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Abstract
The Pearson and likelihood ratio statistics are commonly used to test goodness of fit for models applied to
count data from a multinomial distribution. When counts are from a table formed by the cross classification
of a large number of variables, the traditional statistics may have lower power and inaccurate Type I error
level due to sparseness. For a cross-classified table, Pearson’s statistic can be decomposed into orthogonal
components associated with the marginal distribution of observed variables, and an omnibus fit statistic
defined on a sum of components for lower-order marginals has good performance for Type I error rate and
statistical power, even when applied to a sparse table. In this study asymptotic power will be calculated for
statistics based on orthogonal components and will be compared to results obtained by using Monte Carlo
simulations. Power will be calculated for testing a confirmatory dichotomous variable factor analysis model
and will be investigated for both individual components that can serve as lack-of-fit diagnostics and for
omnibus statistics formed by summing orthogonal components.

Key Words: Item response model, Asymptotic power, Orthogonal components, Monte Carlo simulation

1. Introduction

Statistical modeling often involves finding a model that may have generated the data of interest and
it is important to test the fit of the model because inferences drawn on poorly fitting models can be
misleading. In multinomial models we often consider the null hypothesis Ho : πππ = πππ(βββ), where
πππ is a T-dimensional vector of multinomial probabilities, and πππ(βββ) is a vector of the multinomial
probabilities as a function of parameters in the vector βββ . When the model parameters βββ are un-
known and estimated, the null hypothesis Ho : πππ = πππ(βββ) is often tested with the Pearson-Fisher
statistic:

χ2
PF =

∑
s

z2s , (1.1)

where
zs =

√
n(πs(β̂ββ))

− 1
2
(
p̂s − πs(β̂ββ)

)
and where, p̂s is element s of p̂, vector of multinomial proportions, n is total sample size, β̂ββ pa-
rameter estimator vector, πs(βββ) is the expected proportion for cell s and πs(β̂ββ) is the estimated
expected proportion for cell s.
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The Pearson-Fisher statistic has an asymptotic chi-square distribution with T-g-1 degrees of free-
dom under the large sample theory conditions (Koehler and Larantz 1980), where T is the number
of cells and g is the number of estimated model parameters. Thus, a usual assumption for the Chi-
square approximation is that expected cell counts become large asymptotically. This assumption
is not reasonable for analyzing a table where there are many cells with small counts and/or zeros.
When the data are from a table formed by the cross classification of large number of variables, and
thus many cells with small counts and/or zeros, Pearson’s chi-square statistic test may have lower
power and inaccurate Type I error due to sparseness. (Agresti and Yang 1987). Over the past years
several statistics has been proposed to remedy this issue. Some of these statistics formed on lower-
order marginals have been proven to overcome the deleterious effect of spareness. Tests based on
these statistics also proven to have higher power under commonly encountered situations (Reiser
2008). The other issue related to Chi-square test statistic is that it gives little guidance about the
source of poor fit when the null hypothesis is rejected. Dassanayake and Reiser (2015) conducted
a simulation study using individual orthogonal components of Pearson’s chi-square statistic. Re-
sults of this study suggests that the individual orthogonal components can be used to detect source
of poor fit for models fit to binary cross-classified variables. This paper will be an extension of
the Dassanayake and Reiser (2015) research. In this study, asymptotic power will be calculated for
statistics based on orthogonal components and will be compared to results obtained by using Monte
Carlo simulations. Power will be calculated for testing a confirmatory dichotomous variable factor
analysis model and will be investigated for both individual components that can serve as lack-of-fit
diagnostics and for omnibus statistics formed by summing orthogonal components.

2. Marginal Proportions

A traditional statistic such as Pearson’s chi-square uses the joint frequencies to calculate goodness
of fit for a model that has been fit to a cross-classified table. This section presents a transformation
from joint proportions or frequencies to marginal proportions. Marginal proportions are used to
develop test statistics presented in Section 3.2.

