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Abstract. Non-exchangeable dependence structures exist in the real world, and we are inter-

ested in how to identify the existence of non-exchangeability in joint distributional tails and how

to quantify the degree of such tail non-exchangeability. The results obtained and the approaches

proposed benefit bivariate dependence modeling when dependence patterns in the tails are par-

ticularly important, as in the fields of quantitative finance, quantitative risk management, and

econometrics. We focus on the bivariate case and propose to use conditional expectations as the

basis quantities. Then, for random variables X and Y, the departure between tail behavior of

E[X|Y > t] and E[Y |X > t], or E[X|Y = t] and E[Y |X = t], when t is large, becomes useful in

detecting tail non-exchangeability. We use a bivariate copula to model the dependence between X

and Y. The Khoudraji’s device is employed in generating tail non-exchangeability. Three major

tail behavior patterns for univariate margins are studied in order to understand the interaction be-

tween the strength of dependence together with various types of margins in affecting the measure

of tail non-exchangeability. Based on the probabilistic properties of the tail non-exchangeability

structures, we develop graphical approaches and statistical tests for analyzing data that may have

non-exchangeability in the joint tail. A simulation study is then conducted to demonstrate the

usefulness of the proposed approaches.
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1 Introduction

The goal of this study is to propose useful measures for quantifying the degree of non-exchangeability

in the tails of a bivariate joint distribution. The study on tail non-exchangeability would be particu-

larly useful for providing more tail-tailored statistical models for modeling tail non-exchangeability
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structures observed in risk management, quantitative finance, psychometrics, econometrics, and

environmetrics.

There have recently been quite a few papers focusing on the study of quantifying the degree

of overall non-exchangeability. For example, Klement and Mesiar (2006) and Nelson (2007) study

the extremal cases of bivariate non-exchangeability using copulas, Durante et al. (2010) provides

some axioms for measures of bivariate non-exchangeability, Durante and Mesiar (2010) and Durante

and Mesiar (2010) study the cases for some specific bivariate copula families, Genest et al. (2012)

proposes a test for bivariate non-exchangeability, Harder and Stadtmüller (2014) extends the study

of extremal non-exchangeability to multivariate cases. However, all of these studies are for overall

non-exchangeability.

In this paper, we are interested in quantifying the degree of tail non-exchangeability for a

bivariate random vector that has identical marginal distributions. Therefore, the notion of tail

non-exchangeability in this paper relies on limiting properties of bivariate copulas. We first pro-

pose a sensible measure for quantifying the strength of tail non-exchangeability, and then details

are provided for some non-exchangeable bivariate copula families that are constructed based on

some commonly-used approaches. There are some simple (tail) non-exchangeable copulas studied

in the literature, such as, Marshall-Olkin copula, the generalized Clayton Copula, mentioned in

Furman et al. (2015), and copulas constructed through comonotonic latent variables (see: Hua and

Joe (2016)). In this paper, we only consider the Khoudraji’s device (see, Khoudraji (1996)) for

generating non-exchangeable copulas, and some other approaches such as using non-exchangeable

Pickands function for extreme value copulas will be further studied in the future.

One reasonable approach is to consider the difference between certain conditional quantities

when we switch X1 and X2. Without loss of generality, for identical nonnegative random variables

X1 and X2, we use the limiting property of η(t) = E[X1|X2 > t]/E[X2|X1 > t] as t→∞ to study

the strength of tail non-exchangeability. While in Hua and Joe (2014), the forms E[X1|X2 > t] and

E[X1|X2 = t] are used to study the strength of tail dependence as t → ∞, and in Bernard and

Czado (2015), conditional quantiles are used to study the strength of tail dependence.

In what follows, we will first introduce the notation system used in the paper. Then in Sec-

tion 2, we discuss basic concepts including the proposed approach for tail non-exchangeability

and the Khoudraji’s Device. Section 3 presents the main results for various patterns of tail non-

exchangeability for three main different univariate tail heaviness patterns. Section 4 proposes a

statistical test for testing the significance of tail non-exchangeability. Finally, Section 5 concludes

the article.
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1.1 Notation and symbols

In this section we discuss different notations and symbols. We are describing them one by one.

Firstly, we define distribution functions as F (x), where in the parenthesis we have the argument.

In order to define the survival functions we use F (x) , where in the parenthesis we have the

argument. From the traditional literature we know the first order derivative of the distribution

function is itself the density function. Hence, in the next sections when we differentiate F (x)

with respect to its argument, we write f(x) as the derivative instead of F ′(x). In other words.

f(x) = F ′(x) = ∂F (x)/∂x.

Secondly, throughout our paper we define the survival copula of an ordinary Copula C∗ as

Ĉ∗(. , .). Important thing in this case is that Ĉ∗(. , .) is the Copula before non-exchangeable

transformation. After Khoudraji (1996) non-exchangeable transformation we have the survival

Copula as Ĉ(. , .). Here, throughout our paper by Copula we actually mean Survival Copula

where it itself is a function of survival functions [ i.e. F (x)]. In order to calculate the first order

derivative we further use Ĉ∗1|2(u|v) instead of ∂Ĉ∗(u, v)/∂v. From the literature we know that,

Ĉ∗1|2(u|v) is a Cumulative distribution function(cdf) if u, v ∈ [0, 1]2. In this paper we put u = F (x)

and v = F (y) to make them vary in [0, 1]. At the tail, when we derive conditional expectation by

Laplace approximation, we need to calculate second order derivative of our survival Copula. We use

the notation Ĉ∗1|2,2(u|v). In other words, we define Ĉ∗1|2,2(u|v) = ∂2Ĉ∗(u, v)/∂v2 = ∂Ĉ∗1|2(u|v)/∂v.

2 Preliminaries

2.1 Basic concepts and motivations

In dependence modeling one often uses copula functions to account for dependence patterns ap-

pearing in the tail part of the joint distribution. This is particularly important when these patterns

cannot be well modeled by the commonly-used multivariate models such as the multivariate Normal

or Student t distributions. Most of the commonly used bivariate copulas are of the exchangeable

structure, meaning that C(u, v) ≡ C(v, u) for any (u, v) ∈ [0, 1]2. As copula modeling often plays

an important role in accounting for dependence in the tails, one may be particularly interested in

the non-exchangeable structure in the joint tails. Motivated by Hua and Joe (2014), where the tail

behavior of E[X1|X2 > t] or E[X1|X2 = t] is studied for capturing the tail dependence strength

between the bivariate random vector (X1, X2), we introduce the following definition

Definition 1. Let (X1, X2) be a bivariate random vector with identically distributed marginals,

supported on [0,∞)2. Then the random vector (X1, X2) is said to be tail exchangeable of Type I if
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the following condition holds:

Condition I: lim
t→∞

η1(t) := lim
t→∞

E[X1|X2 > t]

E[X2|X1 > t]
= 1, (1)

and is tail exchangeable of Type II if the following condition holds:

Condition II: lim
t→∞

η2(t) := lim
t→∞

E[X1|X2 = t]

E[X2|X1 = t]
= 1. (2)

Note here, we define “tail exchangeability” as a limiting property between two random variables

when both of them take large values. When either of the conditions (1) and (2) does not hold, the

random vector is said to be “tail non-exchangeable”. The departure of functions η1(t) and η2(t) to

1 as t→∞ captures the degree of tail non-exchangeability.

