
Statistical Modeling of Subject and Proxy Observations Using Weighted GEE

Mina Hosseini1∗, Nagaraj K. Neerchal1 & Ann L. Gruber-Baldini2

1Department of Mathematics and Statistics, University of Maryland, Baltimore County,
Baltimore, MD, 21250, U.S.A.

2Division of Gerontology, Department of Epidemiology & Public Health,
University of Maryland School of Medicine,

655 W. Baltimore Street, Baltimore, MD, 21201, U.S.A.

Abstract
In epidemiological studies when the patients become unable to provide responses by themselves due to
advancing severity of their conditions, proxy responses by a relative or a caregiver ”proxy” are used.
The resulting dataset contains a monotonically decreasing missing pattern for subject observations and
a monotonically increasing missing pattern for proxy observations. Some statistical models are being
investigated that can analyze subject and proxy observations together so that relevant parameters and their
standard errors can be estimated in a single framework. The method of weighted Generalized Estimating
Equations (GEE), which is commonly used for handling missing data, is applied to the combined proxy
and subject dataset.
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1. Introduction

Monotone (decreasing) missing data patterns, which are also called dropout(s), occur in
epidemiological datasets when the patients become unable to provide responses by themselves
due to advancing severity of their conditions. It is common to use proxy responses by a relative
or a caregiver in these cases. Proxy observations are substituted for missing subject observations
so that the usual statistical methods, which require complete data, can be applied. However,
the direct substitution of proxy observations may cause new problems such as biased parameter
estimates and incorrect standard errors since as noted by Snow et al. (2005) the direct substitution
is like assuming a perfect correlation between subject and proxy observations.

The main hurdle is to postulate a model to describe the joint probability distribution of
subject and proxy data. We follow the approaches given in Shardell et al. (2010) and Huang et
al. (2005), and propose a methodology of handling subject and proxy data in a single framewrok
using the weighted generalized estimating equations (WGEE) method introduced by Robins et
al. (1995) for longitudinal data. Performance of the various approaches is investigated via a
simulation study.

This paper is structured as follows: In Section 2, missing data and the importance of proxy
for older adults in gerontological studies is described. In addition, the structure of subject-proxy
dataset that we are using in this paper is explained. In Section 3, a framework for modeling
subject and proxy data is illustrated. Section 4 focuses on describing weighted GEE for subject
and proxy data. In Section 5, the two WGEE methods for subject and proxy are implemented
by using the simulation data.

∗Email: mina.hoss.08@gmail.com.

JSM 2016 - Section on Statistics in Epidemiology

1101

mina.hoss.08@gmail.com


2. Proxy Data in Aging Studies

The monotone dropout pattern of missing observations seems to be frequently encountered
in aging studies. As it is described by Gruber-Baldini et al. (2012), sometimes due to physical,
cognitive, or other psychological impairment, study participants are unable to provide responses
for themselves. Once a subject becomes unable to provide responses, due to advancing age, the
condition may never improve. Thus a dropout pattern of missing data is created while the subject
is still in the study. Thus, external raters are used to gather information about the participants.
The external rater, whose report is substituted for the subject, is called a proxy. A proxy is
someone who knows the participant, and can provide information about them. Sometimes, proxy
observation can support the information provided by the study participant. It is also possible that
the proxy can give more useful information to help the clinicians in understanding the disease.

According to Snow et al. (2005), in some cases, patient and proxy observations are regarded
perfectly correlated, and as a result, the two types of observations are analyzed together. The
assumption of perfect correlation between proxy and subject observations may not hold in gen-
eral since the patient and their corresponding proxy are not expected to give the same report due
to different characteristics and questions. For example, in a study of older adults by Epstein et
al. (1989), it was shown that there was a good agreement between patient and proxy on some
factors; however, it was not true about all measures provided by proxies. In general, proxies
may over- or under-report and cause biased estimates. As a part of the Baltimore hip fracture
studies, Magaziner et al. (1997) compared proxy responses to the subject responses in 5 areas
of functioning at one time point. They pointed out that the agreement between proxy and sub-
ject varies depending on different functions. They noted that where the patient’s emotion was
measured, the patient-proxy agreement was different since proxy may not necessarily be aware
of the patient’s emotion. However, it was noted by Gruber-Baldini et al. (2012) that there are,
undoubtedly, some benefits in having proxy observations. Using proxy observations may result
in the inclusion of those study subjects who may be illustrative of a selected group. The most
important task is to determine how to include proxy observations in the statistical analysis of the
study.

