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Abstract 
Periodically an item is inspected during online process control. Inspections are subject to 
misclassification and thus the item is subjected to repeat classifications. The decision as to 
whether the item is judged to be conforming is based on whether there is a sufficient cluster 
of classifications of conforming prior to a pre-specified number of nonconforming 
judgments. 
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1. Introduction 
 
A number of authors consider on-line process control by attributes in which every hth item 
produced is inspected [Taguchi, Elsayed, and Hsiang(1989) and Taguchi, Chowdhury, and 
Wu (2004)]. In this model the process is assumed at the start to have some high fraction of 
conforming items, close to 100%. That is, an item conforms to specifications with 
probability p1, equal to or very close to 1 when the process is in control. The process goes 
out of control at random and there is a shift to p2 (< p1) for the fraction conforming, i.e., 
the probability that the selected item is really conforming. The process is stopped for 
adjustment if and only if an inspected item is judged to be nonconforming,    
 
Nayebpour and Woodall (1993) assume the random time until the shift from p1 to p2 follows 
a geometric distribution where the items produced are modeled as independent and 
identically distributed trials with a constant probability π for each item to be the first item 
produced after the shift of the fraction conforming. Since only every hth item is inspected, 
the first item produced after the shift might not be inspected resulting in some initial 
number of items produced before the possibility of the detection even exists. 
 
Borges, Ho, and Turnes (2001) model the inspection process itself as subject to possible 
errors and thus in a single classification, a conforming item might be mistakenly classified 
as nonconforming. Let pCN designate this misclassification probability. It is also possible 
that a nonconforming item might mistakenly be judged as conforming and we let pNC be 
the probability of this misclassification. We will also define probability pCC (pNN) of the 
correct classification that a conforming (nonconforming) item is classified as conforming 
(nonconforming). As a consequence there arises the notion of making repeated 
classifications of each inspected item before making the final judgment as to whether the 
item as conforming or nonconforming. If the item is finally judged to be nonconforming, 
the process is viewed as out of control and is stopped for adjustment. Otherwise, the process 
is viewed as in control and is not stopped for adjustment. Since errors are possible in the 
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repeated classifications, it is possible that an item is mistakenly judged to be 
nonconforming and thus that the process is judged out of control, when it actually is not. 
Nonetheless, it is stopped for adjustment. In this case, no cause can be found and the 
process is restarted and has not been put out of control by the stopping, searching for a 
cause, and restarting. It is also possible that the process goes out of control and is not 
detected. In this case, it stays out of control until this is detected at a later time at which 
point it will be adjusted and be put back in control.  
 
Trindade, Ho, and Quinino (2007) study a rule in which the final judgment of whether the 
inspected item is conforming and thus whether the process is in control, is based on a pre-
specified number of repeated classifications and uses majority rule. Quinino, Colin, and 
Ho (2009) consider a rule in which the item is determined to be conforming and the process 
to be in control if and only if there are k classifications as conforming before f 
classifications as nonconforming, where k and f are some pre-specified positive integers. 
The acronym TCTN is used to describe this rule since the decision is based on the total 
number of classifications as conforming and nonconforming and has been studied by Smith 
and Griffith (2009) as well. In other papers, Smith and Griffith (2011, 2012) studied some 
alternative rules including one in which the final determination that an item is conforming, 
and thus the process is in control, if and only if k consecutive classifications as conforming 
occur before a total of f classifications as nonconforming (CCTN).  
 
In this paper we will we propose a new rule that is a compromise between the CCTN and 
TCTN rules.  The final determination that an item is conforming if a cluster of 
classifications of conforming occur prior to a preset number of classifications of 
nonconforming. We denote this rule by ScanCTN.  Hence, we are waiting for k 
classifications of conforming to occur within a window or a scan of w classifications.  This 
eases the restriction on consecutive classifications from the CCTN rule in the sense that 
the count for classifications does not necessarily return to zero when a nonconforming 
classification occurs.  That is, for a final judgment, a cluster of conforming classifications 
is needed rather than the more stringent requirement that a run of consecutive conforming 
classifications occur.  On the other hand, the scan rule requires more consistency in the 
way conforming classifications are obtained than the TCTN rule.  We will perform the 
probabilistic analysis using the Markov Chain approach. 
 
 

2.  State Space and Transition Probabilities 
In order to assist with the readability of this section we will define the following notation 
for the ScanCTN rule. 

