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Abstract

A different general philosophy, to be called Full Randomness (FR), for the analysis of random 
effects models is presented, involving a notion of reducing or preferably eliminating fixed effects, 
at least formally. For example, under FR applied to a repeated measures model, even the number 
of repetitions would be modeled as random. It is argued that in many applications such quantities 
really are random, and that recognizing this enables the construction of much richer, more probing 
analyses. Methodology for this approach will be developed here, and suggestions will be made for 
the broader use of the approach. It is argued that even in settings in which some factors are fixed by 
the experimental design, FR still “gives the right answers.” In addition, computational advantages 
to such methods will be shown.

1. Overview

As a simple starting example, consider the classic random effects model [5], with data Yij 
modeled as

Yij = µ+ αi + εij , i = 1, ..., r, j = 1, ..., ni (1)

for an unknown constant µ and with αi and εij modeled at random variables having mean
0 and variances σ2a and σ2e respectively. These random variables are assumed independent
across i and j, though assumptions will generally not be made here about their distributions.

The present paper advocates treating quantities such as the ni as random variables, using a
capital letter to emphasize this, Ni:

Yij = µ+ αi + εij , i = 1, ..., r, j = 1, ..., Ni (2)

As seen below, we will also treat regressor variables, if any, to be random.

In short, the goal of this paper is to encourage analysts to model all quantities as random,
even in most cases those fixed by experimental design. Advantages to this approach will
turn out to include:

• Much richer, more probing analyses can be devised.

• The derivation of estimators and their standard errors can be simplified.

• For some large problems, the computation for fully random models can be paral-
lelized, under a method known as Software Alchemy.
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2. Advantages of Treating the Ordinarily-Fixed Quantities As Random

Let’s begin with the Ni. Why model them as random?

As a motivating example of the topic here, consider recommnder systems [13], such those
that might be applied to the Movie Lens data [4], with ratings of many movies by many
users. If one views this ratings data in matrix form, as do Gao and Owen [3] and Perry [12],,
with rows and columns corresponding to users and movies, respectively, then the matrix is
sparse: In the notation of [3], zij = 0 for most i and j, where zij is an indicator variable
for whether user i has rated movie j. The authors in that paper consider the users to be a
random sample from the potential population of all users, and similarly for the movies, and
thus use a random effects model.

Details on that model will be presented shortly, but for now, let’s consider only the users,
not the movies. Then we might model the data using (1) or (2), with σ2a being a measure of
ratings variability from user to user.

Our FR approach might be used, for instance, if we suspect that users who rate a lot of
movies become jaded, thus tending to give lower ratings. In other words, there may be a
statistical relation between Ni and αi. If such a relation were estatblished, we may wish to
discount the ratings of users having large Ni.1

To investigate this, it is natural to model the Ni as having their own effects, just as we do
for the αi, say with a model

Yij = c1 + c2Ni + αi + εij , i = 1, r, j = 1, ..., Ni (3)

The quantities αi and εij are now assumed independent conditional on Ni, and their vari-
ances, σ2a and σ2e , are now conditional on Ni as well. The Ni are considered i.i.d. The
quantity αi now represents the overall rating tendency for user i, after the effect of count
of ratings has been removed.

The modeling of theNi as a variance component could be useful in many different applica-
tion fields. It is known, for example, that there is a negative correlation between family size
and household income [1]. If the observation units in a study are children within families,
it would be thus useful to incorporate the number of children Ni into the analysis. A study
of workers at various companies may be similar to this.

It is common to include linear-model terms into (1):

Yij = x′γ + αi + εij , i = 1, r, j = 1, ..., ni (4)

for a vector of known regressors x and unknown constant vector γ. (Our old term µ is now
folded in by inserting a 1 element in x.) But it may be helpful to consider the regressors
random also, so that our model becomes

Yij = X ′
iγ + αi + εij , i = 1, r, j = 1, ..., Ni (5)

where again the use of a capital letter indicates a random variable, with the Xi i.i.d.

1Actually, there is negative relation like this for the Movie Lens data, with the quantities
∑Ni

j=1 Yij/Ni

having a statistically significant but small relation to Ni
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In (4), we may even wish to reverse the usual prediction relationship, predicting one or
more of the regressors from the Yij . In the case of recommender systems, for example, the
analyst may wish to infer certain information about the user. Some values of the regressors
may be missing, for instance, and we may wish to impute them using the other variables.
This would be even more reason to treat the regressors as random.

