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Abstract
Latent trait models have an abroad application in education, health science, psychology and other

areas. There are two common assumptions in latent trait models: local independence of manifest
outcomes and normal distribution of latent traits. In practice, these assumptions may not be satisfied,
especially for the normality of latent traits. In this study, a class of generalized latent trait models
and modified Gauss−Newton algorithms for multiple outcomes are proposed. Instead of assuming
latent traits to be normal, we specify a skew normal distribution for latent traits of which a normal
distribution is a special case, and then model the conditional probability of each outcome as a
nonlinear quadratic function of latent traits, which has properties similar to the logistic function.
The estimated generalized nonlinear least-square method is used to solve equations for parameters
of interest. The models are applied to an infant morbidity study to develop a new single variable,
called infant morbidity index (IMI) that functions as a summary of four infant morbidity outcomes
and represents propensity for infant morbidity, is developed. The validity of this index as a measure
of propensity for infant morbidity needs to be further investigated in future research.

Key Words: Latent variable models, Latent traits, Modified Gauss-Newton algorithms, Non-linear
least square methods, Infant morbidity index

1. Introduction

Infants have varying propensities for morbidity. The propensity for morbidity (de-
noted by S) is unobserved and manifest in morbidity outcomes. There are several different
morbidity outcomes to consider, including birth defect, abnormal conditions in born, de-
velopmental delay and/or disability, and abnormal birth weight. Most current studies have
focused on assessment of effects of risk factors on individual outcomes or of the relation-
ship between these outcomes or both. It is not clinically useful to identify risk factors and
quantify the strength of the relationship between risk factors and infant morbidity only by
analyzing effects of risk factors on individual morbidity outcomes. A single comprehensive
measurement of morbidity analogous to, say, blood pressure as a measure of cardiac output
is needed. Since these outcome variables are major causes of infant morbidity, the effects of
risk factors on these outcome variables and their relationship have been analyzed in many
studies. Yet little attention has been paid to the development of a composite index which
is a summary construct of infant morbidity. Such an index, nevertheless, could provide a
single comprehensive measure that might be useful in studies of infant health. Compared
with the subjective face-valid index, the new index not only identifies all the patterns of
morbidity outcomes, but also allows early intervention programs that aim to improve the
health of infants with morbidity. The objective of this study is to develop latent trait models
for an index of infant morbidity by combining four pregnancy outcomes and to assess the
validity of the index.

Latent variable models are a class of models that link a set of manifest variables to a set
of unobserved latent variables. When manifest variables are categorical and latent variables
are continuous, they become latent trait models. Latent trait models have an abroad appli-
cation in education, health science, psychology and other areas. There are two common
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assumptions in latent trait models: local independence of manifest outcomes and normal
distribution of latent traits. In practice, these assumptions may not be satisfied, especially
for the normality of latent traits. Liu etal (2008) proposed lognormal distribution to ac-
count for the skewness of the latent trait while the conditional independence of manifest
outcomes is still assumed. Dunson (2006) developed a Bayesian semiparametric approach
to the assumption problem, which is an alternative to dependent Dirichlet process used as
a class of priors for a collection of unknown distributions. Typically, the manifest out-
comes are related to a latent response variable through a factor analytic model, with a scale
mixture of underlying normals used to characterize flexibly the measurement error distribu-
tions. Their primary focus was on developing a hierarchical Dirichlet process for assessing
dynamic changes in the latent response distribution. Miyazaki etal (2009) proposed a new
semiparametric model using a Dirichlet process mixture logistic distribution. The method
does not rely on assumptions of the local independence of manifest outcomes. However,
the latent trait models that involve a Dirichlet process can be computationally challenging
and are difficult to understand by health science researchers.

In this paper, we develop a latent trait model such that the conditional probability of
manifest outcomes are related to the latent trait through a quadratic model with similar
properties of logistic regression models while the conditional probability could be anchored
as 0 when the value of latent trait is 0. Instead of assuming a sysmmetric normal distribu-
tion, we use a skewed normal distribution with non-zero mean to explain the potential
asysmmetry of the latent trait distribution. These models are utilized to combine mani-
fest outcomes into a single infant morbidity index (IMI) that reflects the propensity for
morbidity (latent trait). An overall assessment of validity of the IMI is developed by cor-
relating it with each outcome, with infant mortality and with a face valid index of morbidity
outcomes. In our analysis, we assume that the likelihood of each of these four outcomes is
affected by an underlying propensity for morbidity that has a common influence on all four
morbidity outcomes.

