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Abstract
Building regulations require that more than one exit should be available for a safe evacuation during
a panic situation. The faster is slower effect is expected to occur close to each exit door. However,
rooms having contiguous doors not always improve the evacuation performance. Our research
examines the statistical behaviour of escaping pedestrians when two contiguous exits are available,
but placed at different separation distances. We found that the evacuation time can be improved
if the separation exceeds a threshold distance. This threshold distance is related to changes in the
clogging dynamics close to the doors.
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1. Introduction

Current regulations claim that if more than two doors are required for a room, the distance
between two of then must be at least one-half or one-third of the room diagonal distance
(OSHA, 2015; FBC, 2010). This leaves some space for placing the extra openings (i.e.
those above two exits) at an arbitrary separation distance. Thus, it is possible to place a
couple of doors on the same side of the room. The special case of two contiguous doors
has been examined throughout the literature (Kirchner, 2002; Perez, 2002; Daoliang, 2006;
Huan-Huan, 2015).

Kirchner and Schadschneider studied the pedestrians evacuation process through two
contiguous doors using a cellular automaton model (Kirchner, 2002). The agents were able
to leave the room under increasing panic situations. The evacuation time was found to be
independent of the separation distance between doors. However, this conclusion was not
in complete agreement with the investigation acknowledged by Perez et al. (Perez, 2002).
These authors assert that the total number of pedestrians leaving the room per unit time
slows-down for separation distances (between doors) smaller than the distance necessary
to distinguish two independent groups of pedestrians, each one surrounding the nearest
door. They identified the slow-down with a disruptive interference effect due to pedestrians
crossing in each other’s path.

Although the above results were obtained for very narrow doors (i.e. single individual
width), further investigation showed that they also apply to doors allowing two simultane-
ous leaving pedestrians (Daoliang, 2006).

From the results reported by Huan-Huan et al. (Huan-Huan, 2015), the evacuation time
depends on the total width of the openings (if both doors have the same width). But, for a
fixed total width of the opening, it appears that the optimal location of the exits depends on
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the doors separation distance.

Our investigation focuses on symmetric configurations with equally sized doors. Alter-
natively to the above mentioned literature, we examine the evacuation dynamics by means
of the Social Force Model (SFM). An overview of this model can be found in Section 2.

In Section 3 we describe the specific settings for the evacuation processes. The mea-
surement conditions for the simulations can also be found there.

In Section 4 we examine the case of two separated doors. We explore the effect of
increasing the separation distance dg until the clogging areas close to each door become
almost independent.

Section 5 resumes the pedestrians behavioural patterns, and its consequences on the
evacuation performance, for the different door separation scenarios.

2.

2.1 The Social Force Model

The “social force model” (SFM) states that our tendency to avoid overcrowded environ-
ments acts as a repulsive force, changing our dynamics, although our desire to reach some
target point. Both effects (repulsion and desire) operate as social forces in pedestrian dy-
namics. Additionally, friction between people (and walls) is also a very important issue in
crowd dynamics. Thus, the three forces (repulsion, desire and friction) are present in the
equation of motion for any individual

mi
dv(i)

dt
(t) = f

(i)
d (t) +

∑
j

f (ij)s (t) +
∑
j

f (ij)g (t) (1)

wheremi is the mass of the pedestrian i, and vi is its corresponding velocity. The subscript
j represents all other pedestrians (excluding i) and the walls. fd, fs and fg are the desire
force, the social (repulsion) force and the friction (or granular) force, respectively. See
Refs. (Helbing, 2000; Parisi, 2005 and 2007;Frank 2011 and 2015) for details.

The expression for each kind of forces are as follows



f
(i)
d (t) = mi

v
(i)
d (t)− vi(t)

τ

f
(ij)
s = Ai e

(rij−dij)/Binij

f
(ij)
g = κ g(rij − dij) ∆vij · tij

(2)

where v
(i)
d is the desired velocity for pedestrian i, v(i) is the current velocity, and τ , Ai,

Bi and κ are fixed parameters. The magnitude rij = ri + rj is the sum of the pedestrian’s

JSM 2016 - Section on Physical and Engineering Sciences

1189



radius, while dij corresponds to the inter-pedestrian distance. Further details on each pa-
rameter can be found in Refs. (Parisi, 2005 and 2007;Frank 2011 and 2015).