3. Multicomponent Models

The approach can also be used in models with more than one variance component. For
instance, consider the model used by [3] with the movie data,

Yij = µ+ αi + βj + εij , i = 1, ..., r, j = 1, ..., c, zij = 1 (6)

Here r is the number of users and c is the number of movies.

Applying our method to this model, we treat the zij as random variables Zij ,

Yij = µ+ αi + βj + εij , i = 1, ..., r, j = 1, ..., c, Zij = 1 (7)

and define the row and column observation counts,

Ni =

c∑
j=1

Zij (8)

Mj =
r∑

i=1

Zij (9)

The Ni and Mj are then random as before.

We might also bring in random regressors, for both users and movies:

Yij = µ+ U ′
iγ + V ′

j η + αi + βj + εij , i = 1, ..., r, j = 1, ...,m, Zij = 1 (10)

4. Estimation Methodology

The Method of Moments (MM) is an attractive approach here, as it will enable estimation
of, for instance, σ2a in (2) without assuming a particular distribution family for the αi [2]
[9] [3].

Let’s take (2) as our example, using

Yi. =

Ni∑
j=1

Yij , i = 1, ..., r (11)

as our pivot quantity. It will be very helpful to define generic versions of the variables: Let
Y , N , α, ε and S have the same distributions as Yij , Ni, αi, εij and Yi..

JSM 2016 - Section on Statistical Computing

1182



Also, let εj , j = 1, 2, ... be i.i.d. with the distribution of ε. Then write

S = Nµ+Nα+ ε1 + ...+ εN (12)

Now apply the “Pythagorean Theorem for Expectations,”

V ar(U) = E [V ar(U |V )] + V ar [E(U |V )] (13)

to (12). First,

E [V ar(S | N)] = E
[
N2σ2a +Nσ2e

]
(14)

= (ν2 + ν21)σ
2
a + ν1σ

2
e (15)

where ν1 and ν2 are the population mean and variance of N .

Next,

V ar [E(S | N)] = µ2ν2 (16)

In other words,

V ar(S) = (ν2 + ν21)σ
2
a + ν1σ

2
e + µ2ν2 (17)

Also,

V ar(Y ) = σ2a + σ2e (18)

We have 5 unknowns to estimate — σ2a, σ23 , µ, ν1 and ν2 — and thus need 5 equations
for MM. (17) and (18) provide the right-hand sides of 2 equations, with the left-hand sides
being the sample variances of the Yi. and the Yij , respectively. The other 3 equations come
quite simply: We estimate the νm by the sample mean and variance of N , and estimate µ
by Y../M , where M = N1 + ...+Nr.

The estimation of more advanced models can be approached similarly, i.e. deriving expres-
sions for variances and means, typically with the aid of the “Pythagorean Theorem.”

In the regression setting (5), since we have

EYij = X ′
iγ (19)

we can estimate γ separately using standard linear model methods, and proceed as before.

Note, though, that with the FR approach, MM equations may be nonlinear. For example,
consider (3). The details will not be presented here, but the key points are as follows: The
term Nµ in (12) now becomes

N(c1 + c2N) = c1N + c2N
2 (20)
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Taking the variance of this quantity then brings in the third and fourth moments of N , and
produces product terms such as c1c2. The former issue is no problem, as the moments are
readily estimated from theNi, but the latter issue means we are now dealing with nonlinear
equations in the parameters to be estimated. Computation then must be done iteratively.

It is convenient to not write explicit expressions for the variance of (20), but simply write

V ar(c1N + c2N
2) (21)

At each iteration, we take our current estimates of the ck, and compute the sample variance
of the quantities

c1Ni + c2N
2
i (22)

as our estimate of (21).

5. What If the Quantities Are Not Random?

In many applications of random effects models, quantities such as ni and xi above are
fixed in the experimental design. However, one can show that typically the same estimators
emerge, whether one assumes a random Ni or fixed ni. The same is true for regressors.

As a quick example, consider (1). Instead of (17), we have

V ar(Yi.) = n2iσ
2
a + niσ

2
e (23)

Also, EYi. = niµ.

Say we set up MM by equating the sample average of the Y 2
i. to its expectation. The latter

would be

1

r

r∑
i=1

[V ar(Yi.) + (EYi.)
2] =

1

r

r∑
i=1

[n2iσ
2
a + niσ

2
e + (niµ)

2] (24)

Even without algebraic simplification, it’s clear that the result will be essentially the same
as that obtained for the random Ni model. For instance, the term

1

r

r∑
i=1

n2iσ
2
a (25)

corresponds to the term

(ν2 + ν21)σ
2
a (26)

in (17). In essence, the above derivation is implicitly treating the (constant) row counts as
random, having a uniform distribution on {n1, ..., nr}.