This paper is structured as follows. In Section 2, we describe the source and creation
of infant morbidity data used in this study. Section 3 presents generalized latent trait mod-
els for multiple multinomial outcomes, and quadratic functions for modelling conditional
probabilities of manifest outcomes given latent traits. In Sections 4 and 5, we introduce
modified Gauss-Newton Algorithms for estimating the parameters of interest in latent trait
models and test the goodness of fit of the models. We develop an infant morbidity index in
Section 6. Several issues are discussed in the final section.

2. Data Sample and Definitions of Manifest Outcomes

The infant morbidity data were derived from the merger of four data sources. The
base data set was drawn from Florida’s Birth Vital Statistics, 1997-2010. This data set
contained sociodemographic and perinatal health factors, as well as a measure of tobacco
use, for pregnant women who had children born in the state of Florida in 1997 and 2010.
It was augmented by three other data sources: 1) Florida Birth Defects Registry which
contained information on children who were diagnosed as having birth defect; 2) Children’s
Medical Services Early Intervention Program (CMS-EIP) which contained information on
children who were assessed for developmental delay or disability and received evaluation
or intervention services, 1997-2011; 3) Medicaid status from the Agency for Health Care
Administration (AHCA) Medicaid eligibility files. Two exclusion criteria were applied
to this merged population-based data set: 1) multiple births; 2) missing values of birth
weight (BW), demographic, behavioral or perinatal health factors. The first criterion was
used to satisfy the independency of individuals in the study population. After applying
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the above criteria and deleting BW<350 and BW≥6,000, 385,485 records were available
for analysis. Birth defect (BD), abnormal condition (AC) of the newborn, developmental
delay or disability (DDD) and low birth weight (LBW) are four major contributors to infant
morbidity. In this data set, dichotomous outcomes were BD diagnosed in the first year
of life, AC of the newborn, and DDD diagnosed under the age of 1 year. Birth weight
(BW) was classified into four categories: extremely low birth weight (ELBW, 350-999g),
very low birth weight (VLBW, 1,000-1,499g), low birth weight (LBW, 1,500-2,499g) and
normal birth weight (NBW, 2,500-5,999g).

BD is defined as abnormal development of the fetus resulting in death, malformation,
growth retardation, or functional disorders. The major risk factors of BD are environ-
mental exposure, maternal alcohol consumption, and maternal cigarette smoking during
pregnancy. AC of the newborn denotes infants who have anemia (HCT<39/HGB<13),
birth injury, fetal alcohol syndrome, hyaline membrane disease/RDS, meconium aspiration
syndrome, seizures or assisted ventilation. Developmental delay is the slowed or impaired
development of a child under 5 years old. Development disability when applied to in-
fants and young children means individuals from birth to age 5 years, inclusive, who have
substantial developmental delay or specific congenital or acquired conditions with a high
probability of a mental or physical impairment or combination of mental and physical im-
pairments. Many children show problems of DDD with time, e.g., 6-7% by 1 year of age
and 12-14% by school age. An outcome variable, which is related with DDD is LBW.
LBW is a strong predictor of DDD in early childhood. LBW refers to infants born less than
2,500 grams.

3. STATISTICAL MODELS

3.1 Generalized Latent Trait Models

To develop generalized latent trait models for multiple multinomial morbidity outcomes
with complete responses, we define S to be a univariate unobservable latent variable of
interest with values s ∈ [0,∞) and Ym (m = 1, · · · ,M) to be the m-th manifestation
of S with potential values ym ∈ {1, · · · , Cm}. For simplicity, here we omit the subscript
denoting individuals when giving the model for a single individual. Denote π(S) to be the
marginal density of S and π(Ym = ym|s) to be the conditional probability that given s,
the individual will have a response ym to outcome m (m = 1, · · · ,M ; ym = 1, · · · , Cm).
Under latent trait models, all these outcome variables are associated because the population
under study is a scaled mixture of subpopulations. As applied to our infant morbidity data,
four manifestations of S are: Y1, BD with two categories (Yes, No); Y2, AC with two
categories (Yes, No); Y3, DDD which is dichotomous (Yes, No); Y4, BW, which has four
categories (extremely low birth weight, very low birth weight, low birth weight and normal
birth weight). In this case, it is natural to associate the latent variable S with underlying
infant morbidity and consider observed outcomes to be surrogates for S, which can be
thought as propensity for infant morbidity. Here π(S) denotes the marginal distribution of
propensity for infant morbidity, and π(Ym = ym|s) is the probability of individuals who
will have the response ym to infant morbidity outcome m (m=1,2,3,4) given latent value
s. Since S is the propensity for infant morbidity, it is reasonable to treat it as a continuous
variable. Then the joint distribution of morbidity outcomes can be written as