2.1 First- and Second-Order Marginals

The relationship between joint proportions and marginals can be shown by using zeros and 1’s to
code the levels of dichotomous response random variables, Yi, i = 1, 2, . . . , q, where Yi follow
the Bernoulli distribution with parameter Pi . Then, a q-dimensional vector of zeros and 1’s,
sometimes called a response pattern, will indicate a specific cell from the contingency table formed
by the cross-classification of q response variables. For dichotomous response variables, a response
pattern is a sequence of zeros and 1’s with length q. The T = 2q-dimensional set of response
patterns can be generated by varying the levels of the qth variable most rapidly, the qth−1 variable
next, etc. Define VVV as the T by q matrix with response patterns as rows.
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For instance when q = 3,

VVV =



0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


.

Let vis represent element i of response pattern s, s = 1, 2, . . . , T. Then, under the model
πππ = πππ(βββ), the first-order marginal proportion for variable Yi can be defined as

Pi(βββ) = Prob(Yi = 1|βββ) =
∑
s

visπs(βββ),

and the true first-order marginal proportion is given by

Pi = Prob(Yi = 1) =
∑
s

visπs .

Under the model, the second-order marginal proportion for variables Yi and Yj can be defined as

Pij(βββ) = Prob(Yi = 1, Yj = 1|βββ) =
∑
s

visvjsπs(βββ),

where j = 1, 2, . . . , q − 1; i = j + 1, . . . q, and the true second-order marginal proportion is given
by

Pij = Prob(Yi = 1, Yj = 1) =
∑
s

visvjsπs .

2.2 Higher-Order Marginals

A general matrix H[t:u] to obtain marginals of any order can be defined in a similar fashion by
using Hadamard products among the columns of VVV . The symbol H[t:u] , t ≤ u ≤ q, denotes
the transformation matrix that would produce marginals from order t up to and including order u.
Furthermore, H[t] ≡ H[t:t] . H[1:q] gives a mapping from joint proportions to the set of (2q − 1)
marginal proportions:

PPP = H[1:q]πππ ,

where

PPP = (P1, P2, P3, . . . Pq, P12, P13, . . . Pq−1,q, P1,1,2 . . . Pq−2,q−1,q . . . P1,2,3...q)
′
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is the vector of marginal proportions.

For example, when q=3,

H[1:3] =



0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

· · ·
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

· · ·
0 0 0 0 0 0 0 1


.

2.3 Residuals

H matrix can also be used to create residuals for marginals. Define the unstandardized residual
rs = p̂s − πs(β̂ββ), and denote the vector of unstandardized residuals as rrr with element rs . Then a
vector of simple residuals for marginals of any order can be defined as

eee = H(p̂− πππ(β̂ββ)) = Hrrr.

3. Testing Fit on Marginal Distributions

3.1 Linear Combinations of Joint Frequencies

A traditional composite null hypothesis for a test of fit on a multinomial model is Ho : πππ = πππ(βββ).
Linear combinations of πππ may be tested under the null hypothesis Ho : Hπππ = Hπππ(βββ). H may
specify linear combinations that form marginal proportions as defined in the previous section.

3.2 Test Statistic

The use of components of Pearson’s chi-square statistic has a long history dating back at least to
Lancaster (1969). The motivation for components has been the possibility that a directional test
would have higher power for certain alternative hypotheses than the omnibus goodness-of-fit test
(Rayner & Best, 1989). Reiser(1996, 2008) and Reiser and Lin (1999) proposed statistics that can
be obtained from orthogonal components defined on marginal proportions. These statistics have
higher power under some circumstances, and they usually perform well when applied to sparse
frequency tables.√

n rrr has asymptotic covariance matrix ΩΩΩrrr , where

ΩΩΩrrr = (D(πππ(βββ))− πππ(βββ)πππ(βββ)′ −G(A′A)−1G′),
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and where

D(πππ(βββ)) = diagonal matrix with (s, s) element equal to πs(βββ),

A = D(πππ(βββ))−1/2
∂πππ(βββ)

∂βββ
,

and G =
∂πππ(βββ)

∂βββ
.