Without loss of generality, assume that the (X1, X2) has a unique copula C(·, ·), of which the

survival copula denoted as Ĉ(·, ·). Therefore the above conditions can be written as:

Condition I’: lim
t→∞

η1(t) = lim
t→∞

∫∞
0 Ĉ(F (x), F (t))dx∫∞
0 Ĉ(F (t), F (x))dx

= 1, (3)

where F is the cdf of the identical univariate marginals. The second condition is then

Condition II’: lim
t→∞

η2(t) = lim
t→∞

∫∞
0 Ĉ1|2(F (x)|F (t))dx∫∞
0 Ĉ2|1(F (t)|F (x))dx

= 1. (4)

It is clear that the tail behavior of η1(t) and η2(t) rely on both the copula C and the marginal F .

Our goal is to study the effect of different marginals on the degree of tail non-exchangeability.

As the conditional expectations do not have any closed form solutions, Hua and Joe (2014)

suggests to use either Laplace approximation or Watson’s lemma for asymptotic approximation

when t→∞. They used these approximations in exchangeable copulas. In our paper, we are using

the same method after transforming a copula into a non-exchangeable structure.

2.2 Khoudraji’s device

Assume that X1 and X2 have identical marginal distribution functions with the cdf F being con-

tinuous on [0,∞), and density functions and moments exist whenever they are used. Following

Khoudraji’s device, see, Khoudraji (1996); Genest et al. (1998, 2011, 2012), write the copula in (3)

as

Ĉ(F (x), F (t)) = F (x)1−α1F (t)1−α2Ĉ∗(F (x)α1 , F (t)α2), (α1, α2) ∈ [0, 1]2, (5)

where Ĉ∗ is the survival copula of C∗ that is exchangeable.
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3 Tail non-exchangeability

In this section, we focus on obtaining results for tail non-exchangeability with different dependence

structures and univariate marginals. There are three main univariate marginals are considered:

Pareto, Exponential, and Weibull, that basically represent three different degrees of tail heaviness.

3.1 Type I

Proposition 1 (Based on Laplace’s method). Suppose that 0 < α1, α2 < 1, Ĉ∗ is a bivariate

copula, X1 and X2 are identically distributed positive random variables with univariate cdf F and

density function f . Assume that w := limx→0+ log(f(F−1(x)) < ∞, and write T := − log(F (t))

and

g(s, T ) = α2 − s(2− α1) +
1

T
{log[Ĉ∗(e−α1sT , e−α2T )[f(F−1(1− e−sT ))]−1] + w}. (6)

If there exists T0 < ∞ such that, T > T0 implies that g(0, T ) = 0, g(∞, T ) = −∞, g′(0, T ) > 0,

and s0(T ) = arg maxs g(s, T ), then,

E[X1|X2 > t] ∼ TeTg(s0(T ),T )−w
√

2π

−Tg′′(s0(T ), T )
, t→∞

Proof: Following Hua and Joe (2014), together with (5),

E[X1|X2 > t] =

∫ ∞
0

Ĉ(F (x), F (t))

F (t)
dx, ∀ t

=

∫ ∞
0

F (x)1−α1F (t)1−α2Ĉ∗(F (x)α1 , F (t)α2)

F (t)
dx ∀ t (7)

As y = − logF (x) =⇒ dy = −∂F (x)/∂x

F (x)
dx =⇒ F (x)dy = −∂F (x)

∂x dx =⇒ F (x)dy = f(F−1(1 −
F (x)))dx, after changing of variables we get, e−ydy = f(F−1(1 − e−y))dx =⇒ e−y[f(F−1(1 −
e−y))]−1dy = dx. After putting this condition in (7) we get, as T = − log(F (t)),

E[X1|X2 > t] =

∫ ∞
0

eTα2−y(2−α1)Ĉ∗(e−α1y, e−α2T )[f(F−1(1− e−y))]−1 dy (8)

Let y = sT , and thus dy = Tds. After putting this condition in (8),

E[X1|X2 > t] = Te−w
∫ ∞
0

eTg(s,T )ds, ∀ s ∈ [0,∞). (9)

Now, based on the Laplace’s method,

E[X1|X2 > t] ∼ Te−w
∫ ∞
0

exp{Tg(s0(T ), T ) +
1

2
(s− s0(T ))2g′′(s0(T ), T )}ds

∼ TeTg(s0(T ),T )−w
√

2π

−Tg′′(s0(T ), T )
,
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which completes the proof. �

Remark 1. If α1 = α2 = α we have exchangeable survival copula. Furthermore, if we consider

α = 1 we get the same result with Hua and Joe (2014).

Example 1 (Clayton copula with Pareto marginals). Let Ĉ∗ be the Clayton copula, that is,

Ĉ∗(u, v) = (u−δ + v−δ − 1)−1/δ. Let X1 and X2 follow Pareto distributions with cdf F (x) =

1− (1 + x)−β, and 1 < β < 1
1−α1

. Then based on (6), for given 0 < α1, α2 < 1, T := β log(1 + t),

g(s, T ) = α2 − (2− α1)s− log(eα1δsT + eα2δT − 1)/(Tδ) + (1 + β−1)s (10)

It is clear that g(0, T ) = 0 for any T ∈ (0,∞]. Moreover, since β > 1, it can be verified that

g(∞, T ) = −∞ for any T ∈ [0,∞). Also,

g′(s;T ) =
1

β
− α1

1 + eα2δT−α1δsT − e−α1δsT
− (1− α1),

which implies that for any given 0 < α1 < 1 and 1 < β, there exists T0 > 0 such that T > T0

implies that g′(0, T ) > 0.

For any given 0 < T , the root s0(T ) of g′(s, T ) = 0 is

s0(T ) =
1

α1δT
log

(eα2δT − 1)(1− β + α1β)

β − 1
. (11)

Therefore, we require that 1 < β < 1
1−α1

in order to have a well defined root. Moreover, it is clear

that limT→∞ s0(T ) = α2/α1. Now consider

−g′′(s;T ) =
α1(−α1δTe

α2δT−α1δsT + α2δTe
−α2δsT )

(1 + eα2δT−α1δsT − e−α2δsT )2
, (12)

and therefore, with T = β log(1 + t),

E[X1|X2 > t] ∼ TeTg(s0(T ),T )
√

2π

−Tg′′(s0(T ), T )
, t→∞, (13)

where g(s, T ), s0(T ), and g′′(s, T ) are given in (10), (11), and (12), respectively. �

In Figure 1a and Figure 1b we try to do the simulation using Laplace approximation. In

Figure 1a we take α1 and α2 0.97 and 0.85 respectively. In Figure 1b we reduce α1 such that ,

its value comes closer to α2. We do this because if α1 and α2 are very close to each other, we

get exchangeability as the result of symmetric copulas. In these two panels we assume β = 5 and

δ = 10 throughout this simulation. The values of α1 and α2 are very high. The main reason is

that, if we take lower vales, the distance between two conditional expectations are so big that we
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cannot find any pattern. Apart from that these Laplace approximation simulations look similar to

the simulations when we use Pareto margins and use the definitions of conditional expectations.