π(Y1 = y1, · · · , YM = yM ) =

∫ ∞
0

π(S)

M∏
m=1

Cm∏
ym=1

(π(Ym = ym|S))aymdS, (1)
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where aym = 1 if the individual falls into the ymth category of outcomem and 0 otherwise.
The expression in (1) will be referred to as the cell probability in Section 4, which is the
function of the vector of π(Ym = ym|s) and π(S). The term

∏Cm
ym=1(π(Ym = ym|S))aym

is a multinomial process associated with outcome m, where π(Ym = ym|S) is the condi-
tional probability for the ymth category of outcomem subject to

∑Cm
ym=1 π(Ym = ym|S) =

1 (m = 1, · · · ,M). For BD, AC and DDD, it is a Bernoulli, but for BW, it is a multinomial
distribution with n equal to 1. Note that in (1), the latent variable is continuous and ob-
served outcomes are categorical. In fact, the distribution (1) is a scaled mixture of product
multinomial processes with mixing weights π(S). One basic assumption implicit in (1) is
that given latent value s, responses of morbidity outcomes are independent, i.e.,

π(Y1 = y1, · · · , YM = yM |S) =
M∏
m=1

π(Ym = ym|S)

=

M∏
m=1

Cm∏
ym=1

(π(Ym = ym|S))aym ,

(2)

This conditional independence is equivalent to the axiom of local independence. In our
analysis, as discussed by Bandeen-Roche et al (1997), not only is it convenient, but also
it defines the sense in which the S serves as a summary construct. Information about S is
available from (1) through posterior distributions of the latent variable

f(S|Y1 = y1, · · · , YM = yM ) =
π(S)

∏M
m=1

∏Cm
ym=1(π(Ym = ym|S))aym∫∞

0 π(T )
∏M
m=1

∏Cm
ym=1(π(Ym = ym|T ))aymdT

, (3)

These posterior distributions capture information about the unknown latent variable given
observed indicators and hence are useful in development of a composite morbidity index
for our example.

3.2 Quadratic Models for Conditional Distributions

Suppose that data of M distinct morbidity outcomes with Cm (m = 1, · · · ,M) cate-
gories in outcomem are collected on an infant. Let π(Ym = ym|s) for ym = 1, · · · , Cm and s ∈
[0,∞) be the conditional probability that the infant will have a response ym to outcome m.
We capture information to develop a composite morbidity index through modelling the
conditional probability of each morbidity outcome as a function of latent variable S. Since
S is the continuous latent variable associated with manifest morbidity outcomes with do-
main [0,∞), it is reasonable to assume that the conditional probability of an infant having
an adverse morbidity outcome will be zero when S is equal to zero. For this reason, the
following models for conditional probability are considered

π(Ym = ym|S) =
(βmymS)2αmym

1 +
∑Cm−1

j=1 (βmjS)2αmj
, (4)

where βmym and αmym (m = 1, · · · ,M ; ym = 1, · · · , Cm − 1) are parameters linking the
latent variable to the conditional probability π(Ym = ym|S) subject to

∑Cm
ym=1 π(Ym =

ym|S) = 1. They are the parameters of interest we need to estimate in the conditional
distribution of S given the observed outcomes.

For every morbidity outcome, we treat the normal category as the reference category.
That is to say, we specify αmCm = 0 for any m = 1, · · · ,M . For example, BD is the first
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dichotomous outcome (Yes, No) we introduced in our study. So the category BD=No is the
reference category (α12 = 0) and the model for the conditional probability of BD=Yes is

π(Y1 = 1|S) =
(β11S)2α11

1 + (β11S)2α11
.

BW is the fourth outcome under study with four categories (ELBW, VLBW, LBW, NBW).
Then the model for the conditional probability of ELBW is

π(Y4 = 1|S) =
(β41S)2α41

1 +
∑3

j=1(β4jS)2α4j
.

Similarly, we can easily write out the models for VLBW and LBW. Here we treat NBW as
the reference category (α44 = 0).