See Haberman (1973). Then consider the linear combination eee = Hrrr. If H contains 2q − g − 1
linearly independent rows corresponding to marginals from order 1 to q, then define the statistic

X2
[1:q] = nrrr′H′ΩΩΩ−1eee Hrrr.

Here the statistic is evaluated at βββ = β̂ββ , where β̂ββ is now consistent and efficient for βββ , such as the
maximum likelihood estimator, and where ΩΩΩeee = HΩΩΩrrrH

′. With the added condition that the rows

of H are linearly independent of the columns of G, i.e., rank(H′
...G) = T + g, X2

[1:q] can be shown
to be equivalent to X2

PF due to the correspondence of the joint and marginal proportions. See also
Reiser (2008). To obtain orthogonal components, define the upper triangular matrix FFF such that
FFF ′ΩΩΩeeeFFF = III . FFF = (CCC ′)−1, where CCC is the Cholesky factor of ΩΩΩeee . Then writing ΩΩΩeee as CCCCCC ′,

X2
PF = nrrr′H′(ĈCC

′
)−1ĈCC

′
(ĈCC ĈCC

′
)−1ĈCC(ĈCC)

−1
Hrrr

= nrrr′H′F̂FF F̂FF
′
Hrrr

where F̂FF and ĈCC are the matrices FFF and CCC evaluated at βββ = β̂ββ .
Premultiplication by (CCC ′)−1 orthonormalizes the matrix H[1:q] relative to the matrix D(πππ) −

ππππππ ′ −G(A′A)−1G′. Let H∗ = FFF ′H[1:q] , then

X2
PF = nrrr′(Ĥ∗)′Ĥ∗rrr

where Ĥ∗ = H∗(β̂ββ).
Define

γ̂γγ = n
1
2 F̂FF
′
Hrrr = n

1
2 Ĥ∗rrr

Then

X2
PF = γ̂γγ ′ γ̂γγ =

j=T−g−1∑
j=1

γ̂2j ,

and the elements γ̂2j are orthogonal components of X2
PF . Since Ĥ∗rrr has asymptotic covariance

matrix FFF ′ΩΩΩeeeFFF = IIIT−g−1, the elements γ̂2j are asymptotically independent χ2
1 random variables.
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By summing these components one could obtain limited-information statistics. For example
the statistc on first- and second-order marginals from Reiser (1996) is

X2
[1:2] =

j=q(q+1)/2∑
j=1

γ̂2j ,

and the statistic on second-order marginals from Reiser and Lin (1999) is

X2
[2] =

j=q(q+1)/2∑
j=q+1

γ̂2j ,

In general, using the matrix H[t:u] as given above,

X2
[t:u] =

∑
j

γ̂2j ,

where the limits on the sum depend on t and u, the order of the selected marginals, and the statistic
can also be expressed as

X2
[t:u] = eee′Σ̂ΣΣ

−1
eee eee

where Σ̂ΣΣeee = n−1ΩΩΩeee, with ΩΩΩeee evaluated at the maximum likelihood estimates π̂ππ and β̂ββ . However,
depending on the fitted model, it may be difficult to calculate Σ̂ΣΣ

−1
eee accurately due to collinearity.

Direct calculation of components is considerably more stable.
Under the regularity conditions given by Birch (1964), the limiting distribution of X2

[t:u] as
n → ∞ can be shown to be the χ2-distribution because eee is a linear combination of the elements
of rrr, nΣ̂ΣΣeee

P−→ΩΩΩeee , and eee L−→MVN(ξξξ,ΣΣΣeee). Another sparse asymptotic result from Simonoff (1986)
is applicable here. Assuming β̂ββ is a consistent estimator, β̂ββ = βββ + Op(n

− 1
2 ); if πππ(βββ) has bounded

second partial derivatives with respect to βββ , sups
∣∣∣πs(β̂ββ)/πs − 1

∣∣∣ = Op(n
− 1

2 ). So, even under

sparseness conditions, πs(βββ)
P→ πs, πππ(β̂ββ)

P→ πππ , nΣ̂ΣΣeee
P−→ΩΩΩeee , and the asymptotic chi-square distri-

bution for X2
[t:u] is valid. X2

[t:u] can be seen as a special case of the score statistic given in Theorem
7.1.1 of Rayner and Best (1989).