As discussed in the introduction, the data structure consists of subjects and proxies involved
in a longitudinal study. We will assume that when a subject becomes unable to provide re-
sponses on their own, proxy observations are collected. In this stage of our initial work we will
assume that either a response from the subject or a proxy is available for all time points. Table 1
schematically shows the data assuming that the longitudinal study consists of 4 time points.

Table 1: Subject-Proxy Data

Subject Time
ID 1 2 3 4
1 S S P P
2 S P P P
...

...
...

...
...

n S S S S

The above dataset can be split into 2 parts: One containing only subject responses and
the other one containing only proxy responses. Missing values are created when the proxy
observations are dropped to form the subject dataset and similarly missing values are created
when the subject observations are dropped to form the proxy dataset. Tables 2 and 3 show the
subject and proxy datasets. The two datasets exhibit missing patterns which are complementary.
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Table 2: Subject Data

Subject Time
ID 1 2 3 4
1 S S * *
2 S * * *
...

...
...

...
...

n S S S S

Table 3: Proxy Data

Subject Time
ID 1 2 3 4
1 * * P P
2 * P P P
...

...
...

...
...

n * * * *

Note that the proxy dataset will not have any observations corresponding to subjects who
had completed the study without having a need for proxy observations. Likewise, the subject
dataset will not have any observations corresponding to subjects whose proxy observations were
used starting the first time point. It is now clear from the data structure depicted above that the
subject dataset has missing data with a pattern of missing known as dropout. The proxy dataset
also has the same structure but in its mirror-image. In this paper, we analyze these datasets
separately using the methods used for handling monotone missing (dropout) data. We will also
provide a methodology which incorporates both subject and proxy data.

3. A Framework for Modeling Subject and Proxy Data

Here we briefly review a framework provided by Shardell et al. (2010) which considered
subject and proxy data simultaneously. This framework will be used in formulating our approach
as well as in generating data for our simulation studies. Let Yi(s) and Yi(p) denote the T ×
1 vectors of subject and proxy observations, respectively, for the ith subject (i = 1,2, . . . ,n).
Also, let Ri(s) and Ri(p) be the T × 1 indicator vectors such that Rit(s) = 1 when the ith subject
has provided a response (subject data) at time t, and Rit(s) = 0 when the subject observation is
missing, and instead the proxy observation is available. Let Rit(p) = 1−Rit(s). Then Yit(obs) can
be denoted as

Yit(obs) = Yit(s)Rit(s)+Yit(p)(1−Rit(s)) (1)

or
Yit(obs) = Yit(s)Rit(s)+Yit(p)Rit(p).

For notational simplicity, the model will be stated assuming that there is only one time point
per subject. Thus, the subscript ”it” is replaced by ”i” in equation (1). The notations easily
generalize to the case of multiple time points per subject. The approach is first to specify a
fairly general joint distribution for Yi(obs) given the value of Ri(s) and then to consider a practi-
cally special case. To start, it is assumed that subject and proxy responses are jointly normally
distributed. Then the following is assumed for Yi = (Yi(s),Yi(p))

′

Yi | Ri(s) = r,Xi ∼ N2

Xiβ
(r)

Xiθ
(r)

 ,

σ
(r)
(ss) σ

(r)
(sp)

σ
(r)
(sp) σ

(r)
(pp)

 (2)

where Xi is a 1×q vector of covariates, Ri(s)’s are such that

Ri(s) | Xi ∼ Ber(πs) independent, (3)
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and θ and β are q×1 vectors of parameters. Then, equations (2) and (3) imply that

Yi(s) | Ri(s) = r,Xi ∼ N(Xiβ
(r),σ

(r)
(ss))

Yi(p) | Ri(s) = r,Xi ∼ N(Xiθ
(r),σ

(r)
(pp)). (4)

The probability distribution of Yi(s) | Xi can then be written as

f (Yi(s) | Xi) = ∑
r

P(Ri(s) = r). f (Yi(s) | Ri(s) = r,Xi)

= π(s). f (Yi(s) | Ri(s) = 1,Xi)+(1−π(s)). f (Yi(s) | Ri(s) = 0,Xi). (5)

In Shardell et al. (2010), it was further assumed that σ
(1)
(ss) =σ

(0)
(ss), σ

(1)
(sp) =σ

(0)
(sp), and σ

(1)
(pp) =σ

(0)
(pp).

