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Abstract

The dose-response studies of a drug is important in clinical trials, pharmacology and toxicol-
ogy research. In dose-response clinical studies, humans or animals are exposed to the drug which
has some effect depending on the dose level, and efficacy and/or toxicity are often the primary
endpoints to be evaluated to determine the effective and safe ranges of the drug. Typical clinical
dose-response studies consist of the comparison of several doses of a drug against a control, and
one of the primary goals is to identify the minimum effective dose (MED) and the maximum
safe dose (MSD).

Multiple comparison procedures have been one of the major techniques to analyze data from
dose-response studies. We will discuss some multiple comparison techniques, which include mul-
tiple test procedures (closed testing procedures and testing procedures based on partition prin-
ciple), and simultaneous confidence intervals under the monotonicity assumption. Monotonicity
helps to avoid logical inconsistencies and as such is essential in multiple testing. Examples are
given to illustrate and compare these different approaches using summary data from Wöhr, M.,
Borta, A., and Schwarting, R. (2005).

Keywords: Dose-response studies, minimum effective dose, multiple comparison proce-
dures, closed principle, partition principle.

1 Introduction

Dose-response studies are critical procedures under clinical trials since it borders around the safety
of consumers. There is a rising need to find the safest and effective dose which will be ideal to
consumers. The effective dose range is found within the range of the minimum effective dose (MED)
and the maximum tolerated dose (MTD).

The MED of any drug can be defined as the minimum dose for which a clinically significant
response is observed and the mean response at that dose is significantly better than the mean re-
sponse of the control dose. The MTD is relatively the highest possible but tolerable dose level in
reference to a prespecified toxicity threshold. This study focusses on finding the MED.
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Under dose-response experiments, several doses are given to separate groups and in most cases 
compared against a standard group that usually receives a zero dose or placebo. The main purpose 
is to find the lowest dose level which produces a desirable effect over the control dose if a dose re-
sponse effect exists. Testing the groups against the placebo or standard group gives rise to multiple 
testing which is a major challenge.

In clinical trials, multiplicity or multiple testing is virtually present in every procedure, ranging 
from considering several treatments, different dose groups, subgroups, the use of different statistical 
models,etc.

Multiple testing occurs in a lot of fields but is found more commonly in biology related fields 
where it is common to have more than 20 simultaneous tests whiles studying a phenomena. One 
obvious and easy approach may be to test each hypothesis from a set of hypothesis separately using 
a significance level. This may seem like a good option, except it allows for errors since the chances 
of observing at least one significant result is highly inflated only due to chance. As the number 
of independent tests increases for the same significant level, the chances of obtaining a significant 
result and consequently making a false decision increases.

A need to adjust for such errors has been a controversial debate in biostatistics. Different meth-
ods have been suggested to help in adjusting for multiplicity. Methods for dealing with multiple 
testing usuallly requires adjusting the significance level α in some way, such that the probability 
of observing at least one significant result due to chance remains under the desired significance level.

The errors that arise due to multiple testing are of concern under dose-response studies and 
hence needs to be adjusted for to address safety issues. Different researchers have proposed various 
methods to test hypotheses in a stepwise manner to adjust for errors and also help in determining 
the minimum effective dose.

This current study explores three different stepwise procedures that seek to adjust for errors 
and subsequently determine the minimum effective dose under a monotonicity assumption, that 
is, µ1 ≤ . . . ≤ µn, where µi is the mean response of dose responses and indicates a better aver-
age outcome when large. A monotone procedure tends to reject a hypothesis whenever it rejects 
another hypothesis with a bigger p-value. A rejection of a hypothesis Hj implies the rejection of 
Hi if µi < µj . The Bonferroni-Holm procedure and Hochberg procedures are both closed testing 
methods that are performed in different stepwise directions. The approach using the Simultaneous 
Confidence intervals employs the partition principle.