The significance of this is that one can enjoy the benefits of the FR approach (Sections 6
and 7) even if the quantities truly are fixed.
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6. Advantager opf FR: Simplified Derivation of MM Equations

Equations in random effects analysis can become quite complex. Note for instance the
conditions needed merely to establish consistency in [6].

This complexity certainly includes the settings of MM estimation. For instance, even in the
simplest model, (17) seems rather complicated in its form here, but is even more sprawling
if the ni are taken as fixed. We argue here that our FR method can greatly ease the derivation
of the MM equations.

This is especially true in light of our use of generic variables, as in (12), which can reduce
large amounts of equation clutter. Consider for example the model (6). Suppose we need
to find the covariance between Yk. and Ym.. Once again, the details will not be shown here,
but a glance at (12) shows that when we will apply the covariance form of the “Pythagorean
Theorem,” the key quantity will be distributed as

β1 + ...+ βT (27)

where T is the number of columns that rows k and m have in common. The distribution
of T can be estimated empirically, as we did for N above. The point is that all this can be
done without any explcit writing of the Zij . The difference in complexity of expressions
between the FR and fixed-zij approaches will be quite substantial.

7. Computational Benefits

In random-effects modeling applications involving very large data sets, a major concern is
computation time and space. As noted in [3], the REML method of estimation in a two-
component model, for example, requires O(d3) time and memory space, where d would
be either r or c in the movie ratings example above. Indeed, [11] reported that “SAS
PROC MIXED ran out of memory when we attempted to fit a model with random smoking
effects.”

A method that I call Software Alchemy [8] can help remedy both time and memory prob-
lems in contexts of i.i.d. data,, using a very simple idea. Say we are estimating a popula-
tion value θ, typically vector-valued. One breaks the data into g approximately equal-size
chunks, finds θ̂ on each one, and then takes the one’s overall estimate to be

θ =
1

g

g∑
i=1

θ̂i (28)

This changes the original problem into an “embarrassingly parallel” computational prob-
lem, i.e. easy to compute in parallel, say on g machines in a cluster or on g cores in a
multicore machine.

This speeds up computation by a factor of g, and since each θ̂ requires only 1/g of the
memory space requirement, the method may remedy memory limitation problems in cluster
settings. In fact, the same is true even on a single-core machine, since one would still need
only 1/g of the memory space requirement at each iteratioo.

The procedure also gives us a mechanism for empirical computation of standard errors.
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It is shown in [8] that if θ̂ is asymptotically normal, then the same will be true for θ, and
moreover, the latter will have the same asymptotic covariance matrix as the former. Thus
no statistical efficiency is lost.

The point then is that this can be applied profitably to random-effects models — if the i.i.d.
requirement of Software Alchemy is satisfied.2 By making quantities like the Ni random,
this can be done in many cases.

Consider the model (2), for instance. A set of key quantities in the estimation procedure
consists of the Yi.. By modeling the Ni as i.i.d., the same will be true for the Yi., and
Software Alchemy can used.

Now consider (7), a more subtle setting. Let W1, W2... denote the Yij , arranged in the
order in which the ratings are submitted, and write

Wm = µ+ αIm + βJm + εm,m = 1, 2, ... (29)

where the Im and Jm are now drawn in an i.i.d. manner from distributions on 1,...,r and
1,...,c. Assuming that submissions come in to the rating site in an i.i.d. manner, this struc-
ture is reasonable. We can then divide theWm into chunks, estimate µ, σ2a and σ2e as before
on each chunk, then average over chunks.

8. Relation to Mixing Distributions

Note that random effects models can be viewed in terms of mixing distributions, with the
advantage, for example, that the entire distribution of α might be estimated, rather than
just its variance [7] [10]. This might be used to develop prediction intervals, say for a
continuous Y .

9. Conclusions

This paper has presented Full Randomness, a proposed framework for the enhanced analy-
sis of random effects. FR enables the formation of richer models of the phenomena under
study, simplifies derivations of complex models, and can facilitate parallel speedup of com-
putation. Many further directions in methodology could be explored under this framework,
with applications to a number of specific fields, such as the aforementioned collaborative
filtering.
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