The degrees of freedom for X2
[t:u] are known from theory and are determined by the rank of

ΩΩΩeee , which will be equal to the number of linearly independent rows in H, assuming rank(H′
...G) =

m + g where m is the rank of H, and assuming the model πππ(βββ) is identified. The statistic has
been extended to ordinal response variables by Cagnone and Mignani (2007) and Reiser, Zhu, and
Cagnone (2014).

3.3 Application to Factor Analysis

When categorical manifest variables are hypothesized to be associated with a continuous latent
variable, the model is known as categorical variable factor analysis and sometimes as the item
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response theory model. In order to investigate the challenges of a large number of variables and
intense computations, a comparison of the statistics reviewed in the previous section will be pre-
sented using this model with one factor.

According to the categorical factor model, the probability of the response to a manifest variable,
sometimes also referred to as an item, can be given by a logistic item response function:

P (Yi = 1 | βββ ′i, X = x) = (1 + exp(−βi0 − βi1x))−1 (3.1)

where Yi represents the response to item i,

βi0 = intercept parameter for item i

βi1 = slope parameter for item i

βββ ′i = (β0i, β1i)

x = value taken on by latent random variable X

Since
P (Yi = 0 | βββ ′i, X = x) = 1.0− π(Yi = 1 | βββ ′i, X = x),

it follows that

P (Yi = yi | βββ ′i, x) = P (Yi = 1 | βββ ′i, x)yi [1.0− P (Yi = 1 | βββ ′i, x)]1−yi

It is assumed that, conditional upon the latent variable, responses to the manifest variables are
independent. Let YYY represent a random vector of responses to the items, with element Yi, and let
y represent a realized value of YYY . Then

P (YYY = y | βββ, x) =

k∏
i=1

π(Yi = 1 | βββ, x)yi [1− π(Yi = 1 | βββ, x)]1−yi (3.2)

where βββ =


β01 βi1
β02 β12
β03 β13

...
...

β0q β1q

 .

Finally, the probability of response pattern s, say, is obtained by taking the expected value of
the conditional probability over the distribution ofX in the population, and is sometimes called the
marginal probability:

πs(βββ) = π(YYY = ys | βββ) =

∫ ∞
−∞

π(YYY = ys | βββ, x)f(x)dx (3.3)

where f(x) is the density function of X in the population of respondents.

JSM 2016 - Biometrics Section

1085



If UUU represents a T -dimensional multinomial random vector of frequencies associated with the
response patterns, the distribution of UUU is given by

π(UUU = n) = n!
T∏

s=1

[πs(βββ)]

ns!

ns

(3.4)

where n =vector of observed frequencies

ns =element s of n

n =total sample size =
T∑

s=1

ns

4. Asymptotic power

In this section we will describe the theory behind the calculation of asymptotic power of individual
orthogonal components of χ2

PF .
Consider the situation of testing a hypothesis Ho : πππ = πππ(βββ) against alternative Ha : πππ 6= πππ(βββ)

using Pearson-Fisher statistic. Suppose we have sequence of specific alternatives πππn satisfying√
n(πππn − πππ(βββ))→ δδδ for some constant matrix δδδ . In this approach, the best fit of the model to the

population gives πππs(βββ) as the probability for cell s, but the true probability differs from that value
by δδδ/

√
n. Note the model lack of fit goes to zero at the rate n

1
2 as n approaches infinity. With

this technique, Mitra (1958) shows that χ2
PF has a limiting non-central chi-square distribution with

non-centrality parameter λ, where

λ = δδδ ′Diag[πππ(βββ)]−1δδδ (4.1)

and df = T − g − 1, where T = 2q. Under the condition H = H[1:q],−g , and using a strategy
similar to Reiser (2008), it can be shown that