3.3 Latent Trait Distribution

In our study, the latent variable S represents propensity for infant morbidity which
is manifest in four outcomes: BD, AC, DDD, and LBW. Our prior belief is that most
infants are exposed to low-level risks such that the latent variable may have an asymmetric
distribution with a long right tail. We assume that S has the following distribution

π(S) =
2

ω
φ

(
S − θ
ω

)
Φ

(
γ ·
(
S − θ
ω

))
, (5)

where φ(·) denotes a standard normal distribution with a cumulative distribution of Φ(·).
θ and ω are location and scale parameters, and γ is the shape parameter. It is easy to
verify that the normal distribution is a special case of this distribution when γ = 0, and
that the absolute value of the skewness increases as the absolute value of γ increases. The
distribution is right skewed if γ > 0 and is left skewed if γ < 0. For simplicity, we refer to
(4) combined with (1) and (5) as s-models.

Model (4) has good properties similar to those of logistic models with the difference
that the conditional probabilities in model (4) will be zero if S is anchored zero. This is
generally consistent with the hypotheses in studies of infant medical and health care that
prevalence for some disease is zero in absence of risk factors. When the shape parame-
ter γ=0, the relationship between (4) and the logistic model is reflected in the following
reparameterization

π(Ym = ym|Z) =
exp(β∗0mym + β∗mymZ)

1 +
∑Cm−1

j=1 exp(β∗0jym + β∗jymZ)
, (6)

where β∗0mym = 2αmym(µ + log βmym), β∗mym = 2αmym/ω and Z = (S − µ)/ω (m =
1, · · · ,M ; ym = 1, · · · , Cm). Here Z denotes the variable which has a standard normal
distribution. The relationship of (4) to the logistic model, together with the medical hypoth-
esis, provides us a good reason to use these models in our analysis. Note that we require
S > 0 and βmym > 0 in model (4) to complete this translation.

4. ESTIMATION METHOD

Consider M infant morbidity outcomes with each having Cm categories. Define β
to be the vector of βmym and αmym (m = 1, · · · ,M ; ym = 1, · · · , Cm − 1) which are
parameters of interest in s-models defined in (4). Suppose that observations on all sub-
jects can be arranged in N =

∏M
m=1Cm cell counts. Let n = (n1, · · · , nN ) be the
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Table 1: Estimates of parameters in s-models
BD AC DDD BW

α11 β11 α21 β21 α31 β31 α41 β41 α42 β42 α43 β43
1.02 1.08 1.12 2.06 2.37 2.08 3.51 2.16 3.14 2.15 1.25 2.40

vector of cells, where n′is (i = 1, · · · , N) have a multinomial distribution with vector
of cell probabilities π(β) = (π1(β), · · · , πN (β))′. Here π(β) is defined by expressing (1)
and (4) as functions of β = (α11, β11, · · · , αM(CM−1), βM(CM−1), θ, ω, γ). Considering
model/paraemter identifiability, we fix the scale parameter ω to be 1. Let p = (p1, · · · , pN )′

be the vector of sample proportions (pi = ni/n). Then the sample proportions of p are un-
biased and consistent estimates of cell probabilities of π(β). That is,

p = π(β) + ε

where the expectation of ε is E(ε) = 0 and the variance is var(ε) = n−1V and V =
n(diag(π) − ππ′). From (1) and (4), it is easy to see that π(β) is a nonlinear function of
β. Following the nonlinear least square theory, the estimated generalized non-linear least
square (EGNLS) estimates of β can be obtained by minimizing the quadratic form:

Q(β, V̂ ) = n(p− π(β))′V̂ −1(p− π(β)) (7)

where V̂ represents a consistent estimator of V and hence does not depend on β. Consid-
ering the algorithm convergence, we choose V̂ = n(diag(p) − pp′), which only depends
on the sample proportion p. By taking the derivative on both sides of (7), we obtain the
estimating equations

∂Q(β, V̂ )

∂β
=

(
∂π(β)

∂β

)′
V̂ −1(p− π(β)) = 0 (8)

Note that if we substitute V for V̂ , (8) becomes the optimal estimating equations which are
used to compute the maximum likelihood estimates (MLEs). Because of the dependence
of V on β, the MLEs often attain local maxima. The idea of using the simplification (8)
obtained by substituting V̂ for V in the optimal estimating equations is to avoid the local
maxima problem that we face in computing the MLEs. Let β(k) denote the estimate at
the kth iteration. By Hartley’s modified Gauss-Newton method, the estimate β(k+1) at
iteration k + 1 is:

β(k+1) =β(k) + λ(k)

[(
∂π(β(k))

∂β

)′
V̂ −1

(
∂π(β(k))

∂β

)]−1
(
∂π(β(k))

∂β

)′
V̂ −1(p− π(β(k)))