They discussed three different classes of models applicable to different scenarios. In this paper,
we consider one of these classes, referred to by them as ”class of subject-adjusted proxy pattern-
mixture models”. This model is stated later in section 5.

4. Weighted GEE for Subject and Proxy Data

The method of weighted generalized estimating equations (WGEE) also known as inverse
probability weighting (IPW) was proposed by Robins et al. (1995). This method is based on
assigning weights to the observed data in datasets with missing observations. According to
Fitzmaurice et al. (2011), inverse probability weighting is mostly effective when the multivariate
distribution of observations is not known and the likelihood based analysis is not possible. This
method is already used to study subject responses.

WGEE is an implementation of the generalized estimating equations (GEE) with weights.
The weights are inversely proportional to the probability that a subject response is available. The
WGEE estimates are obtained by solving the following equations:

U(β ,α) =
n

∑
i=1

D′iV
−1
i ∆i{Yi−µi(β )}= 0, (6)

where ∆i is a T ×T diagonal matrix of weights as follows:

∆i =


πi1(α)−1Ri1 0 . . . . . . 0

0 πi2(α)−1Ri2 . . . . . . 0
...

... πi3(α)−1Ri3
...

...
...

. . .
...

0 0 . . . . . . πiT (α)−1RiT

 . (7)

In equation (7), Rit is the tth element (t= 1,2, . . . ,T ) of Ri, the T×1 indicator vector representing
the missing pattern for the ith subject (i = 1,2, . . . ,n), and πit is the probability of subject i being
observed at time t where

πit = P(Rit = 1 | Xi,Yi), (8)

and under the missing at random (MAR) assumption (See Rubin (1976) and Fitzmaurice et al.
(2011)),

πit = P(Rit = 1 | Xi,Yi1, . . . ,Yit−1) = λit . λit−1 . λit−2 . . . . . λi2 . 1, (9)

JSM 2016 - Section on Statistics in Epidemiology

1104



where
λit = P(Rit = 1 | Rit−1 = 1,Xi,Yi1, . . . ,Yit−1). (10)

According to Fitzmaurice et al. (2011), a correct model to estimate πit plays a very important
role in finding a valid estimate for β . To find this correct model, a logit model is used where the
response variable is Rit .

Logit(λit) = Z′itα, (11)

where Zit is a q× 1 vector of past observations and some of (or all) covariates. The estimated
weights are given by

ŵit = π̂
−1
it , (12)

where
π̂it = λit(α̂) . . . . . λi2(α̂).1.

Based on the theorem by Robins et al. (1995),
√

n(β̂ −β0) is asymptotically normal with mean
0, and the positive definite estimator of variance as

Γ̂
−1C̃Γ̂

−1′, (13)

where β0 is the actual solution to the equation in (6) and Γ̂, C̃, and Ai are given by

Γ̂ = n−
1
2 .

∂U(β̂ , α̂)

∂β ′
= n−1.

n

∑
i=1

(
∂ µi(β̂ )

∂β ′
)′.V−1

i .∆i(α̂).(
∂ µi(β̂ )

∂β ′
) (14)

C̃ = n−1
∑

i
AiA′i (15)

Ai =

Ui(β̂ , α̂)−

(
∑

i
Ui(β̂ , α̂)S′i(α̂)

)(
∑

i
Si(α̂)S′i(α̂)

)−1

Si(α̂)

 , (16)

and also
S(α) = ∑

i
Si(α) = ∑

i
∑

t
Rit−1.Zit .(Rit −λit) (17)

for i = 1,2 . . . ,n and t = 2,3 . . . ,T .

Since
L(α) = ∏

i
Li(α) = ∏

i
∏

t
[λit(α)Rit .(1−λit(α))1−Rit )]Rit−1 , (18)

Si(α) in equation (17) is obtained as follows:

Si(α) =

{
∂Log(Li(α))

∂α

}
. (19)

When α is fixed,
(

∑iUi(β̂ , α̂)S′i(α̂)
)
(∑i Si(α̂)S′i(α̂))−1 Si(α̂) is equal to zero since Si(α) = 0.

