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Abstract
One major interest of financial time series analysis is to identify changepoints of trends and recog-
nize patterns that can be used for classification and clustering of time series. Because of the large
amounts of data, nonlinear relationship of the data elements and the presence of random noise, some
method of data reduction is necessary. The data reduction, however, must preserve the important
characteristics of the original data. Many representation methods in the time domain or frequency
domain have been suggested to accomplish efficient extraction of information. These include, for
example, piecewise linear approximation, symbolic representation, and discrete wavelet transforma-
tion (DWT). However, most of the existing methods do not take into consideration time information
of trends and/or depend on user-defined parameters, for example the number of segments for piece-
wise approximation. We introduce piecewise band smoothing (PBS) for data representation based
on linear regression using small sets of current data points. The proposed method is flexible and in-
terpretable in the sense that it allows the acquisition and addition of new data points (online method)
to detect meaningful trends and changepoints. Changepoints are confirmed once new data points
stray far enough outside of the band, creating a reduced dataset of changepoints to utilize. Next,
we define patterns from the reduced data which preserve trends and the length of a trends duration.
Finally, a distance metric is suggested as a similarity measure to classify the present application
example of classification.

Key Words: Data reduction, Financial time series, Piecewise linear approximation, Online method,
Similarity measure, Classification

1. Introduction

A lot of large sized datasets, particularly financial datasets, are in the form of time series
data or can be converted into temporal data. Although traditional time series models using
statistical techniques, such as ARIMA and GARCH, are relatively simple to use and easy to
understand data generating processes, the assumptions of these models are not likely real-
istic for massive time series datasets. As a result, data mining techniques for financial time
series analyses have been explored and developed as alternatives to traditional statistical
models.

In time series data mining, unlike general data mining, data representation or data pre-
processing is required to reduce the dimensionality of data. Reduced data by data repre-
sentation, however, must preserve the important characteristics of interest from the original
data. While data representation methods in the time domain or frequency domain have
been suggested for financial time series analysis, many of these methods do not take into
consideration time information when the local characteristics of data, for example “up” or
“down” linear trends, but rather only focus on approximating the original data based on
user-defined parameters such as the number of segments.

In this paper we introduce new data representation methods, Alternating Trends Smooth-
ing (ATS) and Piecewise Band Smoothing (PBS). They are piecewise linear approximation
methods. These methods reduce the original time series data with continuous straight lines
by identifying “up” or “down” trend changepoints. While the reduced data by ATS rep-
resent increasing and decreasing trends alternatively, the reduced data by PBS does not
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necessarily represent up/down alternating patterns since it can define trend “change” more
flexible with several parameters. Next, we suggest methods of pattern definition on the
reduced data by ATS or PBS in numerical and symbolic forms with appropriate similarity
measures. Then, we show an application example of stock price data classification based
on their visual similarities.

2. Methods

2.1 Data Representation

While the major purpose of data representation is data reduction, the reduced data must pre-
serve interesting patterns and features of the original data as much as possible. In financial
time series data, most interesting pattern and feature are probably increasing/decreasing
patterns, and their changepoints. Our two new data representation methods, alternating
trends smoothing(ATS) and piecewise band smoothing(PBS) represent lengthy and noisy
time series data by detecting these trends and their changepoints.

2.1.1 Alternating Trends Smoothing (ATS)

Alternating trends smoothing, or ATS, is a piecewise linear smoothing method that repre-
sents the original time series by “up” and “down” straight lines alternatively. The algorithm
is given in Algorithm 1.
The output of Algorithm 1 for a time series x1, x2, · · · would be,

(b1, c1), (b2, c2), · · ·

where b1 = 1, and bi’s and ci’s (i = 1, 2, · · · ) are time indices and values at changepoints.
ATS has a tuning parameter h in Algorithm 1, that is a “step size”. The algorithm begins
with examining h data points to identify the next changepoint beyond the current change-
point. Larger step size h tends to identify a fewer since the algorithm moves faster with
more data points (larger h) to begin to identify the next changepoints (Figure 1). However,
the distance between two changepoints can be smaller than the step size, even as small as 1
time unit. Notice that the ATS may overshoot the peaks and valleys because the identifica-
tion of a changepoint is delayed untill the trend change is confirmed by a true trend (Figure
1, right), a peak between t = 60 and t = 70.
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Figure 1: Data representation by ATS with h = 4 and h = 12