(9)

where λ(k) ∈ [0, 1] is the stepping coefficient for the k-th iteration. We adjust λ(k) to
guarantee that β(k+1) is a better approximation to the least square estimator β̂ than β(k)

in the sense that Q(β(k+1), V̂ ) ≤ Q(β(k), V̂ ). Although π(β) and the derivatives of π(β)
with respect to β have no closed forms, we can calculate these integrals using common
numerical integration methods since the integral over S is only one-dimensional. In our
study, there are four morbidity outcomes: BD, AC, DDD, and BW. The first three are
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Figure 1: Associations of the latent trait with the risk of individual manifest outcomes

dichotomous and the last one is polytomous with four categories. Based on s-models, we
have 13 parameters to be estimated. Note that considering the identifiability of parameters
in s-models, we fix the variance/scale parameter ω in (5) at 1 in our estimation.

5. ESTIMATION RESULTS

Using modified Gauss-Newton algorithm described in Section 4, we obtain estimates of
parameters in s-models (Table 1). Substituting these estimates into model (4), we calculate
conditional probabilities given s for each outcome.

Figure 1 shows conditional probabilities for each outcome variable. Change patterns
are similar for three dichotomous outcomes: BD, AC, and DDD. The conditional probabil-
ities for adverse outcomes (BD: Yes, AC: Yes, DDD: Yes) decrease, and those for normal
outcomes (BD: No, AC: No, DDD: No), however, increase with s increasing. In the graph
for the multinomial outcome BW, there are four lines which correspond to NBW, LBW,
VLBW, and ELBW, respectively. Note that trends of curves associated with LBW and
VLBW are different from those of NBW and ELBW. They increase first, attain maximum,
and then decrease. The changes for curves of NBW and ELBW are similar to those of BD,
AC, and DDD. The order in which curve peaks for BW appear is NBW, LBW, VLBW, and
ELBW.

Based on (1) and (4), we calculate expected probabilities and counts for each com-
bination of four morbidity outcomes. Since the sample size in our study is very large
(n = 385485), it will not be appropriate to use χ2 statistics to test the goodness of fit of
s-models. We suggest using the weighted regression method to do it. To perform the test,
assume ε is the random vector with meanE(ε) = 0 and variance V (ε) = n [diag(π)− ππ′].
Let the sample count be the dependent variable, denoted by Y and the expected count be
the covariate, denoted by X . Then we can use SAS PROC REG to fit the model

Y ∗ = X∗β + ε∗
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where Y ∗ = V̂ −
1
2Y , X∗ =

(
V̂ −

1
2 1, V̂ −

1
2X
)

and ε∗ = V̂ −
1
2 ε. In the above transforma-

tion, V̂ = n [diag(p)− pp′] is the consistent estimator of V and V̂ −
1
2 is equal to ED−

1
2E′,

where E is the matrix of eigenvectors of V̂ and D is the diagonal matrix with eigenvalues
of V̂ down the diagonal. The test result (R2 = 0.98) shows that our s-models fit the data
set well.

6. DEVELOPMENT OF IMI

In section 5, we derived estimates of parameters related to s-models. Substituting pa-
rameter estimates into (3), we obtained posterior distributions of latent variable S (propen-
sity for infant morbidity). Let ŝ = Ê(S|Y = y), then

ŝ =

∫
Sf(S|Y1 = y1, · · · , YM = yM )dS (10)

where f(S|Y1 = y1, · · · , YM = yM ) is given by (3).
To adapt for use in infant helath, we re-scale ŝ on the 1-100 scale and arrive at the

proposed IMI . Thus, the IMI is estimated as a function of its manifestations: BD, AC,
DDD, and BW. It is a composite index of propensity for infant morbidity which is devel-
oped from s-models. Table 2 lists results for ŝ and IMI , given the pattern of four morbidity
outcomes. We see that all infants who have the same pattern of outcomes have equal IMI
values. The IMI can identify patterns of four outcomes. The range of the IMI is from
1 to 100. The maximal value is generated by infants who have the outcome pattern of
BD=Yes, AC=Yes, DDD=Yes, and ELBW=Yes (the first row), and the minimal value is
associated with infants whose pattern is BD=No, AC=No, DDD=No, and NBW=Yes (the
last row). In addition, given the pattern of any 3 outcomes, there is an obvious trend of the
IMI with the last outcome, i.e., values of the IMI increase with the last outcome getting
worse. Further study will be needed to determine whether the IMI can exactly identify
the pattern of outcomes in general situations.