2.2 Clustering structures

The time delays during an evacuation process are related to clustering people as explained
in Refs. (Parisi, 2005 and 2007). Groups of pedestrians can be defined as the set of in-
dividuals that for any member of the group (say, i) there exists at least another member
belonging to the same group (j) in contact with the former. That is,

i ∈ G ⇔ ∃j ∈ G/dij < ri + rj (3)

where G corresponds to any set of individuals. This kind of structure is called a human
cluster.

From all human clusters appearing during the evacuation process, those that are simul-
taneously in contact with the walls on both sides of the exit are the ones that possibly block
the way out. Thus, we are interested in the minimum number of contacting pedestrians
belonging to this blocking cluster that are able to link both sides of the exit. We call this
minimalistic group as a blocking structure. Any blocking structure is supposed to work as
a barrier for the pedestrians in behind.

2.3 The local pressure on the pedestrians

The pressure on a single pedestrian (say, i) is defined as (see Helbing, 2000)

Pi =
1

2πri

N−1∑
j=1

f (ij)s · nij (4)

where n(ij) corresponds to the unitary vector pointing from the individual j to the individ-

ual i. Likewise, f (ij)s are the forces acting on the individual i due to the other individuals.
Recall that these forces point from any individual j to the individual i, and thus, the prod-
ucts f (ij)s · nij are always positive.

3. Simulations

We simulated different evacuation processes for room sizes of 20 m × 20 m, 30 m × 30 m
and 40 m × 40 m. The rooms had one or two exit doors on the same wall, as shown in
Fig. 1. The doors were placed symmetrically from the mid position of the wall, in order to
avoid corner effects. Both doors had also the same width.

The evacuation process ran for 3000 s or until 80% of the occupants left the room, what-
ever occurred first. All positions and velocities were sampled at time intervals of 0.1 τ . No
re-entering mechanism was allowed.

The simulations ran from relaxed situations (vd < 2 m/s) to very stressing rushes
(vd = 6 m/s). We registered the individuals positions and velocities for each evacuation
process. Thus, we were able to compute the “social pressure” through out the process and
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Figure 1: Snapshot of an evacuation process from a 20 m × 20 m room, with two doors.
In red we can see a blocking structure around the upper door. The desired velocity was
vd = 4 m/s.

to trace the pedestrians behavioural pattern.

The simulations were supported by LAMMPS molecular dynamics simulator with par-
allel computing capabilities (Plimpton, 1995). The time integration algorithm followed the
velocity Verlet scheme with a time step of 10−4 s. It was assumed that all the individuals
had the same radius (ri = 0.3 m) and weight (mi = 70 kg). We ran 30 processes for each
panic situation, in order to get enough data for mean values computation.

4. Results

4.1 The single door vs. wider openings

Fig. 2 illustrates on how the evacuation performance improves as the opening becomes
wider. Fig. 2a corresponds to the single door (dw = 1.2 m), while Fig. 2b corresponds to
a wider opening (3dw = 3.6 m), resembling a multi-leaf opening. Both figures represent
the time evolution of a single pedestrian during an evacuation process. We can see the
(normalized) pressure acting on the pedestrian and his (her) corresponding velocity. The
pressure was computed as defined in Ed. (4).

The pedestrian represented in Fig. 2 increases his (her) velocity towards an asymptotic
value at the beginning of the processes. This value corresponds to the desired velocity
vd = 4 m/s. But close to t = 2 s, the pedestrian suddenly stops because of the clogging
around the exit. Clogging is also responsible for the pressure increase, as shown in both
Fig. 2a and Fig. 2b. This can be checked over by means of Eq. (2) because when the ve-
locity of the pedestrian vanishes, the desire force fd attains a maximum (in panic situations
only).
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(a) Opening of dw = 1.2 m width.
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(b) Opening of 3dw = 3.6 m width.

Figure 2: Normalized pressure and velocity on a single pedestrian during an evacuation
process. Data was recorded from the the initial position at x = 12.35 m and y = 8.45 m,
until the individual left the room (x > 20 m). The pedestrians desired velocity was vd =
4 m/s. Two situations are shown: (a) evacuation through a single door of width dw = 1.2 m.
(b) evacuation through an opening of 3dw = 3.6 m.