Pareto margins (5) 
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(a) α1 = 0.97, α2 = 0.85, δ = 10
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(b) α1 = 0.90, α2 = 0.85, δ = 10

Figure 1: Comparison of E[X1|X2 > t] and E[X2|X1 > t] when α1 and α2 are different, using

Laplace Approximation

Proposition 2 (Based on Watson’s lemma). Suppose that 0 < α1, α2 < 1, Ĉ∗ is a bivariate copula,

X1 and X2 are identically distributed positive random variables with univariate cdf F and density

function f . Assume that
∫∞
0 eTg(s,T ) ds <∞ and write T := − log(F (t)) and

g(s, T ) = α2 − s(2− α1) +
1

T
{log[Ĉ∗(e−α1sT , e−α2T )[f(F−1(1− e−sT ))]−1] + w}.

If there exists T0 < ∞ such that, T > T0 implies that g(0, T ) = 0, g(∞, T ) = −∞, g′(0, T ) ≯ 0,

Then,

E[X1|X2 > t] ∼ 1

[(2− α1) +D1 +D2]
, as t→∞,

where D1 =
α1Ĉ∗2|1(e

−α2T |1)

Ĉ∗(1,e−α2T )
and D2 = f ′(F−1(0))

f2(F−1(0))
.

Proof. In order to do the approximation we are using Theorem 36 of Breitung (1994) [p. 48]. As

g(s, T ) is a real valued function on the semi-infinite interval [0,∞) and in an interval (0, 0 + ε] with

ε > 0, this function is continuously differentiable and sup0+ε≤s≤∞ g(s, T ) ≤ g(0, T )−ψ, with ψ > 0.
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If g′(s, T ) ≯ 0 and s → 0, following Theorem 36 of Breitung (1994) we can write g′(s, T ) =

−asr−1 + o(sr−1) ∀r > 0. Now if we assume r = 1 then

g′(s, T ) = −a = −

[
(2− α1) +

α1e
−α1sT Ĉ∗2|1(e

−α2T |e−α1sT )

Ĉ∗(e−α1sT , e−α2T )
+
e−sT f ′(F−1(1− e−sT ))

f2(F−1(1− e−sT ))

]
.

This particular version of Watson’s lemma requires −a to be constant, which is possible only if

lim
s+→0

g′(s, T ) = −[(2− α1) +
α1e
−α1sT Ĉ∗2|1(e

−α2T |e−α1sT )

Ĉ∗(e−α1sT , e−α2T )
+
e−sT f ′(F−1(1− e−sT ))

f2(F−1(1− e−sT ))
],

goes to a constant. In other words, if lims+→0
e−sT f ′(F−1(1−e−sT ))
f2(F−1(1−e−sT )) is a constant . Thus,

−a = −[(2− α1) +
α1Ĉ

∗
2|1(e

−α2T |1)

Ĉ∗(1, e−α2T )
+
f ′(F−1(0))

f2(F−1(0))
]

or, a = (2− α1) +
α1Ĉ∗2|1(e

−α2T |1)

Ĉ∗(1,e−α2T )
+ f ′(F−1(0))

f2(F−1(0))
= 2 + f ′(F−1(0))

f2(F−1(0))
> 0.

Now, let us assume there is another real and continuous function h(s) ∈ [0,∞) such that,

h(s) = bsm−1 + o(sm−1) with m > 0. More specifically in our case we have, h(s) = 1 . Thus,

bsm−1 +o(sm−1) = 1 =⇒ b = 1 when m = 1. As we assume
∫∞
0 eg(s,T )ds <∞ then by this version

of Watson’s lemma we can write ;

E[X1|X2 > t] ∼ 1

[(2− α1) +D1 +D2]
, t→∞ (14)

for all (α1, α2) ∈ [0, 1]2, and where D1 =
α1Ĉ∗2|1(e

−α2T |1)

Ĉ∗(1,e−α2T )
= α1 and D2 = f ′(F−1(0))

f2(F−1(0))
. This completes

the proof.

Example 2 (Clayton copula with Weibull marginals). Let Ĉ∗ be the Clayton copula, that is,

Ĉ∗(u, v) = (u−δ + v−δ − 1)−1/δ. Let X1 and X2 follow Weibull distributions with cdf F (x) =

1− F (x) = e−x
γ ∀ x, γ > 0. Then based on (6), for given 0 < α1, α2 < 1, T := tγ ,

g(s, T ) = 1− 1

T

[
1

δ
log(eα1δsT + eα2δT − 1) + (1− α1)sT + (1− α2)T

]
(15)

From (15) we clearly see that, g(0, T ) = 0 and g(∞, T ) = −∞ for any T ∈ (0,∞]. Also from (15)

we can also get,

g′(s;T ) = −
[

α1

1 + e(α2−α1s)δT − e−α1δsT
+ (1− α1)

]
< 0 (16)

By using proposition 2 we get,

lim
s→0+

g(s, T ) = −a = −
[ α1

eα2δT
+ (1− α1)

]
< 0 (17)
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Furthermore, in our case, h(s) = s
1
γ
−1

, b = 1 and m = γ−1. Finally before using the result of

proposition 2 we have to show
∫∞
0 |h(s)|eg(s,T )ds <∞. Here we have,∫ ∞

0
|h(s)|eg(s,T ) ds =

∫ ∞
0
|s

1
γ
−1| e1−

1
T
[ 1
δ
log(eα1δsT+eα2δT−1)+(1−α1)sT+(1−α2)T ] ds

≤ eα2

[∫ α2
α1

0
s

1
γ
−1

e−α2−(1−α1)s ds +

∫ ∞
α2
α1

s
1
γ
−1

e−(α1+1−α1)s ds

]
, at T →∞

= eα2

[
e−α2 e−(1−α1)s

1
γ
−1∑
i=0

(−1)
1
γ
−i−1 ( 1γ − 1)!

i!(α1 − 1)
1
γ
−i

si
∣∣∣∣
α2
α1

0

+ e−s

1
γ
−1∑
i=0

(−1)
1
γ
−i−1 ( 1γ − 1)!

i!
si
∣∣∣∣∞α2
α1

]
(18)

Both the terms on the right hand side of (18)is always finite. The main reasons are we have e−s

and γ > 0; which leads us three possibilities, γ ∈ (0, 1), γ = 1 and γ > 1. Let us discuss each of

the cases separately. As we have e−s as the first term, it is always finite as s → ∞. Now, only

thing matters is the value of γ. When γ ∈ (0, 1), γ−1 − 1 takes the highest value when γ → 0. By

assumption γ > 0. So γ−1− 1 <∞. Under this case we still possibility to have si →∞ as s→∞.

Therefore, we need more restriction on γ. In this bound of (0, 1) si is not finite. Furthermore, when

γ = 1, si → ∞ as s → ∞. Hence, we need γ > 1 to make si < ∞ for any large s. using above

conditions and proposition 2 we get;

E[X1|X2 > t] ∼ γ−1Γ
(

1

γ

)
1

α1

eα2δT
+ (1− α1)

as t→∞ and T = tγ , (19)

where (α1, α2) ∈ [0, 1]2, γ > 0 and t→∞.