7. DISCUSSION

Latent variable models have been applied in many clinical setting to describe disease
in populations. Recent applications include gerontology, genetics, medical care, ophthal-
mology, and cytometry. Specifically in psychiatric research, latent variabl models have
been used in studies of alcoholism, autism, social phobias, schizophrenia, psychiatric syn-
dromes, and psychiatric disorder. In this study, latent variable models were applied to the
study of infant morbidity, in which we developed a composite infant morbidity index based
on four major outcomes BD, AC, DDD, and BW. This method for developing a composite
single variable may be applied and extended to other areas.

Our study demonstrates an approach to development and validation of a composite
index where the latent variable is continuous and observed outcomes are dichotomous or
multinomial using latent variable modelling and modified Gauss-Newton estimation. In
fact, this approach would have been latent trait setting since the latent variable S under
study is continuous (we assumed that S was distributed as skew normal). This approach
can be generalized to other latent variable models, such as latent profile models, where the
latent variable is categorical and the observed indicators are continuous, and latent structure
models, where the latent variable and the observed indicators are all continuous. In all these
latent variable models, the key is to associate general health status such as infant morbidity,
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Table 2: Estimates of posterior means of the latent variable ŝ and infant morbidity index
(IMI) across groups of manifest outcomes

BD AC DDD BW ŝ IMI

Yes Yes Yes 350-999 0.5599 100.00
Yes Yes Yes 1000-1499 0.5461 97.04
Yes Yes Yes 1500-2499 0.4581 78.19
Yes Yes Yes 2500-5999 0.3864 62.83
Yes Yes No 350-999 0.4524 76.97
Yes Yes No 1000-1499 0.4310 72.36
Yes Yes No 1500-2499 0.3208 48.78
Yes Yes No 2500-5999 0.2391 31.27
Yes No Yes 350-999 0.5155 90.49
Yes No Yes 1000-1499 0.4972 86.57
Yes No Yes 1500-2499 0.3948 64.65
Yes No Yes 2500-5999 0.3196 48.52
Yes No No 350-999 0.3888 63.34
Yes No No 1000-1499 0.3661 58.48
Yes No No 1500-2499 0.2488 33.37
Yes No No 2500-5999 0.1614 14.63
No Yes Yes 350-999 0.5207 91.62
No Yes Yes 1000-1499 0.5030 87.81
No Yes Yes 1500-2499 0.4016 66.11
No Yes Yes 2500-5999 0.3267 50.06
No Yes No 350-999 0.3956 64.80
No Yes No 1000-1499 0.3730 59.98
No Yes No 1500-2499 0.2568 35.06
No Yes No 2500-5999 0.1695 16.36
No No Yes 350-999 0.4656 79.80
No No Yes 1000-1499 0.4445 75.28
No No Yes 1500-2499 0.3356 51.95
No No Yes 2500-5999 0.2555 34.78
No No No 350-999 0.3292 50.57
No No No 1000-1499 0.3054 45.48
No No No 1500-2499 0.1796 18.52
No No No 2500-5999 0.0978 1.00
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physical disability, and mental illness status, of which there is no single measure analogous
to, say, blood pressure as a measure of cardiac output, with the unobservable latent variable.

REFERENCES

Agresti, A. (2002), “Categorical Data Analysis” (2nd edtion), Wiley: New York.
Agustines, L.A., Kub, Y.G., Rumney, P.J., Lu, M.C., Bonebrake, R., Asrat, T., Nageotte, M. (2000), “Out-

comes of extremely low-birth-weight infants between 500 and 750g,” American Journal of Obstetrics and
Gynecology,182,1113–1116.

Bandeen-Roche, K., Munoz, B., Tielsch, J.M., West, S.K., Schein, O.D. (1997), “Self-reported assessment of
dry eye in a population-based setting,” Investigative Opthalmology and Visual Science, 38, 2469–2475.

Benning, S.D., Patrick, C.J., Salekin, R.T., Leistico, A.M.R. (2005), “Convergent and discriminant validity of
psychopathy factors assessed via self-report,” Assessment, 12, 270–289.

Bucher, H.U., Killer, C., Ochsner, Y., Vaihinger, S., Fauchere, J.(2002), “Growth, developmental milestones
and health problems in the first 2 years in very preterm infants compared with term infants: population
based study,” European Journal of Pediatrics, 161, 151–156.

Bucholz, K.K., Heath, A.C., Reich, T., Hesselbrook, V.M., Kramer, J.R., Nurnberger, J.I. Jr., Schuckit, M.A.
(1996), “Can we subtype alcoholism?,” Aocoholism: Clinical and Experimental Research, 20, 1462–1471.