JSM 2016 - Section on Statistical Learning and Data Science

808



Algorithm 1 Alternating Trends Smoothing
1: Set d← 1 (changepoint counter)
2: while more data in first time setp do
3: for i = 1, 2, · · · ,m, where m = h if h additional data available, or m is last data

item do
4: input xi;
5: bd ← 1; cd ← x1
6: Determine j+, j−, xj+ , xj− such that
7: xj+ = max(x1, x2, · · · , xh) and xj− = min(x1, x2, · · · , xh)
8: Set s = (xk − xi)/(k − i) and r = sign(s)
9: while r = 0 do

10: Continue inputting more data; stop with error at end of data
11: end while
12: end for
13: end while
14: Set j ← i (index of last datum in previous step); and set d← d+ 1
15: while more data do
16: for i = j + 1, j + 2, · · · , j +m (m = h if h additional data available, or j +m is

last data item) do
17: Input xi;
18: while sign(s) = r do
19: Set k ← min(i+ h, n) where n is the number of data points
20: if k=i then break
21: end if
22: Set s← (xk − xj)/(k − j)
23: Set j ← k
24: end while
25: Determine j+ such that rxj+ ← max(rxj+1, · · · , rxj+m)
26: Set bd ← j+; and set cd ← xj+
27: Set d← d+ 1; set j ← j+; and set r ← −r
28: end for
29: Set bd ← j+; and set cd ← xj+
30: end while

2.1.2 Piecewise Band Smoothing (PBS)

While ATS identifies changepoints based on trend direction, piecewise band smoothing
(PBS) considers not only the increasing/decreasing direction change but also the changes
in the magnitude of trends in the same direction, thus it rarely overshoots the peaks and
valleys. In the algorithm of PBS, there are some parameters to control the criteria of trend
change, initial window size (w), bandwidth (B), and change ratio (R). The initial window
size, w, is the number of data points to determine the current linear trend. Using the initial
window size (w > 3), the algorithm fits the linear model by least squared methods, and the
coefficient, β̂1, of this fitted line in (1) is considered “current trend”.

x̂t = β̂0 + β̂1t, t = 1, 2, · · · , w (1)

To meet continuity constraints of the approximated data, the linear models without
intercept (β̂0 = 0) is used. After the current trend is fitted, the algorithm examines one
point at a time to identify if the trend change occurred or not. Bandwidth (B) is the tolerable
range of data fluctuation under the current trend line. That is, if the vertical distance from
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the trend line to xj , (j = w+ 1, · · · ) is greater than B, it is assumed that the trend change
occurred at time j − 1. Otherwise, the algorithm moves to the next point and examines its
deviation. The larger bandwidth tends to identify a fewer number of changepoints (Figure
2).
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Figure 2: Data representation with bandwidth 6 (left) and 2 (right) - IBM daily closing price from
January 13, 2012 to October 26, 2012

The change ratio (R) is the threshold ratio to determine “significance” of change in
the magnitude of two successive trends. Sometimes after PBS identifies a changepoint,
the next trend actually may not be significantly different or seem to be almost, since the
algorithm identifies changepoints by examining one point at a time. Thus, the change ratio
specifies the ratio of the magnitude between two successive trend lines that is thought of as
being a significant change in trend. Specifically, for two successive trends βi and βi+1 and
sign(βi) = sign(βi+1), the change ratio R is defined by

R = min

(
βi+1

βi

)
if
(
βi+1

βi

)
> 1 (2)

= min

(
βi
βi+1

)
if
(
βi+1

βi

)
< 1. (3)
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Figure 3: Data representation with the change ratio R = 2 (top) and R = 5 (bottom) - IBM daily
closing price from March 27, 2012 to January 11, 2013
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To determine parameters, we may use the objective function that consists of loss function
and regularization to control the loss of information and roughness of the represented data.

min
∞∑
i=1

ni∑
k=1

{
(xik − x̂ik)2

ni
+ λI(xik = xi1)

}
(4)

where x̂ik is the fitted value of k-th point and ni is the number of data points in the i-th
regime, and λ is a tuning parameter for regularization term. Note that unlike ATS, the
length of trend regime in data reduced by PBS is always greater than the initial window
size w.