Figure 2a represents simulation from Watson’s lemma and figure 2b is actual integration result.

In figure 2a the dotted black line represents E[X2|X1 > t] and the purple line represents E[X1|X2 >

t]. The pattern of the movement of the two lines are same but the gap between them is more than

in figure 2b. Hence, we clearly claim that, Watson’s lemma gives more tail non-exchangeability.
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Weibull margins (2) 
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Figure 2: Comparison between Simulation of Watson’s Lemma and Actual Expectations

Example 3 (Clayton copula with Exponential marginals). Again like before we have the same

Clayton Copula but, we have exponential marginals. Let X1 and X2 follow Exponential distribu-

tions with cdf F (x) = 1 − e−λx, ∀x ∈ [0,∞). Then based on (6), for given 0 < α1, α2 < 1, δ > 0

and T := λt,

g(s, T ) = 1− 1

T

[
1

δ
log(eα1δsT + eα2δT − 1) + (1− α1)sT + (1− α2)T

]
(20)

Again, by doing easy calculations we can show that, g(0, T ) = 0 and g(∞, T ) = −∞ at any

T ∈ [0,∞). Also we have,

g′(s;T ) = −
[

α1

1 + e(α2−α1s)δT − e−α1δsT
+ (1− α1)

]
< 0 (21)

In order to satisfy proposition 2 we need to see the behavior of g(s, T ) around zero. In other words,

lims+→0 g
′(s;T ) = −a = −

[
α1e
−α2δT + 1− α1

]
< 0 for all (α1, α2) ∈ (0, 1) and δ > 0. This implies

that the slope of the g(s, T ) is negative even in the neighborhood of zero. In this case b = m =

h(s) = 1. Apart from that like in the Weibull case we can show that,
∫∞
0 |h(s)|eg(s,T )ds <∞. Now

using proposition 2 we can conclude, E[X1|X2 > t] ∼ λ−1(α1e
−α2δT + 1−α1) as t→∞, λ > 0 and

T = λt. In figure 3a we did the simulation corresponding to Watson’s lemma. On the right hand

side in 3b we get the plot of the numerical integration. If we compare these two pictures we clearly

see that, Watson’s lemma gives almost same simulation result. The important thing is when we

use KB4 copula with exponential margins we do not get much non-exchangeability.
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Exponential margins (2) 
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Figure 3: Comparison between Simulation of Watson’s Lemma and Actual Expectations

3.2 Type II

Definition 2. If E[X1|X2 = t] is a conditional expectation for any given t, then it can be expressed

in terms of non-exchangeable Copula as; E[X1|X2 = t] =
∫∞
0 Ĉ1|2(F (x)|F (t)) dx, ∀ t where

Ĉ1|2(F (x)|F (t)) = ∂/∂F (t)
[
F (x)1−α1F (t)1−α2Ĉ∗(F (x)α1 , F (t)α2)

]
, with survival functions F (x)

and F (t) and (α1, α2) ∈ [0, 1]2.

Proposition 3 (Based on Laplace’s Method). Suppose that 0 < α1, α2 < 1, Ĉ∗ is a bivariate

copula, Ĉ∗1|2 is a conditional bivariate copula, X1 and X2 are identically distributed positive random

variables with univariate cdf F and density function f . Assume that w := limx→0+ log(f(F−1(x)) <

∞, and write T := − log(F (t)) and

g1(s, T ) = −(α2 + sα1) +
1

T

[
log

Ĉ∗(e−α1sT , e−α2T )

f [F−1(1− e−sT )]
+ w

]

and

g2(s, T ) = −s(2− α1) +
1

T

[
log

Ĉ∗1|2(e
−α1sT |e−α2T )

f [F−1(1− e−sT )]
+ w

]
.
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If there exists T0 <∞ such that, T > T0 implies that gi(0, T ) = 0, , gi(∞, T ) = −∞, g′i(0, T ) > 0,

and s0i(T ) = arg maxs gi(s, T ), for all i = 1, 2 then,

E[X1|X2 = t] ∼ − logF (t)(1− α2)e
− logF (t)g1(s01(T ),− logF (t))

√
2π

logF (t)(1− α2)g
′′
1 (s01(T ),− logF (t))

− logF (t)α2e
− logF (t)g2(s02(T ),− logF (t))

√
2π

logF (t)α2g
′′
2 (s02(T ), T )

, t→∞

Proof. Following Hua and Joe (2014), together with (5),

E[X1|X2 = t] =

∫ ∞
0

Ĉ1|2(F (x)|F (t)) dx, ∀ t

=

∫ ∞
0

[
(1− α2)F (x)1−α1F (t)−α2Ĉ∗

(
F (x)α1 , F (t)α2

)
+ α2F (x)1−α1Ĉ∗1|2(F (x)α1 |F (t)α2)

]
dx

(22)

As y = − logF (x) =⇒ dy = −∂F (x)/∂x

F (x)
dx =⇒ F (x)dy = −∂F (x)

∂x dx =⇒ F (x)dy = f(F−1(1 −
F (x)))dx, after changing of variables we get, e−ydy = f(F−1(1 − e−y))dx =⇒ e−y[f(F−1(1 −
e−y))]−1dy = dx. After putting this condition in (22) we get, as T = − log(F (t)),

E[X1|X2 = t] =

∫ ∞
0

[(1− α2)e
−(1−α1)yeα2T Ĉ∗(e−α1y, e−α2T )

+ α2e
−(1−α1)yĈ∗1|2(e

−α1y|e−α2T )]e−y[f [F−1(1− e−y)]]−1 dy (23)

Let y = sT , and thus dy = Tds. After putting this condition in (23),

E[X1|X2 = t]

= T (1− α2)e
−w
∫ ∞
0

e
T

[
−(α2+sα1)+

1
T

[
log

Ĉ∗(e−α1sT ,e−α2T )

[f [F−1(1−e−sT )]]
+w

]]
ds

+ Tα2e
−w
∫ ∞
0

e
T

[
−s(2−α1)+

1
T

[
log

Ĉ∗
1|2(e

−α1sT |e−α2T )

f [F−1(1−e−sT )]
+w

]]
ds

= T (1− α2)e
−w
∫ ∞
0

eTg1(s,T )h(s) ds+ Tα2e
−w
∫ ∞
0

eTg2(s,T )h(s) ds (24)

= Te−w [(1− α2)Γ1 + α2Γ2] ,

where Γ1 =
∫∞
0 eTg1(s,T )h(s) ds and Γ2 =

∫∞
0 eTg2(s,T )h(s) ds. Now we have two separate in-

tegrations consist of gi(s, T ) (with i = 1, 2) functions each of which behaves similarly like in

proposition 1. In this case h(s) = 1. Thus, based on Laplace Method we can say that , Γi =∫∞
0 exp{Tgi(s0i(T ), T ) + 1

2(s − s0i(T ))2g′′i (s0i(T ), T )}ds for all i = 1, 2. Finally, the conditional
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expectation becomes,

E[X1|X2 = t] ∼ − logF (t)(1− α2)e
− logF (t)g1(s01(T ),− logF (t))

√
2π

logF (t)(1− α2)g
′′
1 (s01(T ),− logF (t))

− logF (t)α2e
− logF (t)g2(s02(T ),− logF (t))

√
2π

logF (t)α2g
′′
2 (s02(T ), T )

, t→∞

Example 4 (Clayton copula with Pareto marginals). Let Ĉ∗ be the Clayton copula, that is,

Ĉ∗(u, v) = (u−δ+v−δ−1)−1/δ. Let Ĉ1|2 be the conditional non-exchangeable Clayton copula which

has the form, Ĉ1|2(u|v) = (u−α1δ+v−α2δ−1)−1/δu1−α1v−α2
[
(1− α2) + (α2v

−α2δ)(u−α1δ + v−α2δ − 1)−1
]
.