Collin, M.F., Jalsey, C.L., Anderson, C.L. (1991), “Emerging developmental sequelae in the ’normal’ ex-
tremely low birth weight infants,” Pediatrics, 88, 115–120.

Dunson, D.B. (2006), Bayesian dynamic modeling of latent trait distributions, Biostatistics, 7, 551–568.
Eaton, W.W., Dryman, A., Sorenson, A., McCutcheon, A.(1989), “DSM-III major depressive disorder in com-

munity: a latent class analysis of data from the NIMH Epidemiologic Catchment Area Program,” British
Journal of Psychiatry, 155, 48–54.

Eaton, W.W., McCutcheon, A., Dryman, A., Sorenson, A. (1989), “Latent class analysis of anxiety and depres-
sion,” Sociological Methods and Research, 18, 104–125.

Eaves, L.J., Silberg, J.L., Hewitt, J.K., Rutter, M., Meyer, J.M., Neale, M.C., Pickles, A. (1993), “Analyzing
twin resemblance in multisymptom data: genetic applications of a latent class model for symptoms of
conduct disorder in juvenile boys,” Behaviroal Genetics, 23, 5–19.

Fergusson, D.M., Horwood, L.J., Lynskey, M.T. (1995), “The prevalence and risk factors associated with
abusive or hazardous alcohol consumption in 16-year-olds,” Addiction, 90, 935–946.

Forbes, J.F., Pickering, R.M. (1988), “Development of a neonatal case-mix classification,” Medical Care, 26,
1033–1045.

Gallant, R.A. (1987), Nonlinear Statistical Model. Wiley: New York.
Goldenberg, R.L., Hauth, J.C., Andrews, W.W. (2000), “Intrauterine infection and preterm delivery,” New

England Journal of Medicine, 342, 1500–1507.
Griffin, J.E., Steel, M.F.J., (2006), “Order-Based Dependent Dirichlet Processes,” Journal of the American

Statistical Association, 473, 179-194.
Hack M., Fanaroff, A.A. (1999), “Outcomes of children of extremely low birth weight and gestational age in

the 1990’s,” Early Human Development, 53, 193–218.
Hartley, HO. (1961), “The modified Gauss-Newton method for the fitting of non-linear regression functions by

least squares,” Technometrics, 3, 269–280.
Hogan, D.P., Park, J.M. (2000), “Family factors and social support in the developmental outcomes of very

low-birth weight children,” Clinical Perinatology, 27, 433–459.
Kendler, K.S., Karkowski, L.M., Prescott, C.A., Pedersen, N.L. (1998), “Latent class analysis of temperance

board registrations in Swedish male-male twin pairs born 1902 to 1949: searching for subtype of alco-
holism,” Psychological Medicine, 28, 803–813.

Kendler, K.S., Karkowski, L.M., Walsh, D. (1998), “The structure of psychosis: latent class analysis of
probands from the Roscommon Family Study,” Archives of General Psychiatry, 55, 492–499.

Kessler, R.C., Stein, M.B., Berglund, P. (1998), “Social phobia subtypes in the National Comorbidity Survey,”
American Journal of Psychiatry, 155, 613–619.

Lieff, S., Olshan, A.F., Werler, M., Strauss, R.P., Smith, J., Mitchell, A. (1999), “Maternal cigarette smoking
during pregnancy and risk of oral clefts in newborns,” American Journal of Epidemiology, 150, 683–694.

Liu, X.F., Roth, J.R., (2008), “Development and validation of an infant morbidity index using latent variable
models,” Statistics in Medicine, 27, 971–989.

Lorente, C., Cordier, S., Goujard, J., Ayme, S., Bianchi, F., Calzolari, E., De Walle, H.E., Knill-Jones, R.
(2000), “Tobacco and alcohol use during pregnancy and risk of oral clefts, Occupational Exposure and
Congenital Malformation Working Group,” American Journal of Public Health, 90, 420–423.

MacEachern, S.N. (2000), Dependent dirichlet processes, unpublished paper.
Mathews, T.J., Curtin, S.C., MacDorman, M.F. (2000), “Infant mortality statistics from the 1998 period linked

birth/infant death data set,” National Vital Statistics Reports, 48, 1–25.

JSM 2016 - Section on Statistics in Epidemiology

1296



Mathews, T.J., MacDorman, M.F., Menacker, F. (2002), “Infant mortality statistics from the 1999 period linked
birth/infant death data set,” National Vital Statistics Reports, 50, 1–28.

McKeith, I.G., Fairbairn, A.F., Bothwell, R.A., Moore, P.B., Ferrier, I.N., Thompson, P., Perry, R.H. (1994),
“An evaluation of the predictive validity and inter-rater reliability of clinical diagnostic criteria for senile
dementia of Lewy body type,” Neurology, 44, 872–877.