The maximum pressure values Pmax in Fig. 2a and Fig. 2b are 8550 N.m−1 and 6475
N.m−1, respectively. The corresponding mean pressure values (after the first 2 s) are 80%
and 55% of the respective maximum values. This means that the mean pressure value for
the 3dw situation is lower than the corresponding mean value for the dw situation. That
is, the wider opening seems to release pressure from time to time. Consequently, the stop-
and-go processes are somehow different for the single door with respect to the the wider
opening.

For a better understanding on how the pedestrians are (intermittently) released from
high pressures in the wide opening situation, we pictured the whole scene into a pressure
contour map and a mean stream path map for all the individuals. Fig. 3a shows the pressure
levels (Pi) for the clogging area. The warm colors are associated to high pressure values.
Thus, the warm regions define the places where the pedestrians slow down most of the
time. They are expected to get released only for short periods of time. On the contrary, the
regions represented in cold colors (low mean pressure) are those where the individuals are
able to get released for longer time periods.

Fig. 3b represents the mean stream lines during the evacuation process. It completes
the stop-and-go picture since it exhibits the released paths for leaving the room. Notice that
the stream lines pass through the low pressure regions. That is, it can be seen in Fig. 3b
that the stream lines gather along the middle of the clogging area, where “cold” pressure
colors can be found (cf. Fig. 3a). The “warm” pressure colors are placed on the sides of
this region.

The above data lets us conclude that the widening of the single door increases the
pedestrian’s flux. In the narrow situation (see Fig. 2a), the pedestrians experience a slow
down. The corresponding time delays are associated to blocking structures (Parisi, 2005;
Parisi, 2007) and causes the pressure acting on the nearby individuals to rise. However, as
the opening widens, the pressure pattern changes qualitatively (see Fig. 3a), allowing the
pedestrians in the middle of the clogging area to make a pathway to the exit. This pathway
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(a) Mean pressure contour lines (N.m−1 units).
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(b) Mean stream lines. The lines connect the normalized
velocity field (v/vmax). The arrows indicate the stream
direction.

Figure 3: Mean pressure and stream lines computed from 30 evacuation processes until
100 pedestrians left the room (20 m × 20 m size). Data was recorded on a square grid of
1 m × 1 m and then splined to get smooth curves. The red lines at x = 20 m represent
the walls on the right of the room. There is only one opening of 3dw = 3.6 m width (null
separation distance between doors of width 3dw/2). The pedestrian’s desired velocity was
vd = 4 m/s.

corresponds to the breaking of the blocking structures.

4.2 Separated doors

We will now analyze the case in which the evacuation process is through two doors, sym-
metrically placed on the same side of the room. We will explore the dependence of such a
process on the doors separations. We will assume that each door width is dw = 1.2 m.

Fig. 4 exhibits the mean evacuation time per pedestrian as a function of the separation
distance (i.e. gap or dg). We divided the evacuation time by the total number of pedestrians
for visualization reasons.

The results shown in Fig. 4 were not expected. The evacuation time settles to an asymp-
totic value for separation distances dg > 5 m. The mean evacuation time becomes almost
independent of the separation distances dg despite that the clogging areas around the doors
might still overlap.

Fig. 4 also shows that the slope not always changes sign at dg ' 1 m. Furthermore,
as the number of pedestrians is increased for dg > 1 m, the evacuation time slope raises
to positive values. The greater the number of pedestrians, the worst the evacuation time
(per individual). This appears to occur for dg > 1 m, regardless of the crowd size. That is,
according to Fig. 4, there exists a separation distance value dg ' 1 m where the evacuation
slope changes sharply to negative or positive values (for dg > 1 m). This phenomenon has
not been studied in the literature, to our knowledge.