2.2 Patterns

Once the original time series data is represented by linear lines, the subsequence of the local
models can be patterns of interest. Let µi(t) be the i-th local model between (i− 1)-th and
i-th changepoints, then a particular sequence µi(t), µi+1(t), · · · , µi+r(t) defines a pattern.
There are two approaches to define a pattern. We may define patterns using a sequence
of duplets (s1, l1), (s2, l2) · · · , where si is the linear trend (slope value of the fitted line)
and li is the length of the i-th trend regime respectively. Another way of defining a pattern
on the reduced data is to us symbolic patterns. That is, transforming the real-values in the
sequence of (si, li), i = 1, 2, · · · into the ordinal categorical values as seen in Table 1 and
Table 2 based on their quantiles.

Table 1: Up and Down patterns with the lengths
U1 (C+

1 ) Up short length D1 (C−1 ) Down short length

U2 (C+
2 ) Up moderate length D2 (C−2 ) Down moderate length

U3 (C+
3 ) Up long length D3 (C−3 ) Down long length

Table 2: The magnitude of the trends
S (V1) Small in magnitude
M (V2) Medium in magnitude
L (V2) Large in magnitude

time

Discretized Patterns

U2M D1L

U3S
D2M

Figure 4: Discretized Pattern

The symbolic patterns also consist of two symbols: one for direction and length of
trend, and the other for the magnitude of the trend. The magnitude of the trends are mea-

JSM 2016 - Section on Statistical Learning and Data Science

811



sured by the absolute value of the linear trends. Figure 4 illustrates an example of a se-
quence of symbolic patterns. U2M and D1L means “moderate length of increasing trend
with medium magnitude” and “short length of decreasing trend with large magnitude” re-
spectively.

2.3 Similarity Measures

2.3.1 Similarity Measures for numerical patterns

For the sequence of numerical patterns, that is a sequence of duplets that consists of the
trends and the length of the trends (si, li), we transform the local functions to the piecewise
constant functions, since the length of the trend li in a piece of numerical pattern (si, li) is
actually a length between two successive changepoints ci−1 and ci, each numerical pattern
(si, li) can be transformed to a constant function,

fi(t) = siI([ci−1, ci]), i = 1, 2, · · · (5)

In this fashion, the sequence of numerical patterns is transformed to a discontinuous con-
stant function over time, and the distance of two time series can be measured from the
different area between two discontinuous constant functions as follows:

Distance(T,Q) =

(
m+n∑
i=1

∫ ai

ai−1

(fT (t)− fQ(t))2 dt

) 1
2

(6)

=

(
m+n∑
i=1

(fT (ai)− fQ(ai))2 (ai − ai−1)

) 1
2

(7)

where fT and fQ are discontinuous constant functions of time series T and Q, and ai’s
(ai ≤ ai+1 for all i) are a sequence of combined changepoints of T and Q. Figure 5
illustrates the process of data representation, transformation to the numerical patterns and
discontinuous constant functions, and calculating distance between two time series.

2.3.2 Similarity Measures for symbolic patterns

Distance measure for symbolic patterns can be calculated in a simpler way. As we cat-
egorize real-values in numerical patterns to a finite number of discrete values (symbols)
according to the trend direction, the length of the trends, and the magnitude of the trends,
we may assign integers with +/- signs on the symbols as seen in Figure 6. Thus, the distance
between two sequences of symbolic patterns can be obtained by

Discrete Pattern (DP) distance =
m∑
i=1

√
(C1

i − C2
i )

2 + (V 1
i − V 2

i )
2 (8)

where Ci’s and Vi’s are symbols in the symbolic pattern (Ci, Vi). Note that to measure
discrete pattern distance, the length of two sequence of symbolic patterns must be the same
since it is Euclidean distance base. One simple idea to meet this condition might to merge
two adjacent trend regimes of the longer sequence based on some criteria, for example, the
minimum increase in errors when merged.

JSM 2016 - Section on Statistical Learning and Data Science

812



(1) Original Time Series (2) Piecewise Approximation

b0 b1 b*1 b2 b3 b*2 b*3 b4 b5

(3) Piecewise Constant (Step functions)

a0 a1 a2 a3 a4 a5 a6 a7 a8

(4) Difference of Step Functions

a0 a1 a2 a3 a4 a5 a6 a7 a8

Figure 5: (1) Two raw data (2) Data representation by ATS or PBS (3) Transforming
numerical pattern sequence to discontinuous constant functions (4) Distance measure by
integration of difference between two constant functions

Assigning numerical values for Distance measure

U1

U2

U3

S M L

D1

D2

D3

SML

decresing trend

incresing trend

Figure 6: Distances for discretized patterns

3. Application Example

In this section, we demonstrate an example of classification for time series data using PBS
and distance measure for numerical patterns. The purpose of this application example is
not to evaluate the performance, but to illustrate PBS for classification and see if it would
detect similar patterns in time series data.