The Bonferroni-Holm procedure is an extension of the Bonferroni test which only computes 
a new pairwise alpha that keeps the familywise alpha value at 0.05 to use in testing. The Holm 
procedure is a sequential stepdown procedure which is based on the Bonferroni test. This method 
orders all p-values from minimum to maximum with corresponding hypothesis and then the proce-
dure scans forward and stops as soon as the first non-significant p-value is obtained. The procedure 
then declares all remaining p-values not significant and the dose level associated with the very last 
significant p-value the MED.
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The Bonferronni test by itself lacks power due to the assumption that all null hypothesis are 
true which is not usually likely the case. The use of the Holm procedure with the Bonferroni tests 
gives a stepwise procedure that helps to correct for multiple testing errors and also compensate for 
the loss in power that arises with the use of only the Bonferroni procedure.

The Hochberg procedure works in a similar manner to the Bonferroni-Holm procedure. It is 
also an improvement on the Bonferroni test. This procedure simply works in the opposite direction 
to the Bonferroni-Holm procedure. This is a step-up procedure which scans forward through the 
set of ordered p-values from maximum to minimum and stops as soon as the first significant p-value 
is obtained. For the Hochberg procedure, the dose level associated with the very first significant 
p-value is the MED.

The simultaneous confidence interval approach employs the use of testing confidence intervals 
against prespecified clinically significant thresholds. Confidence intervals are known to be clinically 
better than the use of p-values or yes/no decisions. Two sided confidence intervals may be con-
structed but for the purposes of this project, the lower confidence bound is computed and used in 
testing simultaneously.

The procedure starts with computing the lower confidence bound for the difference between the 
mean response of the highest dose level and the that of the control. This lower bound is compared 
with the specified clinically significant threshold and if it is found to be bigger than this threshold, 
then the dose level is claimed significantly better than the control dose level and the procedure 
continues to the next highest dose. The procedure continues until the last dose level or until a 
bound fails to clear its threshold. If a lower bound fails to clear its threshold, the dose level tested 
before this lower bound becomes the MED as defined by the simultaneous confidence approachand 
otherwise declares all dosages being tested significantly better than the control dose if the least 
dose level clears its threshold.

Summary data from a study by Wöhr, M., Borta, A., and Schwarting, R. (2005) will be used 
in the proposed procedures.

2 Methodology

2.1 Multiple Test Procedures

Multiple testing refers to testing more than one hypothesis at a time. Dose-response studies typi-
cally employ the use of multiple comparison procedures due to comparisons that are made between 
different dosage levels and a placebo or zero dosage level to identify the effective and safe ranges of 
a drug in clinical trials. Generally, multiple test procedures yield multiple type I errors in analysis 
due to the multiple hypotheses that needs to be tested.

The elevation of false-positive (type I) error rate is not acceptable and more particularly in 
clinical trials where safety of participants is at stake. A high incidence of these false positives 
can cause researchers to claim significance by including a high number of inefficient treatments by 
chance only [1].
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In dealing with single hypothesis testing, type I error rate is controlled at a designated α level.
The probability that at least some type I error are committed increases greatly and may exceed
the given level α when testing multiple hypotheses with each hypothesis having a specified type I
error probability under the assumption that all null hypothesis are simultaneously true [2] [3].

The ordered nature of doses that are compared with the zero dose indicates the use of stepwise
multiple test procedures. Two procedures that are known to make use of such stepwise approaches
are the Closed test procedures and the Partitioning test procedures.

2.2 Closed Testing Procedures

The closed testing procedure which was introduced by Marcus, Peritz and Gabriel (1976) is iden-
tified to be one of the most basic and efficient ways used to controll the multiple type I errors that
occur with multiple testing.

The closed testing procedures are designed to test a set of hypothesis that is closed under
intersection. A set is closed under intersection if for a set C containing a collection of subsets from
a set E, the intersection of any two of the subsets in set C belongs to the set C whenever the two
sets are also in set C.This testing procedure is characterised by two essential features, namely the
closure principle and the familywise error rate.

