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Abstract 
In many clinical trials, an important endpoint is rate of treatment success which can be 
analyzed by crude rate or time-to-event approaches. In trials where patients may 
discontinue treatment or die due to poor response to treatment, the use of standard 
survival methods such as the Kaplan-Meier estimator and log-rank test may yield 
severely biased results. This is because the independence of censoring (or noninformative 
censoring) assumption is often violated. The analysis of time-to-success must therefore 
account for informative censoring. We propose a two-step method that is capable of 
handling multiple censoring mechanisms including informative censoring in a trial. Step 
one is to utilize observed data to assign a unique likelihood index to each censored 
patient that quantitatively measures the censored patient’s likelihood of achieving success 
relative to the remaining patients. In Step two, we propose an extended Kaplan-Meier 
(EKM) estimator that adjusts number of patients “at risk” based on the likelihood index 
of patient censored at each time point. Unlike standard KM estimator, the EKM is 
flexible in accounting for various censoring mechanisms and does not ignore other 
observed data of censored patients. We illustrate the application of EKM using a case 
study. While developed for time-to-success, the EKM is applicable to general time-to-
event endpoints.  
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1. Introduction 
 
In clinical trials, time to event analyses usually focus on failure time, such as time to 
death (overall survival) and time to development of a disease (disease free survival and 
progression free survival). In those analyses, treatment failure and death are the outcome 
events and patients without the event observed are censored. The Kaplan-Meier (KM) 
estimator (Kaplan and Meier, 1958) and log-rank test have been the standard methods for 
failure time analysis for half of a century and have been generally robust in analyzing 
such data. However, like many statistical methods, they have a limitation in that they 
require the assumption of independent censoring (also called noninformative censoring). 
The independent censoring assumption dictates that censoring time is independent of 
survival time. In other words, censoring (or reason for censoring) is unrelated to patient’s 
response to treatment and patient’s underlying disease process. 
 
In some clinical trials, the outcome of interest is treatment success rather than treatment 
failure. This can be analyzed by a crude rate approach such as objective response rate in 
oncology studies or a time to event approach. An important difference between time-to-
failure analysis and time-to-success analysis is with how to treat failure. In the time to 
treatment failure (or death), we do not censor patients with observed failure or death. 
However, in the time to treatment success, patients with treatment failure and death are 
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usually censored. Analysis of time-to-success presents a unique challenge because 
independent censoring assumption is often violated as censoring of patients due to 
treatment failure or death is directly related to patient’s response to treatment and is thus 
informative censoring. Therefore, use of standard survival analysis methods such as KM 
estimator which rely on the independent censoring assumption may yield severely biased 
results. This is demonstrated in the following case study. 
 
The issue of informative censoring is not new and has been studied for decades. Yet it 
remains as one of the most frequent challenges in clinical data analysis today (DeMets, 
2012). One of reasons for this remaining as a challenge is that determining whether 
censoring is related to patient’s treatment response or not isn't always obvious. Lack of 
methods to account for different censoring mechanisms is another reason.  
 

2. A Motivating Case Study 
 
The challenge of informative censoring in time-to-success analysis is illustrated in the 
following case study. The case study is a phase III, randomized, double blind, parallel 
group study comparing a Test drug and an active control to assess non-inferiority. The 
efficacy endpoint is overall response at the end of treatment which is a binary composite 
endpoint with a value of either success or failure as assessed by an independent 
committee from multiple sources of data such as patients’ clinical and mycological 
assessments. The primary efficacy analysis used a crude rate approach and results are 
displayed in Table 1. 
 

Table 1 Treatment success rates at the end of treatment (EOT) 
 

Overall response at EOT Test drug 
(N=199) 

Control drug 
(N=201) 

Adjusted Difference 
in Success Rate 
(95% CI) 

Success   61%   72%  
 
-11% (-20%, -2%) 

Failure   39%   28% 
Reasons of Failure   
   Death        6%        5% 
   Unsuccessful response      27%      21% 
   Unevaluable        6%        2% 

 
Test drug had a significantly lower success rate than Control and noninferiority margin 
was not met – thus, noninferiority was not established. Upon further examination of the 
data, we noted that number of days on treatment until EOT varied greatly among patients 
with a range of 1 to 57 days for Test and 1 to 59 days for Control with a standard 
deviation of 12 days. Moreover, a high proportion of patients discontinued treatment 
without achieving success. It was therefore of interest to analyze the timing of success, 
rather than crude success rates, as earlier success has quality of life and economic 
benefits for patients. Initial analysis used the naïve Kaplan-Meier estimator, where 
success was treated as event and patients without observed success at EOT were censored 
at EOT. Figure 1 displays the plot of success rate (i.e., 1 - survival function) from the 
naïve KM analysis. 

JSM 2016 - Biopharmaceutical Section

1262



 
Figure 1 Naïve Kaplan-Meier plot for treatment success rate 

 
The naïve survival analysis showed an estimated success rate of 95% for both drugs at 
reference time point (Day 42). Not only were these rates dramatically higher than the 
observed crude rates, but there was no difference in estimated success rate between the 
two groups which would have established noninferiority, a conclusion contradictory to 
the one from the crude rate analysis. The contradictory results indicate that the naïve KM 
estimator is biased for this data, most likely because many dropout patients did not meet 
the independent censoring assumption. In Section 3, we propose a two-step method to 
account for informative censoring.   
 