In this case the covariance is the simple sandwich estimator of covariance. However, in reality,
α is estimated and covariance of β̂ is adjusted for the estimated α .

There are two approaches to implement the WGEE method described above. The first ap-
proach is to explicitly code the two steps involved (a 2-step code). The first step is to use a
PROC GENMOD run to obtain predicted values of the λit’s. The predicted values are then used
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to obtain weights, wit’s. The second step is another PROC GENMOD run with a WEIGHT state-
ment to estimate β and its covariance, given in equations (6) and (13) respectively. In the second
approach, PROC GEE in SAS can be used, where the mentioned two steps are integrated. See
Lin & Rodriguez (2014) for more details. While this approach is convenient, PROC GEE does
not provide access to all intermediate results and datasets created internally. In particular, the
procedure does not provide access to the values of the weights used in producing the WGEE. We
coded the two steps explicitly and confirmed that the two approaches provide identical estimates
for the same datasets. Furthermore, our code can also be conveniently translated to other pack-
ages such as R (or STATA) because the individual steps rely only on widely available generalized
model estimation methods.

As noted in Table 1, subject dataset already has a dropout missing pattern. Thus, implemen-
tation of WGEE to the subject dataset is straight forward. On the other hand, as shown in Figure
1, the data structure of the proxy dataset is the mirror-image of the subject dataset. Therefore, a
suitable restructuring of this dataset is necessary before obtaining the weights given in equation
(12). The pattern of missingness for the proxy dataset is monotone increasing. In addition, one
of the assumptions in applying WGEE to subject observations is the availability of observations
at the first time point. This assumption is not satisfied when WGEE for proxy observations is of
interest.

Figure 1: Subject-Proxy Data

In order to change the non-dropout pattern of the proxy portion of the data, the order of
the observations is reversed so that WGEE method can be applied. This idea is illustarted in
Figure 1: the table on the right shows a mirror-image of the data presented on the left. Ac-
cording to Robins et al. (1995), WGEE is applied under the assumption of MAR. Under MAR,
the probability of being observed at time t depends on all available observed responses and the
covariates. Thus, MAR assumption is also applicable to the proxy portion of the data, and the
WGEE method can be used to analyze flipped proxy observations.

To implement the WGEE for proxy data, we use the 2-step code. In the first step of the code,
the probability that subject i is not observed at time t ′ = T − t +1 (t ′ = 1,2, . . . ,T ) is estimated
using a logit model with Rit ′(p) = 1−Rit ′(s) as a response and the observed proxy responses at
the previous time points (which are future responses in the original dataset) as covariates. Then
the estimated probabilities are used to calculate weights. Finally, weights are incorporated into
equation (20) in the second step of the code, similarly to what is done in WGEE for subject data.
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θ (0) in equation (20) is the parameter when proxy observations are available,

g(E(Y(p) | X)) = Xθ
(0). (20)

5. A WGEE Small Simulation Study

To compare parameter estimates obtained using WGEE for subject and the proposed WGEE
for proxy datasets, 1000 studies per parameter combination were simulated. In each study, two
sets of longitudinal data were generated based on the ”class of subject-adjusted proxy pattern-
mixture model” by Shardell et al. (2010). The model is stated here for convenient reference.

In this model, β (r) = (θ (r)−ψ)/γ for r ∈ {0,1}, or in other words θ (r) = γβ (r)+ψ . Using
this equality along with the variance covariance assumptions, σ

(0)
(ss) = σ

(1)
(ss), σ

(1)
(pp) = σ

(0)
(pp), and

σ
(1)
(sp) = σ

(0)
(sp), the bivariate distribution of Yi(s) and Yi(p) conditional on Ri(s) and Xi is as follows:

((Yi(s),Yi(p))
′ | Ri(s) = 1,Xi) ∼ N2

 Xiβ
(1)

Xi(γβ (1)+ψ)

 ,

σ
(1)
(ss) σ

(0)
(sp)

σ
(0)
(sp) σ

(0)
(pp)



((Yi(s),Yi(p))
′ | Ri(s) = 0,Xi) ∼ N2


 Xiβ

(0)

Xi(γβ (0)+ψ))

 ,

σ
(1)
(ss) σ

(0)
(sp)

σ
(0)
(sp) σ

(0)
(pp)


 .