1. Closure Principle
Let each of {Hi}ni=1 and {Hj}nj=1 be a family of hypothesis and let p1, . . . , pn be p-values
associated with each hypothesis, then we can define the intersection null

Hij = Hi ∩Hj = {pi, pj v U([0, 1])}

The closure of this family can be generalized as (Marcus et’al; 1976)

HI =
⋂
i∈I

Hi for all I ⊂ {1, 2, . . . , n}

The closure principle tests each hypothesis HI and if it is not rejected, then the closure princi-
ple accepts all Hi since the representation HI =

⋂
i∈I

Hi shows that all Hi for i < I are implied

by HI . This leads to a step-down test procedure for the closed family where Hn is first tested.

For the family of hypothesis,{Hi}ni=1, where Hi is the hypothesis of homogeneity of the first
i+ 1 dose groups, it can be observed under the monotonicity of dose response that the family
is closed under intersection since Hi ∩ Hj = Hmax{i,j} which also belongs to the family for
every i, j between 1 and n.

Consider a dose response study which compares two doses of a drug with a placebo with
associated hypotheses given by H1 : µ1 ≤ µ0 and H2 : µ2 ≤ µ0 and p-values p1 and p2
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respectively for testing the hypotheses. A closed test is constructed by considering all possible
intersections of all hypotheses associated with the doses to form a closed family of hypotheses
and uses the natural order therein to ensure that the family of hypotheses is closed under
intersection. The family contains the following three intersection hypotheses:

H1, H2 and H12 = H1 ∩H2

Each hypothesis in the closed family is tested using a suitable local α-level test and the
procedure rejects a hypothesis if all intersection hypotheses containing this hypothesis are
rejected by the associated local tests. In effect, both H1 and H12 would have to be rejected
to conclude that µ1 > µ0 since both hypotheses contain H1 and the same goes for concluding
that µ2 > µ0, both H2 and H12 will be rejected due to the closure of intersections.[13]

Under the dose comparison hypothesis tests, if Hn is not rejected, then any other hypothesis
below Hn in the heirachy is accepted and no dose is considered effective. If Hn is rejected, then
Hn−1 is tested next and the step-wise sequence is continued until the last rejected hypothesis.

2. Familywise Error Rate

The process of multiple testing yields a higher probability of having false-positives.

P(making an error)= α
P(not making an error)= (1− α)

P(not making an error in n tests)= (1− α)n

P(making an error in n tests)= 1− (1− α)n

It is obvious that as the number of comparisons, n increases, this probability gets progres-
sively higher. If each hypothesis is tested independently, then each comparison may have
some level of error rate known as the Per Comparison Error Rate (PCER). The PCER is the
expected proportion of Type I errors among the n hypotheses being tested. Controlling only
PCER at level α is not adequate and hence we need consider an error rate that takes into all
n hypotheses as a joint family.

The concept of family in regards to multiple testing refers to any collection of hypotheses for
which some joint measure of errors need to be taken into account.

Generally, step testing procedures are known to control the familywise error rate. If any step
testing procedure satisfies the conditions of closed procedure then that procedure controls the
family-wise error rate strongly [5].

The Familywise Error Rate (FWER) is the probability of making one or more false discover-
ies, or type I errors, among all the hypotheses when performing multiple hypotheses tests. It
can also be referred to as the combined type I error rate.

Many procedures have been developed to control the FWER. FWER control is more desirable
when the number of tests is small, so that a good number of rejections can be made, and all
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can be trusted to be true findings. Some of the well known procedures include the Bonferroni/
Bonferroni - Holm procedures and the Hochberg procedures.

2.2.1 Bonferroni/ Bonferroni - Holm Procedures (1979)

The Bonferroni correction approach to correcting FWER is the most widely used approach.This
approach simply computes a new pairwise alpha to keep the familywise alpha value at 0.05 (or the
specified alpha value). Let the Familywise Error(FWE) be defined as

αFWE ≤ 1− (1− α)n

Then the formula to compute a new pairwise alpha is as follows

αB = αFWE
n

where αB is the new alpha based on the Bonferroni test that is now used in each comparison,
αFWE is as defined and n is the number of comparisons to be performed.
The Bonferroni test is most commonly used due to its flexibility and simple computation. It however
lacks power because of the assumption that all null hypothesis are true which is unlikely to be the
case.