We can resume the results in Fig. 4 in the following way: the evacuation time rises
when the doors separation increases from a wide opening (null separation distance) to the
distance dg ' 1 m. At this gap, the evacuation time slope changes notably, entering a much
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Figure 4: Mean evacuation time per total number of pedestrians that left the room (N ), as a
function of the doors separation distance. Mean values were computed from 30 evacuation
processes. Each door was dw = 1.2 m width for non-vanishing gaps. The null gap means
a single door of 2dw width. Three situations are shown: 4 corresponds to the 20 × 20 m
room when 160 pedestrians left the room, � corresponds to 30 × 30 m room when 530
pedestrians left the room, and© corresponds to 40×40 m room when 865 pedestrians left
the room. The desired velocity was vd = 4 m/s.

slowly varying regime towards an asymptotic value (for dg � 1 m). The former can be
identified as a regime for small values of dg, while the latter is valid for moderate to large
values of dg. The fact that a sharp change occurs at dg ' 1 m, no matter the crowd size,
suggests that both regimes are somehow different in nature. This moved us to explore the
two regimes separately.

4.2.1 The regime for dg < 1 m

We first examined the blocking probability for this regime, that is, the ratio between the
time that each door remains blocked (due to a blocking cluster) with respect to the total
evacuation time. Fig. 5 presents two kinds of blockings: the simultaneous blocking of both
doors, and the blocking of a single door (say, the one on the left). The former connects
the left most wall with the right most wall, but does not contact the separation wall in the
middle of the walls. The latter connects the walls on both sides of the selected door (say,
the one on the left).

According to Fig. 5, the single door blockings are not relevant until dg ' 1 m, while
the simultaneous blockings weaken as the gap (separation distance dg) increases.

After a close examination of the data and the evacuation animations, we realized that
the single door blockings hold if the gap is large enough to accommodate at least two
pedestrians. That is, any blocking structure enclosing a single door can hold for some time
if the pedestrians at the end of the structure (and in contact with the walls) do hardly leave
the structure. Two pedestrians are needed at the gap wall to ensure that both doors remain
blocked.
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Figure 5: Ratio between time steps including blocking structures and the total number of
time steps for 30 evacuation processes, as a function of the doors separation distance. The
room size was 20 × 20 m with 225 occupants. Each door was dw = 1.2 m width for non-
vanishing gaps. The null gap means a single door of 2dw width. The desired velocity was
vd = 4 m/s. © corresponds blocking structures connecting both the left side wall of the
left door with the right side wall of the right door (see text for details). � corresponds to
blocking structures connecting both sides of a single door (see text for details).

We conclude from the analysis of small gaps (dg < 1 m) that a door separation distance
roughly equal to two pedestrian widths is critical. This distance allows persistent single
door blockings. Small distances (close to the null separation) do not actually allow single
door blockings to hold for long time. Thus, the role of dg = 2rij (two pedestrian’s width)
is decisive to move the evacuation process from one regime to another.

4.2.2 The regime for dg > 1 m

Fig. 5 shows that the single door blockings (see Section 4.2.1) remains around 75% of the
total evacuation time for dg > 1 m (225 individuals in the room). We also computed this
magnitude for situations with increasing number of individuals (see Fig. 6). The probability
of single door blockings approaches unity as the crowd size increases. This means, accord-
ing to our definition of blocking probability, that the blocking time raises as the number
of individuals increases. The gap distance, however, does not play a significant role for
dg > 1 m.

There is a noticeable difference between the evacuation time shown in Fig. 4 and the
blocking probability exhibited in Fig. 6. Fig. 4 presents the evacuation time for three dif-
ferent room sizes and increasing number of pedestrians. The slope of the evacuation curve
is negative for the 20 × 20 m room, it vanishes for the 30 × 30 m situation and it becomes
slightly positive for the 40×40 m room (for dg > 1 m). Thus, as the number of pedestrians
increases, the slope of the evacuation time changes sign. However, this does not occur for
the blocking probability (see Fig. 6). The slope of the blocking probability remains always
negative for an increasing number of pedestrians (and desire velocities). Therefore, the
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Figure 6: Ratio between time steps including blocking structures and the total number of
time steps for 30 evacuation processes, as a function of the doors separation distance. The
only blocking structures considered were those connecting both sides of one single door
(see text for details). Each door was dw = 1.2 m width for non-vanishing gaps. The null
gap means a single door of 2dw width. Three scenarios are shown: © corresponds to the
room of size 20 × 20 m with 225 occupants and a desired velocity of vd = 4 m/s. �
corresponds to the room of size 20 × 20 m with 225 occupants and a desired velocity of
vd = 6 m/s. 4 corresponds to the room of size 40×40 m with 961 occupants and a desired
velocity of vd = 4 m/s.

changes in the slope observed in Fig. 4 cannot be explained by changes in the blocking
time (i.e blocking probability).