In this model, we have that σ
(0)
(ss) = σ

(1)
(ss), and σ

(1)
(sp) = σ

(0)
(sp), and that the mean of Yi(p) conditional

on Yi(s) and Xi is independent from Ri(s). Therefore, it follows that, σ
(1)
(sp)/σ

(1)
(ss) = σ

(0)
(sp)/σ

(0)
(ss) = γ .

As a result

E(Yi(p) | Yi(s),Ri(s) = 0,Xi) = E(Yi(p) | Yi(s),Ri(s) = 1,Xi)

Xθ
(0)+ γ

(
Yi(s)−Xβ

(0)
)

= Xθ
(1)+ γ

(
Yi(s)−Xβ

(1)
)

θ
(0)− γβ

(0) = θ
(1)− γβ

(1),

where it is assumed that
ψ = θ

(0)− γβ
(0) = θ

(1)− γβ
(1). (21)

Two drug dose levels and 4 time points were considered. The number of subjects were
chosen to be 100 in each of the 2 drug dose levels. Conditional on Ri(s) = 1 and Xi for all i’s
(i = 1,2, . . . ,200×4), (Yi(s),Yi(p))

′ was generated from a bivariate normal distribution with mean
(Xiβ

(1),Xiθ
(1))′. Two different β (1)’s were considered, (−1.5,0.1061,0.54)′ and (1.5,0.9,−0.54)′.

ψ was assumed to be (0.21,0.21,0.21)′. Also, two different covariance matrices were con-
sidered. The elements of the covariance matrix in one of these matrices were assumed to be
σ
(1)
(ss) = 1, σ

(1)
(pp) = 1.5, and σ

(0)
(sp) = 0.85, and the elements of the second one were assumed to be

σ
(1)
(ss) = 0.2, σ

(1)
(pp) = 0.9, and σ

(0)
(sp) = 0.21. Similarly, conditional on Ri(s) = 0 and Xi, the second

set of (Yi(s),Yi(p))
′ was generated from a bivariate normal distribution with mean (Xiβ

(0),Xiθ
(0))′,

where β (0) and θ (0) were chosen to be equal to β (1) and θ (1) respectively, and the covariance
matrix the same as what was chosen for the first set of the points. In generating both sets the
correlation between subject and proxy was assumed to be 0.7 and 0.5 when using the first and
the second covariance matrices respectively which were effective in choosing the value of σ

(0)
(sp).
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The dropout pattern R(s) was generated separately to specify if Yi(obs) (i = 1,2, . . . ,n), at each
time point, is a subject observation or a proxy observation. The data generating process used
for the dropout pattern is consistent with MAR assumption. If Ri(s) = 1 then Yi(s) from the first
simulated set was picked, but if Ri(s) = 0, Yi(p) from the second simulated set was picked. Yi(s)’s
and Yi(p)’s were saved into two different datasets as subject and proxy datasets.

Using simulation data, WGEE for subject and proxy data was implemented. At first, the
weights were estimated for both subject and proxy observations. The estimated weights, in
separate analyses of subject and proxy data, were incorporated into the models to estimate the
subject and proxy parameters. Tables 4 and 6 show the results for different initial θ (0)’s and
β (1)’s. On the top portion of both tables the results of analyzing subject observations is shown
where they were analyzed separately from the proxy observations, using the WGEE method.
The mean bias was calculated by subtracting the true subject parameter (when subject observa-
tions were available), β (1), from the mean estimate of subject parameter. The middle parts of
Tables 4 and 6 similarly show the results of analyzing proxy observations in separate analyses
where the mean bias was calculated by subtracting the true proxy parameter (when subject ob-
servations are not available), θ (0), from the mean estimate of proxy parameter. The bottom parts
of Tables 4 and 6 show the results of analyzing data when proxy observations were substituted
for missing subject observations and the GEE method was used while the missing mechanism
was assumed to be MCAR. The mean bias was calculated by subtracting the true subject param-
eter (when proxy observations were substituted for missing subject observations), β (1), from the
mean estimate of subject/proxy parameter.