To account for the loss of power in the classical Bonferroni test, several alternatives that is
based on the Bonferroni approach have been developed. One of such is the Holm procedure. This
test has much greater power than the single-step Bonferroni procedure because it begins at the
same significance level as the Bonferroni procedure and tests the other hypotheses at successively
higher levels but still maintains the flexibility that allows for use with any set of statistical tests.

The Holm’s procedure is a sequential step-down process that scans forward and stops as soon
as a p-value fails to clear its threshold.

Let H1,. . . ,Hn be a family of hypothesis and their corresponding p-values after conducting tests
with significance level α/n be P1,. . . , Pn. The steps involved in this procedure are as outlined
below.

� P1,. . . , Pn are arranged in order from smallest to largest as P(1),. . . , P(n) with corresponding
hypothesis H(1),. . . ,H(n) and each p-value is compared with a significance level, α/n+ 1− k,
where k is the smallest index being tested.

� The first smallest p-value is compared with α/n. If this p-value is found to be greater than
or equal to α/n, the procedure stops and no p-values are significant. The process continues
otherwise.

� If the first p-value is significant, the second smallest p-value is next tested. It is compared
to α/(n − 1) and if it is found to be greater then the procedure is stopped and no further
p-values are found to be significant. The process continues otherwise.

� If for all n, no p-value is found to be greater than its corresponding significance level,then all
of the null hypotheses is rejected.
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The power gain obtained by using a sequentially rejective Bonferroni test (Bonferroni-Holm)
instead of a classical or traditional Bonferroni test depends very much upon the alternative. It is
small if all the hypotheses are ‘almost true’, but it may be considerable if a number of hypotheses
are ‘completely wrong’[6].

2.2.2 Hochberg Procedure

The Bonferroni procedure in itself is conservative in that the Bonferroni inequality does not take into
account the correlations amongst test statistics and hence lacks power if several highly correlated
tests are undertaken.

Simes (1986) proposed an adjustment to the Bonferroni inequality that rejects Ho if P(n) ≤ kα/n
for at least one k(1 ≤ k ≤ n). This procedure does not always produce a level α test, however,
Simes proved that a level α test can be achieved provided test statistics used are independent.
In such a case, the Simes procedure is strictly more powerful than other Bonferroni adjustments.
Applying the closure principle to the Simes procedure yields the Hochberg procedure.

The Hochberg’s (1988) [7] procedure is also an improvement to the classical Bonferronni test de-
signed to control FWER. It offers an adjustment which creates a more powerful test than the Holm
procedure.Hochberg’s method is thought of as a step-up version of the Bonferroni test. Hochberg’s
method is more powerful than Holm’s method, but the test statistics need to be independent as
indicated by Simes procedure or have a distribution with multivariate total positivity of order two
or a scale mixture thereof for its validity [9].

Hochberg’s procedure can be seen as a reversed Holm procedure, since it uses the same critical
values, but in a reversed testing sequence. Let H1,. . . ,Hn be a family of hypothesis and their
corresponding p-values after conducting tests with significance level kα/n be P1,. . . , Pn. The p-
values are ordered with corresponding hypothesis and compared to α/n+ 1− k, where k is the
largest index being tested. The test proceeds as follows

� The hypothesis H(n) associated with the largest p-value, P(n) is first tested. If P(n) ≤ α , the
procedure stops and all hypotheses H(1),. . . ,H(n) are rejected. H(n) is retained if not found
to be significant and the procedure continues testing H(n−1) at the smaller significance level
α/2.

� If P(n−1) ≤ α/2, the procedure stops and all hypotheses H(1), ...,H(n−1) are rejected.