λ = δδδ ′H′ΣΣΣ−1e Hδδδ (4.2)

Based on the right-hand side of this expression, it is possible to decompose the noncentrality
parameter into orthogonal components associated with marginals. Consider the Cholesky decom-
position in section 2.2 where FFF ′ΩΩΩeeeFFF = III and FFF = (CCC ′)−1, where CCC is the Cholesky factor of ΩΩΩeee .
Using the same decomposition, let

ζζζ = (F′)Hδδδ = H∗δδδ (4.3)

where Fand H∗ are defined as in Section 2. Then λ = ζζζ ′ζζζ , and orthogonal components are ζ2j ,
where ζj is an element of ζζζ . These components can be used to calculate the power for tests based
on marginals of differing order. For example, the non-centrality parameter for χ2

[1:2] is given by
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n

q(q+1)/2∑
j=1

ζ2j (4.4)

As for our case we can calculate the power of each orthogonal component using non-central
chi-square distribution and the non-centrality parameter for the jth component is given by ζ2j .

4.1 Power calculation example

For the purposes of power calculations under fixed, finite n, cell proportions were generated from
a known model, with two factors and q=8 manifest variables and fit with a one-factor model.
Loadings for the first factor were (1,1,1,0,0,0,1,1) and the loadings of the second factor had two
settings, (0.1, 0.1, 0.1, 1.2, 1.2, 1.2, 0.2, 0.2) which here after we will call higher factor loading
and (0.1, 0.1, 0.1, 0.6, 0.6, 0.6, 0.2, 0.2) which here after we will call lower factor loading. Note,
we have allocated higher weights for items 4,5 and 6. Thus we are expecting to see lack-of-fit on
those places for the one factor model. The intercepts of the model were kept symmetrical at (-2.0,
-1.5, -1, -0.5 , 0.5 ,1, 1.5, 2). In order to generate the proportions of this two factor model, we used
Multivariate Gaussian quadrature. Note the equation 2.3 will now become,

πs(βββ1, βββ2) = π(YYY = ys | βββ1, βββ2) =

∫ ∫
π(YYY = ys | βββ1, βββ2, x1, x2)f(x1, x2)dx1dx2 (4.5)

and the integral must be evaluated by numerical quadrature. These proportions were then
multiplied by a selected initial sample size n0 to create the true cell frequencies. As the next step,
the model of the null hypothesis was analyzed using resulting cell frequencies. Two parameter IRT
model was built under the null hypothesis and expected proportions were calculated. Thereafter,
the non-centrality parameter was calculated as described in the previous section. The non-centrality
parameter for any other sample size, say simply n, can be approximated by using the expression
λ ≈ n

n0
λ0. Some Monte Carlo simulations were conducted to cross-validate this approach to

the calculation of power for fixed, finite n, and the results are given in the next section. Note the
Cholesky factor method can be numerically unstable since it involves getting an inverse of a matrix.
An alternative method would be to calculate orthogonal components using weighted regression.
Calculating orthogonal components using weighted regression proven to be more stable in extreme
situations compared to Cholesky factor method (Dassanayake and Reiser, 2015). The appropriate
weight matrix, Ŵ, for the regression is given by,

Ŵ = (I− πππ(βββ)πππ(βββ)′ −A(A′A)−1A′) (4.6)

Once the regression model is fitted, the orthogonal components can be obtained using the se-
quential sums of squares.
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4.2 Results

In the previous section we described the process of obtaining non-centrality parameters for orthog-
onal components. Once acquired, the non-centrality parameters are used to calculate the power of
each orthogonal component using non-central chi-square distribution with one degree of freedom.
Note the significance level was set to 0.05. Asymptotic power results for n=500 for lower and
higher factor loadings is given in the Table 1. We compared these with empirical power results
from Monte-Carlo simulations. Results were similar in most of the aspects, however the differ-
ence between asymptotic power and empirical power was not as small as we expected. Further
investigations was carried out with small number of manifest variables to figure out the reasons
behind these results. After considerable amount of simulations and tests we were able to figure out
the rationale behind our results. When the intercepts move away from zero, some of the response
pattern frequencies get small, when this happens the chi-square approximation is not as good as
we expected. So the simulation results for empirical power are showing the effect of this not so
good chi-square approximation. To remedy this issue and illustrate our theory we change all the
intercepts to zero and re-ran the simulations. Results given in the the table 2.