Table 4: Comparing Results from Subject and Proxy Data Separately to
Current GEE Approach

β
(1)
True = (0.1061 , 0.54)′, θ

(0)
True = (0.1061γ +0.21 , 0.54γ +0.21)′

Proxy(%) (σss,σsp = σps,σpp) ρsp γ Parm Mean Est. Mean Bias MCSE Mean SE
Subject Parameters (Only Subject Data, WGEE Analysis)

10.40 (1, 0.85, 1.5) 0.7 0.85 Dose 0.1052 -0.0009 0.0762 0.0747
Time 0.5413 0.0013 0.0341 0.0336

9.81 (0.2, 0.21, 0.9) 0.5 1.05 Dose 0.1057 -0.0004 0.0340 0.0332
Time 0.5406 0.0006 0.0152 0.0150

Proxy Parameters (Only Proxy Data, WGEE Analysis)
10.40 (1, 0.85, 1.5) 0.7 0.85 Dose 0.3094 0.0093 0.3436 0.3043

Time 0.6581 -0.0109 0.2154 0.1931
9.81 (0.2, 0.21, 0.9) 0.5 1.05 Dose 0.3298 0.0084 0.2736 0.2416

Time 0.7687 -0.0084 0.1710 0.1537
Subject/Proxy Parameters (Combined Subject-Proxy Data, GEE Analysis)

10.40 (1, 0.85, 1.5) 0.7 0.85 Dose 0.1301 0.0240 0.0826 0.0803
Time 0.6167 0.0767 0.0333 0.0336

9.81 (0.2, 0.21, 0.9) 0.5 1.05 Dose 0.1316 0.0255 0.0496 0.0483
Time 0.6221 0.0821 0.0195 0.0198

Directly substituting proxy observations for the missing observations and using the GEE
method results in biased estimates. Instead of applying the GEE method to the combined data
directly, we defined indicator variables that control the use of covariates for subject and proxy
depending on the response that is from either of subject or proxy. Inclusion of dummy variables
allows us to obtain separate set of parameter estimates for subject and proxy observations. Thus,
our approach essentially amounts to including interaction between the dose and time effects and
the factor of whether an observation is a subject response or a proxy response. In addition, the
WGEE method was used to analyze data. The estimated weights were the ones from separate
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Table 5: Comparing Results from Combined Subject and Proxy Data to
Current GEE Approach

β
(1)
True = (0.1061 , 0.54)′, θ

(0)
True = (0.1061γ +0.21 , 0.54γ +0.21)′

Proxy(%) (σss,σsp = σps,σpp) ρsp γ Parm Mean Est. Mean Bias MCSE Mean SE
Subject Parameters (Combined Subject-Proxy Data, WGEE Analysis)

10.40 (1, 0.85, 1.5) 0.7 0.85 Dose 0.1054 -0.0007 0.0762 0.0747
Time 0.5413 0.0013 0.0341 0.0337

9.81 (0.2, 0.21, 0.9) 0.5 1.05 Dose 0.1058 -0.0003 0.0341 0.0333
Time 0.5406 0.0006 0.0152 0.0150

Proxy Parameters (Combined Subject-Proxy Data, WGEE Analysis)
10.40 (1, 0.85, 1.5) 0.7 0.85 Dose 0.3123 0.0121 0.3397 0.3049

Time 0.6565 -0.0125 0.2137 0.1950
9.81 (0.2, 0.21, 0.9) 0.5 1.05 Dose 0.3303 0.0089 0.2715 0.2423

Time 0.7676 -0.0094 0.1695 0.1551
Subject/Proxy Parameters (Combined Subject-Proxy Data, GEE Analysis)

10.40 (1, 0.85, 1.5) 0.7 0.85 Dose 0.1301 0.0240 0.0825 0.0803
Time 0.6167 0.0767 0.0333 0.0336

9.81 (0.2, 0.21, 0.9) 0.5 1.05 Dose 0.1316 0.0255 0.0496 0.0483
Time 0.6221 0.0821 0.0195 0.0198

analyses of subject and proxy data. Using this method, β (1)’s and θ (0)’s were estimated. The
top and the middle parts of Tables 5 and 7 show the results. For the convenience, the results of
simple GEE for the combined data is presented in the bottom of Tables 5 and 7 one more time.
The results in Tables 5 and 7 show that the mean bias for both subject and proxy parameters
is very small compared to the bias of parameters from GEE analysis. It is also important that
all available data is used in WGEE analysis for combined subject and proxy observations. The
standard errors from WGEE analysis; however, are large for proxy parameters.

