaptive weighting test using 
marginal student 𝑡𝑡 statistic (SNT) 

0.0684 

Adaptive weighting  test using 
marginal Wilcoxon statistic (SWX) 

0.0210 

 
 

5 Conclusion 
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In this paper, we propose a permutation test for multi-domain outcomes in clinical trials 
based on Xu et al. (2003) and Uno et al. (2015). Our method does not require estimation 
of the covariance among the marginal test statistics, and therefore can be applied freely in 
a very general multi-domain outcome setting. The simulation study demonstrated that the 
proposed test performs as well as conventional multi-domain tests in almost all scenarios, 
and better in cases when the treatment effect of one domain is relatively small while that 
of the other domain is large. The type I error rate is also well controlled. We analyzed 
data from two clinical trials in MPS I (a rare disease) and in multiple sclerosis. Our 
permutation test with adaptive weighting was powerful in detecting treatment benefits, 
especially in the multiple sclerosis case where the multiple testing procedures failed to 
show statistical significance due to the large number of endpoints and moderate marginal 
p values.  
 
Our simulation study focused on normal distributions. Future research may explore the 
performance of the tests under skewed distributions or with outliers. More than two 
endpoints may also be considered in a simulation setting to learn about the statistical 
properties of multi-domain tests under various treatment effect configurations. 
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