Table 1: Asymptotic and simulated power comparison for model with symmetrical intercepts

Lower factor loading (n=500) Higher factor loading (n=500)
Marginal Simulated power Asymptotic power Simulated power Asymptotic power

(1,2) 0.049147 0.05013 0.21988 0.06965
(1,3) 0.061184 0.05042 0.26406 0.09974
(1,4) 0.048144 0.05263 0.081325 0.11174
(1,5) 0.049147 0.05269 0.1004 0.12724
(1,6) 0.049147 0.05256 0.2239 0.14154
(1,7) 0.049147 0.05 0.074297 0.05001
(1,8) 0.053159 0.05001 0.10442 0.05007
(2,3) 0.049147 0.05137 0.31627 0.1766
(2,4) 0.055165 0.05504 0.12851 0.17265
(2,5) 0.060181 0.05513 0.12851 0.19965
(2,6) 0.054162 0.05486 0.31124 0.22633
(2,7) 0.035105 0.05 0.070281 0.05004
(2,8) 0.053159 0.05003 0.083333 0.05151
(3,4) 0.064193 0.06267 0.19478 0.36346
(3,5) 0.052156 0.06277 0.21486 0.42353
(3,6) 0.064193 0.06204 0.46787 0.48443
(3,7) 0.058175 0.05026 0.10643 0.05881
(3,8) 0.053159 0.05 0.077309 0.05055
(4,5) 0.32999 0.33781 0.66566 0.95282
(4,6) 0.2678 0.30097 0.68273 0.96247
(4,7) 0.053159 0.05002 0.037149 0.05106
(4,8) 0.05015 0.05005 0.052209 0.05006
(5,6) 0.29789 0.31903 0.84337 0.99147
(5,7) 0.047141 0.05 0.038153 0.05
(5,8) 0.043129 0.05006 0.080321 0.05051
(6,7) 0.059178 0.05 0.073293 0.05014
(6,8) 0.044132 0.05006 0.074297 0.05061
(7,8) 0.041123 0.05 0.059237 0.0503
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Based on the results in the Table 2 it is clear that our theory was correct. Difference between
asymptotic power and the empirical power is very small. We also did Monte-Carlo simulations to
check Type I error of fitting a one factor model to the data with zero intercepts. If Type I error is
not small then these power results do not have much meaning in terms of practical applications.
Results (Table 3 and 4 ) shows that the Type I error rates are within 0.05 for all the simulations.
Thus our power calculation indeed have meaningful results. As explained in previous sections
each orthogonal component is distributed as chi-square distribution with one degree of freedom.
To check this distributional assumption, chi-square Q-Q plots were built for the simulation values
related to each component. None of the Q-Q plots showed deviations from the assumption. Some
of theses results are shown in the Appendix.

Table 2: Asymptotic and simulated power comparison for zero intercept model

Lower factor loading (n=500) Higher factor loading (n=500)
Marginal Simulated power Asymptotic power Simulated power Asymptotic power