Let X1 and X2 follow Pareto distributions with cdf F (x) = 1 − (1 + x)−β, and 1 < β < 1
1−α1

.

Then based on combination of g1(s;T ) and g2(s;T ) in proposition 3, for given 0 < α1, α2 < 1,

T := β log(1 + t),

g(s;T ) =
s

β
+

1

T

[
α2T − (1− α1)sT −

1

δ
log(eα1δsT + eα2δT − 1)

+ log

[
(1− α2) +

α2e
α2δT

eα1δsT + eα2δT − 1

]]
(25)

If we carefully look at (25) and combine this result with g1 and g2 in proposition 3, we can see that

one of the gi’s vanishes. As a result, we get only one g function. It is clear that g(0, T ) = 0 for any

T ∈ [0,∞). Moreover, since β > 1, it can be verified that g(∞, T ) = −∞ for any T ∈ [0,∞). Also,

g′(s;T ) =
1

β
− (1− α1)−

α1e
α1δsT

eα1δsT + eα2δT − 1

− α1α2δe
α1δsT+α2δT

(eα1δsT + eα2δT − 1)2
[
1− α2 + α2eα2δT

eα1δsT+eα2δT−1

]
which implies that for any given 0 < α1 < 1 and 1 < β, there exists T0 > 0 such that T > T0

implies that g′(0, T ) > 0.

For any given 0 < T , the root s0(T ) of g′(s, T ) = 0 is

s0(T ) =
1

α1δT

[
log
{
eα2δT (α1α2βδ − 2[1− β(1− α1)])

+ 2[1− β(1− α1)]
}]
− 1

α1δT

[
log
{

2[1− β(1− α1)]
}]

(26)

Therefore, we require that 1 < β < 1
1−α1

in order to have a well defined root. Moreover, it is clear

that limT→∞ s0(T ) = α2/α1. Now consider

−g′′(s;T ) = − ∂

∂s

[
1

β
− (1− α1) +A+B

]
(27)
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where A = −(α1e
α1δsT )(eα1δsT + eα2δT − 1)−1 and, B = −(α1α2δe

α1δsT+α2δT )((eα1δsT + eα2δT −
1)2[1− α2 + (α2e

α2δT )(eα1δsT + eα2δT − 1)−1])−1. Furthermore, ∂A/∂s is −(α2
1δTe

α1δsT )(eα1δsT +

eα2δT − 1)−1
[
1− (eα1δsT )(eα1δsT + eα2δT − 1)−1

]
which converges to zero as t→∞. Again,

∂B

∂s
= −

[
α2
1α2δ

2e(α1s+α2)δT

(eα1δsT + eα2δT − 1)2
[
1− α2 + α2eα2δT

eα1δsT+eα2δT−1

]
− α1α2δTe

(α1s+α2)δT

(eα1δsT + eα2δT − 1)4
[
1− α2 + α2eα2δT

eα1δsT+eα2δT−1

]2
−
α1α2δe

(α1s+α2)δT
[
2α1δT (eα1δsT + eα2δT − 1)

[
1− α2 + α2eα2δT

eα1δsT+eα2δT−1

]]
(eα1δsT + eα2δT − 1)4

[
1− α2 + α2eα2δT

eα1δsT+eα2δT−1

]2 ]
(28)

Furthermore, limT→∞−g′′(s;T ) = (α2α
2
1δ

2)2−1 when α2 > α1. and , with T = β log(1 + t),

E[X1|X2 > t] ∼ TeTg(s0(T ),T )
√

2π

−Tg′′(s0(T ), T )
, t→∞,

∼ 1

β
(1 + t)

α2
α1
−(1−α1)

α2β
α1

√
4πβ log(1 + t)

α2(α1δ)2
, as t→∞. (29)

where g(s, T ), s0(T ), and g′′(s, T ) are given in (25), (26) and (27) respectively. �

In Figure 4a and 4b we try to compare the simulation using Laplace approximation with the

actual conditional tail expectations. In Figure 4a we are using the simulation results obtained in

(29) . Throughout our simulations we assume α1 = 0.85, α2 = 0.90, β = 5 and δ = 1. We take

δ = 1 because for the higher and lower values we can see uneven fluctuations. We are not able

to find any pattern in these cases. After fixing the values of the parameters we see in Figure 4a

there is no significant non-exchangeability at around 0, but this non-exchangeability increases as

we come closer to 90 th percentile. On the other hand, in Figure 4b we do not find that much

non-exchangeability throughout the plot. We can say Laplace approximation might overestimate

the small changes between two tail order conditional expectations at higher quantiles. Again, if we

carefully look at α1 and α2, we find they are not significant different from each other. Hence, even

these two parameters are very close to each other we can find higher tail non-exchangeability.
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Pareto margins with conditional copula (5) 
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(a) α1 = 0.85, α2 = 0.90, β = 5 and δ = 1

Pareto margins with conditional copula (5) 
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(b) α1 = 0.85, α2 = 0.90, β = 5 and δ = 1

Figure 4: Comparison between Laplace Approximation and the Actual Conditional Tail Expecta-

tions when α1 and α2 are different

Proposition 4 (Based on Watson’s Lemma). Suppose that 0 < α1, α2 < 1, Ĉ∗ is a bivariate

copula, Ĉ∗1|2 is a conditional bivariate copula, X1 and X2 are identically distributed positive random

variables with univariate cdf F and density function f . Assume that
∫∞
0 eTgi(s,T ) ds < ∞ for all

i = 1, 2 and write w := limx→0+ log(f(F−1(x)) <∞, and write T := − log(F (t)) and

g1(s, T ) = −(α2 + sα1) +
1

T

[
log

Ĉ∗(e−α1sT , e−α2T )

f [F−1(1− e−sT )]
+ w

]
and

g2(s, T ) = −s(2− α1) +
1

T

[
log

Ĉ∗1|2(e
−α1sT |e−α2T )

f [F−1(1− e−sT )]
+ w

]
.