• K-Nearest Neighbors (K-NN) - The K-nearest neighbors classifier uses K-nearest
classified observations of a new observation x0 to predict x0’s class. It assigns the
most frequent class of K-nearest observations from x0. We used K = 1 which
is most widely used in time series data mining (Esling et. al, 2012) and distance
measure for numerical pattern sequence in (6) and (7).
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• Datasets - We collected four groups of stock price data from January 13, 2012 to Jan-
uary 12, 2015 based on their “visually similar” pattern determined by local features
at specific time periods (Figure 7).

• Choice of parameters - Each time series is smoothed by piecewise band smooth-
ing (PBS) with change ratio, R = 3.5. The initial widow size (w) and band-
width (B) are selected from S = {w | 4 ≤ w ≤ 15, w is integer} and B ∈
{0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} which minimize the mean of squared error sum
in (4).

Figure 7: Four classes of stock prices from January 13, 2012 to January 12, 2015. They
are classified based on visual similarity for specific time periods.

The results are shown in Table 3, Table 4, and Table 5. Table 3 is the result of 1-NN
classification using raw data and Euclidean distance. Euclidean distance is rarely used for
large size time series data, however, it might be a straightforward reference to compare
mining performance for relatively short sequences of datasets. Table 4 and Table 5 are the
result of classification on raw data and normalized data respectively, using PBS and the
integral distance in (6) and (7). It is noticeable that normalization of datasets considerably
improved the performance. However, zero error rate in Table 5 does not imply the methods
used are perfect since the sample size is relatively small, we need more experiments with
larger size samples to verify its performance.
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Table 3: The result of 1- NN classification for raw data by Euclidean Distance
Predicted row

U F M D total

Actual

U 7 0 0 0 7
F 0 4 3 0 7
M 0 0 7 0 7
D 0 2 0 4 6

total 27
Error Rate = 0.19

Table 4: The result of 1-NN classification for raw data using PBS and the integral distance
Predicted row

U F M D total

Actual

U 6 0 1 0 7
F 1 3 3 0 7
M 1 0 6 0 7
D 0 0 1 5 6

total 27
Error Rate = 0.26

Table 5: The result of 1-NN classification for normalized data using PBS and the integral
distance

Predicted row
U F M D total

Actual

U 7 0 0 0 7
F 0 7 0 0 7
M 0 0 7 0 7
D 0 0 0 6 6

total 27
Error Rate = 0.00

4. Conclusions and Future Work

In this research, we developed two new time series data representation methods, alternat-
ing trends smoothing (ATS) and piecewise band smoothing (PBS). These methods assume
that a large time series consists of linear data generating processes, and thus the represented
data by ATS or PBS are continuous straight lines with various lengths. While ATS has an
tuning parameter “step size”, PBS has three parameters initial window size (w), bandwidth
(B), and change ratio (R) which controls the roughness of the reduced data. These param-
eters can be determined by the objective function that has two components, loss function
and regularization. The fitted lines in trend regimes are used to define patterns in the form
of real-values or discrete values. The numerical patterns can be transformed to discontin-
uous constant functions using line slope values to measure distance by integration of the
difference of two functions. Thus, the lengths of two numerical pattern sequences do not
have to be the same while those of two symbolic patterns must be since it is measured by
Euclidean distance.
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There are some possible modifications and extensions in piecewise band smoothing. In
the algorithm of PBS, w data points used to fit the current trend line cannot be examined
to identify changepoints, therefore it might miss true changepoints in the case that there
is actually a trend changepoint among these w points, and the length of a trend regime in
the reduced data is always equal to or greater than initial window size w. It may result in
forcing the linear data generating process to be always have at least a certain number of
length regardless of the true size of data generating process. This issue can be resolved by
having an additional process to search a deviated point (changepoint) among the points in
the initial window. In this step, the rule for decision of bandwidth should be considered
together.

Also, these methods can be extended for correlated and multivariate time series data for
future research. Although we assume that a large time series comprises many independent
data generating processes, generally time series data are more likely correlated. Extended
research for multivariate time series is also very important since it will give insight into
the relational properties between sets of changepoint and patterns among the times series
datasets.
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