� The steps are repeated for all n until either the first rejection occurs or all null hypotheses
H(1),. . . ,H(n) are retained

2.3 Partitioning Testing Principle

Stefansson, Kim and Hsu (1988) introduced the partitioning principle as another method of testing 
multiple hypothesis by setting up disjoint hypothesis from a family of hypothesis. It was further
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advanced by Finner and Strassburger (2002) [10]. Partitioning principles are used to construct
procedures that are more powerful than the procedures derived using the closed testing procedures.
The mutually exclusive hypotheses that are created by partitioning can each be tested at level α
without compromising the FWER control since they are disjoint. Consider testing the hypothesis

H0i : θi ≤ 0, i = 1, . . . , k

A partitioning test to test this hypothesis follows the following steps.

� Let I ⊆ {1, . . . , k} and I 6= ∅, form mutually exclusive partitions such that H∗0I : θi ≤ 0 for
all i ∈ I and θj > 0 for j /∈ I. There are 2k parameter subspaces and 2k − 1 hypothesis to be
tested.

� Each hypothesis H∗0I is tested at level α.

� For each i we can infer that θi > 0 if and only if we reject all H∗0I with i ∈ I because H0i is
the union of H∗0I with i ∈ I.

To illustrate the partitioning process above, consider the following example involving two doses
and a placebo in a clinical trial. The first step involves the partitioning of the union of the hypothesis

H1 : µ1 ≤ µ0, H2 : µ2 ≤ µ0

into three mutually exclusive hypotheses since 22 − 1 = 3. The partitioned hypothesis is as
follows:

H∗1 : µ1 ≤ µ0 and µ2 ≤ µ0,
H∗2 : µ1 ≤ µ0 and µ2 > µ0,
H∗3 : µ1 > µ0 and µ2 ≤ µ0

The three hypotheses are disjoint and hence testing each at α does not compromise the FWER.
The final decision rule is constructed by considering all possible outcomes for the three mutually
exclusive hypotheses. We can consider the following examples based on the outcomes

� If H∗1 is rejected, we conclude that µ1 > µ0 or µ2 > µ0.

� We conclude that µ1 > µ0 if H∗1 and H∗2 are rejected.

� Similarly, a rejection of H∗1 and H∗3 will imply that µ2 > µ0.

� If H∗1 , H∗2 and H∗3 are all rejected, then the conclusion is that µ1 > µ0 and µ2 > µ0.

The test appears to be conceptually similar to the closed test procedure. The partition test,
however, does not deal with the hypothesis in a closed family but rather with mutually exclusive
hypotheses.
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2.4 Simultaneous Confidence Intervals

Confidence intervals are clinically more appropriate than P-values or yes/no decisions and hence
simultaneos confidence intervals are also proposed for several designs and aims in clinical trials. In
this instance, ‘simultaneous’ implies multiplicity adjusted.

The choice of a one-sided or two-sided confidence intervals depends on the design of the study
and the formulation of hypotheses. Two sided intervals for example are deemed appropriate and
recommended when information on both the minimum and maximum likely is of interest per the
design of further studies.

The lower confidence bound for the difference between the mean response of any nonzero-dose
level and that of the control is of interest because its size may be useful in assessing the actual
treatment effect between the largest dose and the control.

Let

µ̂i = Yi =

ni∑
a=1

Yia/ni

Where Ȳi follows from a one - way model defined by

Yia = µi + εia, i = 1, . . . , k, a = 1, . . . , n

Where Yia is the ath observation of the ith treatment and error term is iid normal with mean
0 and variance σ2 unknown.

Also let the minimum effective dose be defined as

MED = min {i : µi > µ1 + δ}

where MED is the minimum dose such that the mean response at that dose is clinically sig-
nificantly better than the mean response of the negative controls and δ > 0 defines a clinically
significant difference.

The MED can be obtained using the simultaneous confidence interval approach in a stepwise
manner. The stepwise confidence set is constructed under a one-way model and it takes the follow-
ing form: [11]

Step 1.