- f = total number nonconforming classifications for final judgment of 
nonconforming 

- w = number of classifications in the window or scan  
- k = number of conforming classifications within the window, w, for final 

judgment of conforming 
- p = probability that the classification of an item is judged “conforming” 
- q = 1-p 
- {Xn} = Markov-Chain where Xn = (x1,x2,x3,x4,…,xw,s,h)  
- xi = classification result (1 = conforming, 0 = nonconforming) for i = 1 to w-1  
- xw  = the outcome of the wth classification within the window of w  
- s = total number of conforming classifications in the entries x1 to xw 

- h = total number of nonconforming classifications  
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In the case of the ScanCTN, the item is judged conforming if k conforming classifications 
are achieved within w consecutive classifications prior to observing f total nonconforming 
classifications among all classifications.  Likewise, the item is judged nonconforming if f 
total nonconforming classifications among all classifications occur prior to k total 
conforming classifications within w consecutive classifications.  Consider the Markov 
Chain {Xn} where Xn = (x1,x2,x3,x4,…,xw,s,h) means that after the nth classification the first 
w-1 entries, x1 to xw-1, contain the classification results (1 = conforming classification, 0 = 
nonconforming classification) of the previous w-1 classifications, the wth entry, xw, is the 
classification result of the wth trial, s counts the total number of conforming classifications 
in the entries x1 to xw, and h is the total number of nonconforming classifications among all 
the classifications.  When n < w, the nth entry will contain the classification of the nth trial, 
we will let NA be a placeholder in the entries xn+1 to xw.  Obviously, the index s is not 
necessarily needed but it does aid in the computation.  The probability of conforming 
classification is given by p and probability of nonconforming classification is given by q = 
1- p.  
 
It is a rather difficult task to write out the state space in set notation and the transition 
probabilities and state space in a simple diagram even for small values of k, w, and f.  
Therefore, to aid in understanding the states involved in this Markov Chain, we have listed 
the absorbing and transient states in Table 1 for a ScanCTN rule where k = 3, w = 4 and f 
= 3.   
 
For n = 1: P(X1 = (1,NA,NA,…NA,1,0)| X0 = (NA,NA,NA,…NA,0,0)) = p 
  P(X1 = (0,NA,NA,…NA,0,1)| X0 = (NA,NA,NA,…NA,0,0)) = q 
      n = 2:         P(X2 = (1,1,NA,…NA,2,0)| X1 = (1,NA,NA,…NA,1,0)) = p 
  P(X2 = (1,0,NA,…NA,1,1)| X1 = (1,NA,NA,…NA,1,0)) = q 

P(X2 = (0,1,NA,…NA,1,1)| X1 = (0,NA,NA,…NA,0,1)) = p 
  P(X2 = (0,0,NA,…NA,0,2)| X1 = (0,NA,NA,…NA,0,1)) = q 
Etc. for n ≤ w 
For n > w,  P(Xn = (b,c,d,e,…,1,s+1,h)|Xn-1 = (a,b,c,d,…,g,s,h) = p    if a = 0 

P(Xn = (b,c,d,e,…,1,s,h)|Xn-1 = (a,b,c,d,…,g,s,h) = p         if a = 1 
P(Xn = (b,c,d,e,…,0,s,h+1)|Xn-1 = (a,b,c,d,…,g,s,h) = q    if a = 0 
P(Xn = (b,c,d,e,…,0,s-1,h+1)|Xn-1 = (a,b,c,d,…,g,s,h) = q   if a = 1 

 

 
For the Markov chain there are absorbing (recurrent) states, which correspond to the 
termination of the rule.  Let A denote the set of absorbing states and a denote the number 
of absorbing states.  In fact, the singleton sets consisting of each of these absorbing states 
are recurrent classes.  The remaining states are transient which we will denote by T and 
likewise the number of transient states by t.  Written in canonical form, the one-step 
transition probability matrix P for the Markov chain is  QR

01P , where P1 is the a × a identity 
matrix for the absorbing states, R is a t × a matrix containing the one-step probabilities of 
the transient states to the recurrent (absorbing) states, Q is a t × t matrix containing the 
one-step probabilities among the transient states, and 0 is the a × t zero matrix.  The one-
step probabilities of R and Q are determined by the transition probabilities given for each 
test.  The first row of Q contains the one step transition probabilities from state 
(NA,NA,NA,…NA,0,0). 
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To compute the moments of the rule length, we will define the following notation.  Since 
elements of T appear as subscripts, we will use i and j as typical elements of T.  However, 
it should be noted that when we do so, each of i and j refer to an ordered (w + 2) tuple.  Let, 

- It × t = identity matrix of dimension t × t 
- Mt × t = (It × t -Qt × t)-1- the fundamental matrix of dimension t × t 
- em = column vector of length t where the mth element is one and the remaining 

elements are zero.  
- em′ is defined to be the transpose of em  
- u{NS} = column vector where all the elements corresponding to the final judgment 

of nonconforming states are one, and the remainder of the elements are zero. 
- 1z = column vector of ones of length z 
- Nij = random variable that represents the number of times the process visits state j 

before it eventually enters a recurrent state, having initially started from state i (i,j 
 T). 

- ij = E(Nij) for i,j   T.   

- Mρ= 








Tj

ij  = M 1t = column vector such that the mth element is the sum of the 

mth row of M 

- 





























 



2

2

Tj
ij


M = diag (Mρ) Mρ   - column vector such that the mth element is the 

square of the sum of the mth row of M.  Note:  diag (Mρ) is a diagonal matrix whose 
entries are the corresponding entries of Mρ. 

 

Using the notation of the preceding section, the geometric distribution as a waiting time 
distribution, and basic probability results such as the law of total probability, we can obtain 
a number of results. These results are based on formulas in Bhat18. 
 