(1,2) 0.052 0.05026 0.108 0.05694
(1,3) 0.066 0.05051 0.132 0.06275
(1,4) 0.056 0.05437 0.096 0.10705
(1,5) 0.068 0.05442 0.132 0.11064
(1,6) 0.057 0.05446 0.163 0.11458
(1,7) 0.034 0.05 0.049 0.05
(1,8) 0.04 0.05 0.059 0.05002
(2,3) 0.047 0.05131 0.126 0.07666
(2,4) 0.069 0.05717 0.151 0.14212
(2,5) 0.06 0.05725 0.154 0.14866
(2,6) 0.056 0.05734 0.215 0.15592
(2,7) 0.044 0.05 0.06 0.05
(2,8) 0.053 0.05 0.078 0.05
(3,4) 0.06 0.0643 0.23 0.2339
(3,5) 0.069 0.06451 0.254 0.24923
(3,6) 0.077 0.06473 0.352 0.26647
(3,7) 0.055 0.05 0.1 0.05
(3,8) 0.043 0.05 0.06 0.05002
(4,5) 0.347 0.37269 0.927 0.99343
(4,6) 0.381 0.37578 0.94 0.99556
(4,7) 0.053 0.05 0.043 0.05
(4,8) 0.043 0.05004 0.045 0.05007
(5,6) 0.372 0.3789 0.982 0.99713
(5,7) 0.045 0.05 0.035 0.05
(5,8) 0.053 0.05003 0.04 0.05001
(6,7) 0.06 0.05 0.053 0.05
(6,8) 0.05 0.05002 0.046 0.05001
(7,8) 0.056 0.05 0.062 0.05002
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5. Conclusion

In this study, second order marginals related to orthogonal components were examined as lack-of-
fit diagnostics. Simulations were based on the two parameter IRT model for a two latent variable
model and were successful in indicating pair of variables for which the model does not fit well.
When the sample size increases, ability to indicate pair of variables for which the model does not fit
well increases significantly. The Asymptotic power results tally with empirical power results. But
when the intercepts move away from zero, and the sample size is moderate, some of the response
pattern frequencies may get small, and the chi-square approximation is not as good as we expected.
Thus the simulated results can have deviations from asymptotic power.
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6. Appendix

Table 3: Type I error of the Orthogonal components for n=500 with lower factor loading

ortho(1,2) ortho(1,3) ortho(1,4) ortho(1,5) ortho(1,6) ortho(1,7) ortho(1,8)
0.043 0.042 0.03 0.045 0.041 0.038 0.042

ortho(2,3) ortho(2,4) ortho(2,5) ortho(2,6) ortho(2,7) ortho(2,8) ortho(3,4)
0.039 0.04 0.037 0.033 0.047 0.056 0.041

ortho(3,5) ortho(3,6) ortho(3,7) ortho(3,8) ortho(4,5) ortho(4,6) ortho(4,7)
0.033 0.034 0.047 0.061 0.069 0.075 0.038

ortho(4,8) ortho(5,6) ortho(5,7) ortho(5,8) ortho(6,7) ortho(6,8) ortho(7,8)
0.048 0.052 0.039 0.06 0.05 0.06 0.053

Table 4: Type I error of the Orthogonal components for n=500 with higher factor loading

ortho(1,2) ortho(1,3) ortho(1,4) ortho(1,5) ortho(1,6) ortho(1,7) ortho(1,8)
0.0501 0.059118 0.04509 0.06012 0.0501 0.046092 0.062124

ortho(2,3) ortho(2,4) ortho(2,5) ortho(2,6) ortho(2,7) ortho(2,8) ortho(3,4)
0.0501 0.053106 0.058116 0.041082 0.063126 0.053106 0.046092

ortho(3,5) ortho(3,6) ortho(3,7) ortho(3,8) ortho(4,5) ortho(4,6) ortho(4,7)
0.04008 0.044088 0.049098 0.048096 0.053106 0.051102 0.057114

ortho(4,8) ortho(5,6) ortho(5,7) ortho(5,8) ortho(6,7) ortho(6,8) ortho(7,8)
0.052104 0.0501 0.051102 0.053106 0.061122 0.058116 0.056112

Figure 1: QQ plots for the simulation n=300 Figure 2: QQ plots for the simulation n=300
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Figure 3: QQ plots for the simulation n=500 Figure 4: QQ plots for the simulation n=500

Figure 5: QQ plots for the simulation n=1000 Figure 6: QQ plots for the simulation n=1000
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