If Ȳk − Ȳ1 − tα,ν σ̂
√

1/nk + 1/n1 ≥ δ, assert µk > µ1 + δ and go to step 2, otherwise claim
that there is no nonzero-dose level which is significantly better than the control and µk − µ1 >
Ȳk − Ȳ1 − tα,ν σ̂

√
1/nk + 1/n1 and stop.

Step 2.
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If ¯Yk−1 − Ȳ1 − tα,ν σ̂
√

1/nk−1 + 1/n1 ≥ δ, assert µk−1 > µ1 + δ and go to step 3, else assert
µk−1 − µ1 > ¯Yk−1 − Ȳ1 − tα,ν σ̂

√
1/nk−1 + 1/n1 and stop.

...
Step k - 1.

If Ȳ2 − Ȳ1 − tα,ν σ̂
√

1/n2 + 1/n1 ≥ δ, assert µ2 > µ1 + δ and go to step k, else assert µ2 − µ1 >
Ȳ2 − Ȳ1 − tα,ν σ̂

√
1/n2 + 1/n1 and stop.

Step k.

Claim every dose level is significantly better than the control and stop.

To help in understanding the stepwise process and how it works, let step M(1 ≤M ≤ k) be the
step at which the stepwise method stops. Then the stepwise method declares doses k−M+2, . . . , k
to be efficacious if M > 1.

If M < k, then the stepwise method fails to declare doses 2, . . . , k−M + 1 to be efficacious and
gives a lower bound (which is less than δ) for µk−M+1 − µ1.

If M = k, then the stepwise method gives a lower bound on how every dose is. This lower
bound is greater than δ.

3 Analysis and Findings

The three methods discussed above were employed in finding the minimum effective dose (MinEd)
in this section. To illustrate these procedures, consider the data below obtained from Table 1 of
Wöhr et al. (2005).

Table 1: Sample Dose Response Data

Dosage Sample Size Mean Response SEM response

0.0 mA 7 8.89 3.96
0.2 mA 7 5.36 1.87
0.5 mA 7 32.01 6.29
0.8 mA 7 42.75 4.93
1.1 mA 5 48.06 3.55

The data comprises of five dosage levels including a zero-dose, the sample size for each dosage,
its mean response and the standard error of the mean response. Four dose levels are compared with
the zero-dose control.

JSM 2016 - Biopharmaceutical Section

1517



A test for difference in means was first performed between each of the dose level and zero-dose
and the following p-values associated with each dose were obtained as shown in table 2.

Table 2: P-Value Table
Dosage P-Values

0.2 mA 2.195573e-01
0.5 mA 5.580436e-03
0.8 mA 1.655207e-04
1.1 mA 1.263558e-05

The same p-values are employed in both the Bonferroni-Holm and Hochberg methods in just a 
differrent stepwise approaches as follow.

3.1 Applying Bonferroni-Holm Procedure

The p-values obtained were reordered from minimum to maximum along with the hypothesis and 
dosage levels that correspond to the order of p-values. The first p-value that was tested was 
1.26e − 05 which is associated with dosage level 1.1 mA. A critical value of 0.0125 was obtained 
for this step and since that is bigger than the p-value being tested,the test continues. This implies 
that the p-value for dosage level 1.1 mA is significant.

The hypothesis for the 0.8 mA dosage was next tested since it had the next smallest p-value of 
approximately 1.655e − 04 and it also produced a significant critical value of 0.0167 with the test. 
The stepwise procedure continued with testing the rest of the hypothesis in the ordered sequence. 
The 0.5 mA and 0.2 mA were next tested in that order and they produced critical values of 0.025 
and 0.05 respectively.

In the testing sequence, the p-value (2.196e − 01) associated with dosage level 0.2 mA was the 
first found to be bigger than its corresponding Bonferroni-Holm critical value of 0.05. Although 
that is the last dose to be tested, it is also where the Bonferroni- Holm procedure stops since it had 
the first non significant p-value.