For i = 1, 2 if there exists T0 < ∞ such that, T > T0 implies that gi(0, T ) = 0, gi(∞, T ) = −∞,

g′i(0, T ) ≯ 0, Then,

E[X1|X2 = t] ∼ 1− α2

Υ1
+
α2

Υ2
, as t→∞, (30)

where Υ1 = α1 + {α1e
−α1sT Ĉ∗2|1(e

−α2T |e−α1sT )}[Ĉ∗(e−α1sT , e−α2T )]−1 + {e−sT f ′[F−1(1− e−sT )]}
f−2[F−1(1− e−sT )] and Υ2 = (2− α1) + {α1e

−α1sT Ĉ∗2|1,1(e
−α2T |e−α1sT )}[Ĉ∗2|1(e

−α2T |e−α1sT )]−1 +

{e−sT f ′[F−1(1− e−sT )]}f−2[F−1(1− e−sT )] for all Υ1, Υ2 ∈ R \ {0}.
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Proof. We are using Theorem 36 of Breitung (1994) [p. 48]. As g1(s, T ) and g2(s, T ) are real

functions on the semi-infinite interval [0,∞)2 and in an interval (0, 0 + εi]
2,where i = 1, 2, with

ε1, ε2 > 0, these functions are continuously differentiable and

sup
0+ε1≤s≤∞

g1(s, T ) ≤ g1(0, T )− ψ1, and

sup
0+ε2≤s≤∞

g2(s, T ) ≤ g2(0, T )− ψ2 (31)

with ψ1, ψ2 > 0.

Now for g′1(s, T ) and g′2(s, T ) we have g′1(s, T ) < 0 and g′2(s, T ) < 0 for all s ∈ (0, 0+max{ε1, ε2}]
. We can also write g′1(s, T ) = −asr1−1 +o(sr−1) ∀r1 > 0 and g′2(s, T ) = −asr2−1 +o(sr−1) ∀r2 > 0.

Now if we assume r = 1 then r1 = r2 = 1 and, g′1(s, T ) = −a1 and g′2(s, T ) = −a2. We also know

that,

g′1(s, T ) = −α1 −
α1e
−α1sT Ĉ∗2|1(e

−α2T |e−α1sT )

Ĉ∗(e−α1sT , e−α2T )
− e−sT f ′[F−1(1− e−sT )]

f2[F−1(1− e−sT )]
= −Υ1

with lims+→0 g′1(s, T ) = −2α1 − f ′[F−1(0)]f−2[F−1(0)] and

g′2(s, T ) = −(2− α1)−
α1e
−α1sT Ĉ∗2|1,1(e

−α2T |e−α1sT )

Ĉ∗2|1(e
−α2T |e−α1sT )

− e−sT f ′[F−1(1− e−sT )]

f2[F−1(1− e−sT )]
= −Υ2

with lims+→0 g′2(s, T ) = −2− f ′[F−1(0)]f−2[F−1(0)]; which are constants at s+ → 0 and t→∞.

Thus, −a1 = −Υ1 or, a1 = Υ1 > 0. Similarly, we can say that, a2 = Υ2.

Let us assume there is another real and continuous function h(s, T ) ∈ [0,∞) such that, hi(s, T ) =

bsmi−1 + o(smi−1) with mi > 0 and i = 1, 2. More specifically we assume hi(s, T ) = 1 ∀ i = 1, 2 in

our case. Thus, bis
mi−1 + o(smi−1) = 1 =⇒ bi = 1, where mi = 1 for all i = 1, 2.

Now, after using this theorem we get;

E[X1|X2 = t] ∼ 1− α2

Υ1
+
α2

Υ2
, as t→∞, with s+ → 0 (32)

where T = − logF (t), (α1, α2) ∈ [0, 1]2, Υ1 = α1+{α1e
−α1sT Ĉ∗2|1(e

−α2T |e−α1sT )}[Ĉ∗(e−α1sT , e−α2T )]−1

+{e−sT f ′[F−1(1−e−sT )]}f−2[F−1(1−e−sT )] and Υ2 = (2−α1)+{α1e
−α1sT Ĉ∗2|1,1(e

−α2T |e−α1sT )}[
Ĉ∗2|1(e

−α2T |e−α1sT )
]−1

+{e−sT f ′[F−1(1−e−sT )]}f−2[F−1(1−e−sT )] for all Υ1, Υ2 ∈ R \ {0}.

Example 5 (Clayton copula with Weibull marginals). Let Ĉ∗ be the Clayton copula, that is,

Ĉ∗(u, v) = (u−δ+v−δ−1)−1/δ. Let Ĉ1|2 be the conditional non-exchangeable Clayton copula which

has the form, Ĉ1|2(u|v) = (u−α1δ+v−α2δ−1)−1/δu1−α1v−α2
[
(1− α2) + (α2v

−α2δ)(u−α1δ + v−α2δ − 1)−1
]
.
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Suppose, X1 and X2 follow Weibull distributions with cdf F (x) = 1 − F (x) = e−x
γ ∀ x, γ > 0.

Then based on (31), for given 0 < α1, α2 < 1, T := tγ ,

g(s;T ) =
1

T

[
α2T − (1− α1)sT −

1

δ
log(eα1δsT + eα2δT − 1)

+ log

[
(1− α2) +

α2e
α2δT

eα1δsT + eα2δT − 1

]]
. (33)

From (33) we clearly see that, g(0, T ) = 0 and g(∞, T ) = −∞ for any T ∈ (0,∞]. Also from (33)

we can also get,

g′(s;T ) = −

(1− α1) +
α1e

α1δsT

eα1δsT + eα2δT − 1
+

α1α2δe
(α1s+α2)δT

(eα1δsT + eα2δT − 1)2
[
1− α2 + α2eα2δT

eα1δsT+eα2δT−1

]
 < 0

(34)

By using proposition 4 we get;

lim
s+→0

g(s, T ) = −
[
(1− α1) +

α1

eα2δT
+
α1α2δ

eα2δT

]
< 0 (35)

Furthermore, in our case, h(s) = s
1
γ
−1

, b = 1 and m = γ−1. In a similar calculation like in Example

2 we can easily show that
∫∞
0 |h(s)|eg(s,T )ds <∞. Now, by using proposition 4 we get;

E[X1|X2 > t] ∼ γ−1Γ
(

1

γ

)
1

(1− α1) + α1

eα2δT
+ α1α2δ

eα2δT

as t→∞ and T = tγ , (36)

where (α1, α2) ∈ [0, 1]2, δ > 0, γ > 0 and t→∞.

In figure 5a and figure 5b we are comparing between the simulation result based on Watson’s

lemma and result corresponding to numerical integration. If we look carefully figure 5a we can

see that, there is some non-exchangeability at around zero but when the two lines corresponding

to two conditional expectations come close to 1, they take the same value. At that point there is

exchangeability of some extent exists. Now, if we go further to the 90th quartile, we experience less

exchangeability. Furthermore, it shows more non-exchangeability than in figure 5b. Apart from

that, in figure 5a E[X1|X2 = t] > E[X2|X1 = t] before taking the value of 1 in x-axis but, after

hitting 1 it is E[X1|X2 = t] < E[X2|X1 = t].
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Weibull margins (2) 
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(a) α1 = 0.03, α2 = 0.05, γ = 2, δ = 10

Weibull margins with conditional copula (2) 

t (in quantiles)

C
on

di
tio

na
l T

ai
l E

xp
ec

ta
tio

ns

0.90

0.95

0.5 1.0 1.5 2.0

E[X1|X2=t]
E[X2|X1=t]
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Figure 5: Comparison between Watson’s Lemma and the Actual Conditional Tail Expectations

with Weibull Margins when α1 and α2 are different

Example 6 (Clayton copula with Exponential marginals). Let Ĉ∗ be the Clayton copula, that is,

Ĉ∗(u, v) = (u−δ+v−δ−1)−1/δ. Let Ĉ1|2 be the conditional non-exchangeable Clayton copula which

has the form, Ĉ1|2(u|v) = (u−α1δ+v−α2δ−1)−1/δu1−α1v−α2
[
(1− α2) + (α2v

−α2δ)(u−α1δ + v−α2δ − 1)−1
]
.