We checked the pressure patterns for the situations represented in Fig. 4 . We came to
the conclusion that since the evacuation slope in Fig. 4 changes with an increasing number
of individuals, the whole bulk should be involved in this phenomenon.

Notice that the pressure of the bulk can vary in two possible ways: if the desire force
of the individuals (i.e. anxiety levels) changes, or, if the crowd size changes. In the case
that the anxiety levels raise, the pedestrians push harder to get out, increasing the individ-
uals social force (social repulsion). If the number of pedestrians N is increased, the total
repulsion is also increased. An inspection of Eq. (4) shows that both situations increase the
individuals pressure Pi.

Fig. 4 exhibits the evacuation time for an increasing number of pedestrians. But, an
increase in the pedestrians anxiety level should resemble similar results, if the above rea-
sonings are true. Fig. 7 shows the evacuation time as a function of the separation distance
for two different desired velocities. As expected, the sharp change in the slope occurs
around dg = 2rij . Also the slope changes as the desired velocity (vd) is increased (i.e.
higher anxiety level). This confirms that the social pressure is responsible the slope be-
haviour shown in Fig. 4.

We conclude from the analysis of large gaps (dg > 1 m) that the evacuation time is
controlled by the social pressure in the bulk. The crowd size and the desired velocity vd
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Figure 7: Mean evacuation time for 225 pedestrians (room of 20×20 m size) as a function
of the doors separation distance. Mean values were computed from 30 evacuation processes
until 160 pedestrians left the room. Each door was dw = 1.2 m width for non-vanishing
gaps. The null gap means a single door of 2dw width. © corresponds to pedestrians with
desired velocity of vd = 4 m/s. � corresponds to pedestrians with desired velocity of
vd = 8 m/s.

affects the pressure acting on the pedestrians. For dg > 5 m in our simulations, the evacu-
ation time is very close to the corresponding asymptotic value, although the bulks around
each door are not completely independent. This means that the mixing of both crowds (that
is, the fact that the bulks are in contact) do not affect strongly the evacuation performance.

5. Conclusions

We examined in detail the evacuation of pedestrians for the situation where two contiguous
doors are available for leaving the room. Throughout Section 4 we presented results on the
evacuation performance under high anxiety levels and increasing number of pedestrians.
Both conditions exhibit the novel result that a worsening in the evacuation time exists as
the door separation distance dg increases from the null value to roughly the width of two
pedestrians. Special situations may enhance the evacuation performance for larger values
of dg.

The range from dg = 0 to dg � dw was inspected. In the interval 0 ≤ dg ≤ 2rij (two
pedestrian’s width), the evacuation performance worsened for all the explored situations,
as the separation distance between doors dg increased. But, from dg > 2rij the evacuation
time enhanced for relatively small crowds and moderate anxiety levels. We realized that
the sharp change in the evacuation behaviour at dg = 2rij corresponded to qualitative dif-
ferences in the pedestrian dynamics close to the exits.

After a detailed comparison of the dynamics for the single door situation and for two
doors very close to each other (that is, dg < 2rij), we concluded that the blocking structures
(i.e. blocking arcs) around the openings were released intermittently, allowing the pedes-

JSM 2016 - Section on Physical and Engineering Sciences

1197



trians to leave the room in a stop-and-go process. As the separation distance approached
2rij , the blocking arcs around each door, resembled the blocking situation of two single
doors. This changes only affected the local dynamics (close to the doors), while the crowd
remained gathered into a single clogging area.

For dg > 2rij the single door blocking structures become relevant even for large values
of dg (see Fig. 5). No further qualitative changes were observed locally around each door.
However, increasing the crowd size (N ) or the pedestrian’s anxiety level (vd) slowed down
the evacuation. Both magnitudes are linked to the pressure acting on the pedestrians, and
therefore, enhanced the “faster is slower” effects.
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