3. Proposed Two-Step Method 
  

3.1 Likelihood Index 
 
Step one: Assign a parameter, which we call a likelihood index, denoted by m, for each 
censored subject. The value of m ranges from -1 to a positive number less than 1 which 
indicates a censored subject’s likelihood of achieving success after censoring relative to 
similar subjects remaining in the study. It can also be considered as a measurement of the 
degree of departure from the assumption of independent censoring or missing at random 
(MAR). The value m = 0 corresponds to MAR or independent censoring which is the 
assumption of Kaplan-Meier estimator. The value m = -1 corresponds to zero likelihood 
or probability of achieving the event of success after censoring, while 0 < m < 1 
corresponds to subject having a higher likelihood of achieve success after censoring 
relative to otherwise similar subjects (i.e., similar with respect to observed outcome and 
baseline data) who are remaining in the study at the time of censoring. Each unique value 
of m represents a unique missing or censoring mechanism. The concept of likelihood 
index is analogous or similar to the shift parameter in pattern-mixture models (Daniels 
and Hogan, 2008) and the ignorability index (Ma et al., 2005; Kaciroti et al., 2012). 
 
The process of modeling or assigning likelihood index m for censored subjects requires 
assumptions to be made which are usually untestable. As such, there is not a “correct” 
model to assign m. However, there are various plausible approaches. 
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In this paper, we demonstrate a non-modeling approach to assigning m. This approach is 
simple and practical enough for clinicians and non-statisticians alike to understand and 
apply. This method utilizes observed, often incomplete, outcome data by the time of 
dropout and reason for discontinuation to assign m for each censored patient. Table 2 
illustrates the method. First, we start with the cases where the likelihood indices seem 
most obvious which we call anchor cases. In Table 2, Cases 1 and 7 are selected as 
anchors. We believe it is most reasonable to assign m = -1 for Case 1 which is a death on 
treatment. For Case 7 where the patient was alive and withdrew consent with missing 
both clinical and mycological assessments, it is reasonable to assign m = 0. Once the 
anchors are selected and assigned, we rank other cases relative to the two anchors with 
respect to their assumed likelihood of achieving success. For example, in Case 5 where 
patient had a clinical assessment of fail but a mycological assessment of success, it is 
reasonable to assume this patient has higher likelihood of success than Case 1 but lower 
likelihood than Case 7. Therefore, a value between -1 and 0 (we chose -0.25) is assigned 
to this case. In the last case where patient had successful mycological assessment but 
nonevaluable or missing clinical assessment, it is assumed that this patient has higher 
likelihood of success than Case 7. Therefore, a value larger than 0 (we chose 0.25) is 
assigned to this case.  
 

Table 2 Assign likelihood index m for censored patients   
 

Case 
# 

Death on 
EOT or 
EOT+1 day 

Clinical 
assessment 

Mycological 
assessment 

Reason for 
discontinuation* 

Likelihood 
index (m) 

1 Yes Any Any Any -1 
2 No Fail Fail or 

unevaluable 
2 -1 

3 No Fail Fail or 
unevaluable 

1 -0.5 

4 No Unevaluable Unevaluable 2 -0.5 
5 No Fail Success Any -0.25 
6 No Success Fail Any -0.25 
7 No Unevaluable Unevaluable 1 0 
8 No Success Unevaluable Any 0.25 
9 No Unevaluable Success Any 0.25 

  *Reason for discontinuation: 1 for withdrew consent, 2 for otherwise 
 

This assigning algorithm is based more on clinical evaluation than on statistical 
reasoning. It is therefore important to jointly develop with relevant clinicians and best do 
it in a blinded manner (i.e., without knowledge of subjects’ treatment assignments), in 
order to minimize potential bias arising from the subjective element of the assigning 
model. Because there is no single correct model as assumptions about m are untestable, it 
is advisable to apply a number of different models that are based on reasonable 
assumptions as part of a sensitivity analysis. 
 
3.2 Extended Kaplan-Meier (EKM) Estimator 
 
Step two of the proposed method is to develop the extended Kaplan-Meier estimator to 
account for informative censoring utilizing the likelihood index m. Let us first review the 
Kaplan-Meier survival estimator. Let N denote the number of subjects at the beginning of 
the study and rank all subjects by the time of either event or censoring. The KM estimator 
of survival function can be formulated as follows: 
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S0 = 1, 
St = St-1 (1 - It/Rt),    for t = 1,…, N, 
Rt+1 = Rt – 1,            for It = 1 or 0,                                           (1) 

where St is the survival function after the t-th subject experiences event or is censored, It 
is event indicator for the t-th subject (1 for event, 0 for censored), and Rt  is the number of 
subjects remaining in the study just before the t-th subject experiences event or is 
censored (i.e., the “risk set”). 
 