Let X1 and X2 follow Exponential distributions with cdf F (x) = 1−e−λx, ∀x ∈ [0,∞). Then based

on (31), for given 0 < α1, α2 < 1, δ > 0 and T := λt,

g(s;T ) =
1

T

[
α2T − (1− α1)sT −

1

δ
log(eα1δsT + eα2δT − 1)

+ log

[
(1− α2) +

α2e
α2δT

eα1δsT + eα2δT − 1

]]
. (37)

From (37) we clearly see that, g(0, T ) = 0 and g(∞, T ) = −∞ for any T ∈ (0,∞]. Also from (37)

we can also get,

g′(s;T ) = −

(1− α1) +
α1e

α1δsT

eα1δsT + eα2δT − 1
+

α1α2δe
(α1s+α2)δT

(eα1δsT + eα2δT − 1)2
[
1− α2 + α2eα2δT

eα1δsT+eα2δT−1

]
 < 0

(38)

By using proposition 4 we get;

lim
s+→0

g(s, T ) = −
[
(1− α1) +

α1

eα2δT
+
α1α2δ

eα2δT

]
< 0 (39)
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Furthermore, in our case, h(s) = b = m = 1 . In a similar calculation like in Example 3 we can

easily show that
∫∞
0 |h(s)|eg(s,T )ds <∞. Now, by using proposition 4 we get;

E[X1|X2 > t] ∼
(

1

λ

)
1

(1− α1) + α1

eα2δT
+ α1α2δ

eα2δT

as t→∞ and T = λt, (40)

where (α1, α2) ∈ [0, 1]2, δ > 0, γ > 0 and t→∞.

In figure 6a and figure 6b we are comparing the simulation results corresponding to Watson’s

lemma with the numerical integration respectively. In both cases we are not able to find much non-

exchangeability. Throughout our paper we only consider KB4 copula which is non-exchangeable

by nature. Probably in this case the marginal distribuion dominates the copula. As a result we

can not find less non-exchangeability.

Exponential margins with conditional copula (2) 
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(a) α1 = 0.03, α2 = 0.05, λ = 2, δ = 10

Exponential margins with conditional copula (2) 
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(b) α1 = 0.03, α2 = 0.05, λ = 2 and δ = 10

Figure 6: Comparison between Watson’s Lemma and the Actual Conditional Tail Expectations

with Exponential Margins when α1 and α2 are different

Remark 2. If we compare the g functions in example 4,5 and 6 with propositions 3 and 4 we can

see that, in the propositions we have g functions in the form of g1 and g2 simultaneously but, in

the examples we do not. The main reason behind it is one gi (for i = 1, 2) function dominates the

other. As a result, another gi function vanishes.
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4 Test of tail non-exchangeability

We have done simulations by using either Laplace method or Watson’s lemma with different non-

exchangeable survival Copulas with Pareto, Weibull or Exponential margins respectively. In this

chapter we are going to test non-exchangeability empirically. There has been a lot of research in

this field and different kinds of estimators have been used in hypothesis testing of this literature.

Fermanian et al. (2004) defines that any empirical Copula process converges to a weak Gaussian

process. A detailed discussion in weak Gaussian process takes place in Van Der Vaart and Wellner

(1996). Furthermore, Fermanian et al. (2004) mention Theorem 3.9.4 of Van Der Vaart and Wellner

(1996) in order to prove Theorem 3 in their paper. In this section we are trying to do a statistical

test of tail non-exchangeability of Condition I.

Definition 3. We define empirical version of the survival copula Ĉ∗(F (x), F (t)) as

Ĉ∗n(F (x), F (t)) =
1

n

n∑
j=1

I(U1j ≤ F (x), U2j ≤ F (t))

where, F (x) and F (t) are associated any continuous marginal distributions such that [F (x), F (t)] ∈
[0, 1]2; ∀ j = 1, 2, 3, ..., n, and at t→∞.

Proposition 5. If Σ is positive definite, d(θ) 6= 0 and d(θ) is continuous in a neighborhood of θ,

then

n1/2
[
h(V̄ n)− h(θ)

]
= n1/2

(
In
Jn
− θ1
θ2

)
w→ Z,

where Z ∼ N [0,d′(θ) Σ d(θ)] with θ = E[V j ], Σ = V ar[V j ], θ1 = θ2, d(θ) = ∂h(θ)/∂(θ) and

V̄ n = n−1
n∑
j=1

V j =

[
In

Jn

]
,

where In and Jn are empirical versions of E[X1|X2 > t] and E[X2|X1 > t] respectively.

Proof. From above we know that, the conditional expectation can be defined as, E[X1|X2 >

t] =
∫∞
0 Ĉ∗n(F (x), F (t))F (t)−1dx. Furthermore as we are assuming F (t) is constant the behav-

ior of this conditional expectation depends only on the integration part of the expectation or∫∞
0 n−1

∑n
j=1 I[U1j ≤ F (x), U2j ≤ F (t)] dx
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Let us define,

In =

∫ ∞
0

n−1
n∑
j=1

I[U1j ≤ F (x), U2j ≤ F (t)] dx

= n−1
∫ ∞
0

n∑
j=1

I[U1j ≤ F (x), U2j ≤ F (t)] dx

= n−1
n∑
j=1

∫ ∞
0
I[U1j ≤ F (x)] I[U2j ≤ F (t)] dx

= n−1
n∑
j=1

I[U2j ≤ F (t)]

∫ ∞
0
I[U1j ≤ F (x)] dx, ∀ t, (41)

where [F (x), F (t)] ∈ [0, 1]2.

Furthermore, Serfling (2009) [pg.3] implies that F (x) ≥ y if and only if x ≥ F−1(y) where

F−1(y) = infx∈R {x : F (x) ≥ y}.

Therefore,

U1j ≤ F (x) ⇐⇒ U1j ≤ 1− F (x)

⇐⇒ 1− U1j ≥ F (x)

⇐⇒ x ≤ F−1(1− U1j)

and

In = n−1
n∑
j=1

I[U2j ≤ F (t)]

∫ ∞
0
I[x ≤ F−1(1− U1j)] dx

= n−1
n∑
j=1

I[U2j ≤ F (t)]

∫ F−1(1−U1j)

0
dx

= n−1
n∑
j=1

I[U2j ≤ F (t)] F−1(1− U1j)

= n−1
n∑
j=1

BjYj , (42)

where Bj = I[U2j ≤ F (t)] and Yj = F−1(1 − U1j). In this case, 1 − U1j ∼ Uniform(0, 1) so that

Yj = F−1(1− U1j) ∼ F and that Bj = I[U2j ≤ F (t)] ∼ Bernoulli(π) where π = P [U2j ≤ F (t)].
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In the similar fashion we can define,

Jn =

∫ ∞
0

n−1
n∑
j=1

I[U2j ≤ F (x), U1j ≤ F (t)] dx

= n−1
n∑
j=1

I[U1j ≤ F (t)] F−1(1− U2j)

= n−1
n∑
j=1

CjZj , (43)

where Zj = F−1(1−U2j) ∼ F and Cj = I[U1j ≤ F (t)] ∼ Bernoulli(ρ) where ρ = P [U1j ≤ F (t)].