The combined results from the test from R is summarized in the table below showing the order 
in which test was conducted and the first nonsignificant critical value obtained labeled with stop 
in the interpretation column.

The test failed to reject the hypothesis that the 0.2 mA dosage was significantly different from 
the zero dose and hence this implies that the minimum efffective dose detremined by the Bonferroni-
Holm test is the 0.5 mA dosage level.
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Table 3: Summary of Bonferroni-Holm Test

Dosage P-Values critical values Interpretation

1.1 mA 1.263558e-05 0.125 Continue
0.8 mA 1.655207e-04 0.0167 Continue
0.5 mA 5.580436e-03 0.025 Continue
0.2 mA 2.195573e-01 0.05 Stop

3.2 Applying the Hochberg Procedure

The p-values were reordered again from maximum to minimum in the order corresponding to the
dosage levels as 0.2 mA, 0.5 mA, 0.8 mA and 1.1 mA to use in the Hochberg process. This test
obtains its first true statement at the first significant p-value. All subsequent p-values together
with this first significant p-value are rejected and the Hochberg Procedure identifies the dosage
level associated with this first significant p-value to be the minimum effective dosage (MED).

The table below summarises the testing results for the Hochberg procedure. The first p-value
found to be significantly smaller than its corresponding critical value was 0.0055804 which is asso-
ciated with the dose level of 0.5 mA. According to the Hochberg procedure, this also indicates that
the minimum effective dose is dose 0.5 mA.

Table 4: Summary of Hochberg Test

Dosage P-Values critical values Interpretation

0.2 mA 2.195573e-01 0.05 Continue
0.5 mA 5.580436e-03 0.025 Stop
0.8 mA 1.655207e-04 0.0167 Stop
1.1 mA 1.263558e-05 0.125 Stop

3.3 The Simultaneous Confidence Interval

In this approach, δ = 10, δ = 11 and δ = 12 were chosen as three different δ values to be used. The 
mean for each dosage level starting with the highest 1.1 mA down to the least 0.2 mA was tested with 
the mean for the placebo or zero dose for each of the three δ values at 95% lower confidence bounds.

Table 5 below summarises the sequence of testing for the simultaneous Confidence interval 
procedure, where µ5 corresponds to dosage level 1.1 mA and µ2 corresponds to the 0.2 mA dose in 
that order.

When δ = 10,dosage levels 1.1 mA and 0.8 mA were both found to be effectively better than 
the zero dose and hence the test continued. At the 0.5 mA dose level, the test failed to clear its 
threshold and therefore by the Simultaneous Confidence interval procedure, the MinED will be that
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Table 5: Simultaneous Confidence Interval Test
µi − µ1 δ = 10 δ = 11 δ = 12

µ5 − µ1 Continue Continue Continue
µ4 − µ1 Continue Continue Continue
µ3 − µ1 Stop Stop Stop
µ2 − µ1 Stop Stop Stop

of 0.8 mA since that was the dosage level whose mean was tested just before the 0.5 mA dose level
which failed to clear its threshhold. The same results were observed for δ = 11 and δ = 12 as seen
above.

4 Conclusions

Methods to help in making correct decisons when one has to use multiple testing has been studied
and used widely as already discussed. In dose response studies, it is essentially critical to avoid any
form of errors that may arise due to multiple testing.

This research considered both closed testing methods and partition principle methods that have
been proven to reduce if not eliminate errors arising from multiple testing under the monotonicity
assumption. The methods considered included the Bonferroni-Holm procedure, Hochberg proce-
dure and the Simultaneous Confidence Interval approach.

The Bonferroni-Holm and the Hochberg procedures produced much about the same result since
they are actually direct opposites with regards to the testing procedure. They both produced re-
sults that indicated that the minimum effective dose (MED) was ideally the 0.5mA.

The Simultaneous confidence produced a slightly different results from the other two. Despite
the use of three different thresholds, they all determined the 0.8mA dosage level to be the MinED.
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