If a subject t is censored under the mechanism of random censoring (or MAR), then mt = 
0 and the risk set will be reduced by 1. Let dt denote the reduction of risk set following 
the censoring of subject t (i.e., dt = Rt - Rt+1). In other words, if mt = 0 then dt = 1. If a 
subject t is censored under the assumption that the dropout has zero probability of an 
event (success) occurring at a later time, then mt = -1 and it is appropriate to censor this 
subject at infinity time. Censoring a subject at infinity time means that the risk set is not 
affected by the censoring of this subject. In other words, if mt = -1 then dt = 0. Based on 
these two cases, we can generalize the formula for adjusting the risk set under all 
censoring mechanisms as follows:  

dt = 1 + mt.           (2) 
 
Utilizing (2), we extended the KM estimator of survival function as follows: 

S0 = 1, 
St = St-1 (1 - It/Rt),                   for t = 1,…, N, 
Rt+1 = Rt – 1,                           for It = 1,       
Rt+1 = Rt - dt  = Rt – (1 + mt),   for It = 0.                               (3) 

Note the difference between (1) and (3) which is the difference between standard KM 
estimator and our proposed EKM estimator. In the EKM estimator, when a subject t is 
censored, the risk set is no longer reduced by 1 but by 1 + mt. Under the KM assumption, 
m = 0 for all subjects, thus (3) becomes the same as (1) and the EKM estimator becomes 
the standard KM estimator. Therefore, the standard KM estimator is a special case of the 
EKM estimator. The advantage of the EKM estimator is that it allows for all possible 
values of m, thus it is capable of accounting for different missing mechanisms within the 
same study, provided that one can determine the underlying missing mechanisms for all 
subjects with reasonable accuracy and properly translate them into corresponding values 
of m. If a subject t has lower probability of experiencing event than a random dropout, in 
other words, mt < 0, then dt < 1. If another subject t+1 has higher probability of 
experiencing event than a random dropout, in other words, mt+1 > 0, then dt+1 > 1. 
 
To illustrate the use of the EKM estimator, we apply it to the data from the case study in 
Section 2. Likelihood index m is derived for each censored subject using the algorithm in 
Table 2. Then EKM estimator is calculated using this set of m. This application was 
implemented using SAS version 9.3. The resulting cumulative incidence plot is displayed 
in Figure 2a. Here cumulative incidence function = 1 - St. Figure 2b displays the EKM 
curve under the most pessimistic assumption, that is, assuming all censored subjects will 
never have event (m = -1 for all censored subjects). It is easy to see that Figure 2b shows 
the same success rates as the initial crude rate analysis. The crude rate method is 
therefore another special case of the EKM estimator. By comparing Figures 2a and 2b, 
one can see that the extended estimator produced larger estimates of success rate for each 
treatment arm but difference between treatment arms is very similar with that from crude 
rate method. The EKM estimator thus supports the conclusion from the crude rate 
method.  
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       a       b 

Figure 2 a) The proposed Extended Kaplan-Meier estimator, b) Under the assumption 
that m = -1 for all censored patients 
 
Further sensitivity analysis can be performed using different sets of m derived from 
different models, instead of the model in Table 2. 
 

4. Conclusions and Discussion 
 
In this paper, we presented an extended Kaplan-Meier estimator that allows the flexibility 
to account for various censoring mechanisms for different patients, informative or 
noninformative, that can coexist in the same study, rather than making a single 
assumption for all censored subjects. Our proposed EKM estimator uses observed data 
from the dropouts to construct a unique likelihood index for each censored subject that 
quantitatively characterizes the underlying censoring mechanism or assumption for that 
subject, then utilizes the likelihood indices to adjust the risk sets. By contrast, the 
standard KM method ignores all recorded data of dropouts and simply assumes MAR for 
all dropouts. We showed that the EKM estimator contains both the standard KM 
estimator and the crude rate estimator as special cases. Assumptions on censoring 
mechanism cannot be verified by existing data. It comes down to which assumption(s) 
clinicians and statisticians believe are most reasonable and plausible. In the case study, it 
was clearly not reasonable to assume all dropouts were MAR. On the other hand, 
assuming all dropouts are “zero-chance” failure may not be reasonable either. Making a 
unique assumption for each subject based the subject’s observed data is the most 
reasonable approach. This is the advantage of the proposed EKM estimator – it allows for 
various censoring mechanisms in the same study and for convenient implementation of 
sensitivity analysis using different sets of assumptions.  
 
Compared to time-to-failure, time-to-success data is more prone to informative censoring 
by study design. While the proposed method was inspired by an analysis of time-to-
success data, it is applicable to general time-to-event analysis where informative 
censoring is a concern. Because making assumptions on censoring mechanisms is 
subjective, algorithm for deriving m is best pre-specified without knowledge of subjects’ 
treatment assignments. This can reduce potential bias.  
 
Future relevant works include a more sophisticated model-based approach to assign m 
using not just observed outcome data but also baseline risk factors and other recorded 
data such as concomitant medications and reason for discontinuation of treatment. 
Confidence interval for the survival functions can be derived using adjusted risk sets in 
(3). An extended log-rank test may be similarly derived for treatment comparisons.  
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