Now, let us define,

V j =

[
BjYj

CjZj

]
for j ∈ {1, 2, 3, .., n} and it is important to note that,

V̄ n = n−1
n∑
j=1

V j =

[
In

Jn

]

Now, let us define θ = E[V j ] and Σ = V ar [V j ]. Suppose that Σ has all finite elements, then

Multivariate Central Limit Theorem [i.e Theorem 4.22 of Polansky (2011) ] implies that,

n1/2(V̄ n − θ)
w→ Z, where Z ∼ N(0,Σ). Now, consider the function h(u) = h(u1, u2) = u−12 u1

and define

d(u) =
∂

∂u
h(u) =

[
u−12

−u−12 u1

]

Therefore, If Σ is positive definite, d(θ) 6= 0 and d(θ) is continuous in a neighborhood of θ,

then by Theorem 6.5 of Polansky (2011) implies that,

n1/2
[
h(V̄ n)− h(θ)

]
= n1/2

(
In
Jn
− θ1
θ2

)
w→ Z,

where Z ∼ N [0,d′(θ) Σ d(θ)]. This completes the proof.

Remark 3. In order to get the above result we have be more careful as U1j and U2j are not

independent. Their dependence is defined through the Copula structure. In this case if we do not

know the structure of Σ, we can not get above proposition. That is why we need to make a heuristic

assumption that we do know the structure of Σ and we can get this by using Monte Carlo method.

In our case θ1 = E[X1|X2 > t] and θ2 = E[X2|X1 > t]. In the previous chapters we know the exact

values of these two parameters for Clayton and Gumbel Copulas. We can use those expressions as

the representatives of θ1 and θ2.
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As from above we see the ratio of two empirical representations of conditional expectations

weakly follows normal distribution with mean zero and some variance covariance matrix, we can

create a hypothesis testing environment on it. In our case, testing null hypothesis (i.e H0, say)

amounts to check that the variables X1 and X2 are dependent and the dependence structure of

two conditional expectations E[X1|X2 > t] and E[X2|X1 > t] is exchangeable. Furthermore, we are

more interested in η1(t).

The main objective of this section is to propose a test of hypothesis for a given t sufficiently

large,

H0 : η1(t) =
E[X1|X2 > t]

E[X1|X2 > t]
= 1,

against the general alternative

H1 : η1(t) =
E[X1|X2 > t]

E[X1|X2 > t]
6= 1,

From the previous proposition we know that, the proportion of empirical forms of conditional

expectations weakly follows normal distribution.

Thus, the test statistic should be,

Zn =

 n1/2
[
In
Jn
− 1
]

(d′(θ) Σ d(θ))1/2

 w∼ N [0, 1]

as n→∞ where θ = E[V j ], Σ = V ar[V j ], d(θ) = ∂h(θ)/∂(θ) and

V̄ n = n−1
n∑
j=1

V j =

[
In

Jn

]
,

with In and Jn are empirical versions of E[X1|X2 > t] and E[X2|X1 > t] respectively.

5 Concluding remark

Our primary objective of study throughout this paper is tail non-exchangeability. In order to

do so firstly, we take an exchangeable Copula. Then we do Khoudraji (1996) non-exchangeable

transformation of our exchangeable Copula. Then we construct conditional tail expectation. As

this integration in conditional expectation does not have any closed form solution, following Hua and

Joe (2014) we use numerical approximation either by Laplace Method or Watson’s Lemma. First

we theoretically develop tail non-exchangeability by above two methods and derive the general

conditions under which we are able to get some forms of approximation at the tail. Then we

take Clayton Copula with Pareto, Weibull and Exponential margins. We use Laplace Method or
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Watson’s lemma based on the conditions satisfied by different margins. Laplace Method works

only for Khoudraji (1996) non-exchangeable Clayton survival Copula with Pareto margin 1 < β <

(1 − α1)
−1 otherwise, we are using Watson’s Lemma. In the case of non-exchangeable survival

Clayton Copula with Weibull and Exponential margins we can only use Watson’s Lemma. From

the simulation results we conclude that, KB4 with pareto and weibull margins give some non-

exchangeability but, in the case of exponential margins the value of exchangeability is close to

unity.

While deriving conditional tail expectation for E[X1|X2 = t] with non-exchangeable Copula in

propositions 3 and 4, we do find two separate terms which are equally powerful at the tail. Thus, we

have to do Laplace Approximation or Watson’s Lemma two times for each expression. In survival

Clayton Copula we do not see these kind of two separate terms because, one term is dominated by

the other. In this paper we just do the non-exchangeable transformation of only survival Clayton

Copula. If we do this numerical approximations with different Copulas, we might get some other

results.

Finally, in the chapter of Testing of Hypothesis we develop a test statistic based on the em-

pirical survival Copulas. As we know empirically we cannot show the limiting properties because,

when we consider extreme values, we concentrate on fewer data points, as a result, we are losing

information of the whole data set. Therefore, we only consider whole set of data while testing non-

exchangeability empirically. We show that, our test statistic weakly follows standard normal distri-

bution under certain conditions. As the data have dependence structure through empirical Copula,

our proposition regarding test statistic works if we know the structure of variance-covariance matrix

[i.e., Σ] in Proposition 5.

Firstly, as in our paper we did not find the structure of variance-covariance matrix [i.e.Σ], in

future we can do further study on the structure of variance-covariance matrix. If we assume the

structure is known, we can do Monte Carlo simulation in order to get this. If we assume this

structure is unknown we cannot use our proposition and the proof is not valid at all. In this case

we can use boot-strap method in order to estimate Σ. Again, in the chapter of Testing of Hypothesis

we are only able to estimate the empirical test for E[X1|X2 > t] not E[X1|X2 = t] because, for

later finding out an empirical test statistics is way more harder. Secondly, in this paper we only

try to get a mathematical derivation of non-exchangeability but we do not check how the degree of

dependence in the tail affects the measure of tail non-exchangeability. In this paper, we only consider

non-exchangeability in the presence of positive dependence, we never consider non-exchangeability

with negative dependence. We do not know how this looks like. Probably, this is going to be a

very good future research. Finally, in our paper we define, the random vector (X1, X2) is said to
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be tail exchangeable of Type I if the following condition holds:

Condition I: lim
t→∞

η1(t) := lim
t→∞

E[X1|X2 > t]

E[X2|X1 > t]
= 1,

and is tail exchangeable of Type II if the following condition holds:

Condition II: lim
t→∞

η2(t) := lim
t→∞

E[X1|X2 = t]

E[X2|X1 = t]
= 1.

But, we do not know anything regarding the relationship between these two conditions. We can-

not say, if one system is non-exchangeable under Condition I then, it is non-exchangeable under

Condition II or the other way. To verify the relationship between them, some regularity conditions

such as stochastically increasing may be needed.
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