Table 6: Comparing Results from Subject and Proxy Data Separately to
Current GEE Approach

β
(1)
True = (0.9 , −0.54)′, θ

(0)
True = (0.9γ +0.21 , −0.54γ +0.21)′

Proxy(%) (σss,σsp = σps,σpp) ρsp γ Parm Mean Est. Mean Bias MCSE Mean SE
Subject Parameters (Only Subject Data, WGEE Analysis)

19.11 (1, 0.85, 1.5) 0.7 0.85 Dose 0.8984 -0.0016 0.0819 0.0797
Time -0.5388 0.0012 0.0363 0.0356

18.29 (0.2, 0.21, 0.9) 0.5 1.05 Dose 0.8992 -0.0009 0.0358 0.0353
Time -0.5394 0.0006 0.0161 0.0157

Proxy Parameters (Only Proxy Data, WGEE Analysis)
19.11 (1, 0.85, 1.5) 0.7 0.85 Dose 0.9806 0.0056 0.2284 0.2180

Time -0.2546 -0.0056 0.1416 0.1347
18.29 (0.2, 0.21, 0.9) 0.5 1.05 Dose 1.1649 0.0099 0.1787 0.1718

Time -0.3615 -0.0045 0.1114 0.1069
Subject/Proxy Parameters (Combined Subject-Proxy Data, GEE Analysis)

19.11 (1, 0.85, 1.5) 0.7 0.85 Dose 0.9702 0.0703 0.0890 0.0865
Time -0.4032 0.1369 0.0344 0.0346

18.29 (0.2, 0.21, 0.9) 0.5 1.05 Dose 1.0065 0.1065 0.0570 0.0580
Time -0.4126 0.1274 0.0216 0.0217

JSM 2016 - Section on Statistics in Epidemiology

1109



Table 7: Comparing Results from Combined Subject and Proxy Data to
Current GEE Approach

β
(1)
True = (0.9 , −0.54)′, θ

(0)
True = (0.9γ +0.21 , −0.54γ +0.21)′

Proxy(%) (σss,σsp = σps,σpp) ρsp γ Parm Mean Est. Mean Bias MCSE Mean SE
Subject Parameters (Combined Subject-Proxy Data, WGEE Analysis)

19.11 (1, 0.85, 1.5) 0.7 0.85 Dose 0.8984 -0.0016 0.0819 0.0797
Time -0.5388 0.0012 0.0362 0.0356

18.29 (0.2, 0.21, 0.9) 0.5 1.05 Dose 0.8992 -0.0008 0.0360 0.0353
Time -0.5395 0.0005 0.0161 0.0158

Proxy Parameters (Combined Subject-Proxy Data, WGEE Analysis)
19.11 (1, 0.85, 1.5) 0.7 0.85 Dose 0.9802 0.0052 0.2288 0.2181

Time -0.2542 -0.0052 0.1410 0.1350
18.29 (0.2, 0.21, 0.9) 0.5 1.05 Dose 1.1646 0.0096 0.1789 0.1718

Time -0.3611 -0.0041 0.1115 0.1071
Subject/Proxy Parameters (Combined Subject-Proxy Data, GEE Analysis)

19.11 (1, 0.85, 1.5) 0.7 0.85 Dose 0.9702 0.0703 0.0890 0.0865
Time -0.4032 0.1369 0.0344 0.0346

18.29 (0.2, 0.21, 0.9) 0.5 1.05 Dose 1.0065 0.1065 0.0570 0.0580
Time -0.4126 0.1274 0.0216 0.0217

6. Discussion

The focus of this paper was to find a way to analyze subject and proxy observations together
in gerontological studies. We considered the situation when the subject drops out of the study
and only proxy observations become available subsequently. Current approach is to use the
generalized estimating equations (GEE) method to analyze data where proxy observations are
used in the place of missing subject responses. Gerontology literature makes note of possible
biases resulting from using proxy observation in the place of missing subject response. Such
substitutions completes the data structure needed to apply standard statistical methodology but
the model parameter estimates and standard errors may be incorrect. In this paper we proposed
a way to analyze subject and proxy observations together so that the relevant parameters and
their standard errors can be estimated in a single framework. A simulation study was condcuted
to study the properties of the proposed approach and compare its properties to the current GEE
approach.
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