McCutcheon, A.L. (1987), “Latent Class Analysis,” Sage: Newbury Park, CA.
Laz Lazarsfeld, P.F., Henry, N.W. (1968), “Latent Structure Analysis,” Houghton-Mifflin: New York.
Melton, B., Liang, K.Y., Pulver, A.E. (1994), “Extended latent class approach of the study of familial/sporadic

forms of disease: its application of the study of heterogeneity of schizophrenia,” Genetic Epidemiology,
11, 311–327.

Miyazaki, K., Hoshino, T. (2009), “A Bayesian Semiparametric Item Response Model with Dirichlet Process
Priors,” Psychometrika, 74, 375–393.

Nestadt, G., Hanfelt, J., Liang, K.Y., Lamacz, M., Wolyniec, A., Pulver, A.E. (1994), “An evaluation of the
structure of schizophrenia spectrum personality disorders,” Journal of Personality Disorders, 8, 288–298.

Pickles, A., Bolton, P., MacDonald, H., Bailey, A., LeCouteur, A., Sim, C.H., Rutter, M. (1995), “Latent class
analysis of recurrence risks for complex phenotypes with selection and measurement error: a twin and
family history stydy of autism,” American Journal of Human Genetics, 57, 717–726.

Roche, K.B., Miglioretti, D.L., Zeger, S.L., Rathouz, P.J. (1997), “Latent variable regression for multiple
discrete outcomes,” Journal of the American Statistical Association, 92, 1375–1386.

Saigal, S., Rosenbaum, P., Stoskopf, B., Hoult, L., Furlong, W., Feeny, D., Hagan, R. (2005), “Development,
reliability and validity of a new measure of overall health for pre-school children,” Quality Life Research,
14, 243–257.

Saigal, S., Stoskopf, B.L., Streiner, D.L., Burrows, E. (2001), “Physical growth and current health status of
infants who were of extremely low birth weight and controls at adolescence,” Pediatrics, 108, 407–415.

Schendel, D.E., Stockbauer, J.W., Hoffman, H.J., Herman, A.A., Berg, C.J., Schramm, W.F. (1997), “Relation
between very low birth weight and developmental delay among preschool children without disabilities,”
American Journal of Epidemiology, 146, 740–749.

Shaw, G.M., Lammer, E.J. (1999), “Maternal periconceptional alcohol consumption and risk for orofacial
clefts,” Journal of Pediatrics, 134, 298–303.

Sham, P.C., Castle, D.J., Wessely, S., Farmer, A.E., Murray, R.M. (1996), “Further exploration of latent class
typology of schizophrenia,” Schizophrenia Research, 20, 105–115.

Szatmari, P., Volkmar, F., Walter, S. (1995), “Evaluation of diagnostic criteria for autism using latent class
models,” Journal of the Academy of Child and Adolescent Psychiatry, 34, 216–222.

Sullivan, P.F., Kendler, K.S. (1998), “Typology of common psychiatric syndromes: an empirical study,” British
Journal of Psychiatry, 173, 312–319.

Thompson, J.R., Carter, R.L., Edwards, A.R., Roth, J., Ariet, M., Ross, N.L., Resnick, M.B. (2003), “A popu-
lation based study of the effects of birth weight on early developmental delay and disability in children,”
American Journal of Perinatology, 20, 321–332.

van Putten, W.L., de Vries, W., Reinders, P., Levering, W., van der Linden, R., Tanke, H.J., Bolhuis, R.L.,
Gratama, J.W. (1993), “Quantification of fluorescence properties of lymphocytes in peripheral blood
mononuclear cell suspensions using a latent class model,” Cytometry , 14, 86–96.

Vinceti, M., Rovesti, S., Bergomi, M., Calzolari, E., Candela, S., Campagna, A., Milan, M., Vivoli, G. (2001),
“Risk of birth defects in a population exposed to environmental lead pollution,” The Science of The Total
Environment, 278, 23–30.

Voigt, R.G., Brown, F.R., Fraley, J.K., Liorente, A.M., Rozelle, J., Jensen, C.L., Heird, W.C. (2003), “Concur-
rent and predictive validity of the cognitive adaptive test/clinical linguistic and auditory milestone scale
(cat/clams) and the mental developmental index of the bayley scales of infant development,” Clinical Pe-
diatrics, 42, 427–432.

JSM 2016 - Section on Statistics in Epidemiology

1297