Proposition 1 
An item is inspected by being subjected to repeated classifications. 
A) Given that the item being inspected is conforming, the probability that it is judged to 

be conforming is 𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔| 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔) = 𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝐶𝐶) =
 1 − 𝐞𝟏

′𝐌𝐑 𝐮{𝑁𝑆} where p = pCC. 
 
B) Given that the item being inspected is nonconforming, the probability that it is judged 

to be conforming is 𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔| 𝑛𝑜𝑛𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔) =
𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝑁𝐶)  =  1 − 𝐞𝟏

′𝐌𝐑 𝐮{𝑁𝑆} where p = pNC.  
 

C) Given that the item being inspected is conforming, the probability that it is judged to 
be nonconforming is  𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑛𝑜𝑛𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔| 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔) =
𝐞𝟏

′𝐌𝐑 𝐮{𝑁𝑆} where p = pCC. 
 
D) Given that the item being inspected is nonconforming, the probability that it is judged 

to be nonconforming is  𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑛𝑜𝑛𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔| 𝑛𝑜𝑛𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔) =
 𝐞𝟏

′𝐌𝐑 𝐮{𝑁𝑆} where p = pNC. 
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Proposition 2 
A) Given that the process is in control and the inspected item is conforming with 

probability p1 and nonconforming with probability 1-p1, then the probability that the 
process is judged to be in control  

 
𝑃𝐼𝐼 =  𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙| 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

= 𝑝1𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝐶𝐶) + (1 − 𝑝1)𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝑁𝐶) 
 
 

B) Given that the process is out of control and the inspected item conforms with 
probability p2 and fails to conform with probability 1 – p2, then the probability that the 
process judged to be in control  

𝑃𝑂𝐼 = 𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙| 𝑜𝑢𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

= 𝑝2𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝐶𝐶) + (1 − 𝑝2)𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝑁𝐶) 
 

Proposition 3 
Once it goes out of control, the distribution of the number of inspections needed to 
determine it is out of control is the geometric distribution with parameter 1 – 𝑃𝑂𝐼. 
 
Proposition 4 
Let Y = time measured in decision time until the process actually goes out of control (or 
would go out of control if no inspections were being completed or ignored) and π is the 
probability of a shift on any item produced then the  
        P(Y = y) = [(1 − 𝜋)ℎ]𝑦−1[1 − (1 − 𝜋)ℎ] = 𝜃(1 − 𝜃)𝑦−1 ,   𝑦 = 1, 2, 3, …    . 
So Y has a geometric distribution with parameter 𝜃 = 1 − (1 − 𝜋)ℎ  .     
 
Proposition 5 
Let X = be the time measured in decision time until the process is judged out of control. 

P(X = x) = ∑ 𝑃(𝑋 = 𝑥|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)∞
𝑦=1     where   

  

𝑃(𝑋 = 𝑥|𝑌 = 𝑦) = {

[𝑃𝐼𝐼]x−1[1 − 𝑃𝐼𝐼], x < 𝑦

[𝑃𝐼𝐼]x−1[1 − 𝑃𝑂𝐼], x = y

[𝑃𝐼𝐼]y[𝑃𝑂𝐼]x−1−y[1 − 𝑃𝑂𝐼],   x > 𝑦

 

𝑃(𝑋 = 𝑥) =  ∑ [𝑃𝐼𝐼]y[𝑃𝑂𝐼]x−1−y [1 − 𝑃𝑂𝐼]𝑥−1
𝑦=1  (𝜃(1 − 𝜃)𝑦−1) + 

         [𝑃𝐼𝐼]x−1[1 − 𝑃𝑂𝐼](𝜃(1 − 𝜃)𝑥−1) + ∑ [𝑃𝐼𝐼]x−1[1 − 𝑃𝐼𝐼](𝜃(1 − 𝜃)𝑦−1)∞
𝑦=𝑥+1         

 
 
Proposition 6 
Consider the decision time for a single item for i.i.d. Bernoulli classifications with as stated 
in section 1. Then the mean, variance, and probability mass function for a decision time is 
given below based on whether or not the item is conforming or nonconforming. 
 
A) Expected decision time 

E(Decision time |conforming) =   e1ʹM1t  where p = pCC  

JSM 2016 - Quality and Productivity Section

1280



 
E(Decision time |nonconforming) = e1ʹM1t  where p = pNC    

  
E(Decision time|in control) = p1 E(Decision time |conforming) +  
(1-p1) E(Decision time |nonconforming)          
    
E(Decision time|out of control) = p2 E(Decision time |conforming) +  
(1-p2) E(Decision time |nonconforming)      

 
B) The variance of decision time 

Var(Decision time |conforming) =𝑒1
′ [(2𝐌 − 𝐈)𝐌𝝆 − 𝐌𝜌2] where p = pCC   

Var(Decision time |nonconforming) = 𝑒1
′ [(2𝐌 − 𝐈)𝐌𝝆 − 𝐌𝜌2] where p = pNC  

  
C) The probability mass function of the decision time 

P(decision time = m | conforming) = e1′ Qm-1R 1a where p = pCC    

P(decision time = m | nonconforming) = e1′ Qm-1R 1a  where p = pNC       
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