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Abstract

We highlight a Bayesian interpretation of the transition functions of two classes of measure val-

ued diffusions widely used in population genetics, given by Fleming–Viot and Dawson–Watanabe

models, which describe time evolving random measures in the Dirichlet and gamma families re-

spectively. We review some recent results on temporal conjugacy of these classes under certain

assumptions on the data collection at discrete times, and discuss their interpretation in terms of di-

mensionality reduction of the transition function and of the associated forward propagation of the

marginal measure of the process.
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1. Introduction

A currently active area of research in Bayesian nonparametrics is the construction of so-

called dependent processes. These aim at accommodating weaker forms of dependence

among the observables than exchangeability, such as partial exchangeability in the sense

of de Finetti. Within this goal, the idea is to construct a family of random probability

measures indexed by a covariate, so that the data are exchangeable conditionally on the

covariate value but not overall exchangeable. This line of research has been inspired by

MacEachern (1999, 2000) and has since generated a considerable amount of contributions.

Most of these have concentrated their focus on extending to this dependent framework the

milestone of Bayesian nonparametrics, the Dirichlet process (Ferguson, 1973). The great

amount of activity around this idea is certainly due to the success of the Dirichlet process

and associated hierarchical mixtures (Lo, 1982) as modelling approaches for Bayesian in-

ference and its celebrated stick-breaking representation (Sethuraman, 1994), which lends

itself to natural extensions to a non-exchangeable framework. Despite not being particu-

larly easy to handle for deriving related analytical quantities, this has solidly proven to be

extremely advantageous on the practical side, especially for implementing these models

through computer aided posterior computation. The literature on this topic is by now quite

vast, so we refer the reader to Hjort et al. (2010) and Müller and Mitra (2013) for reviews

and references.

Many contributions have developed somewhat similar dependent structures for gamma

random measures. These have been mainly instrumental towards applications which re-

quire a transformation of the random measure such as, for example, normalisation or

tilting. A smaller amount of research effort has instead been devoted to developing and

analysing the properties of dependent gamma random measures per se. Among the re-

cent contributions in this respect, Ishwaran and Zarepour (2009) Spanò and Lijoi (2016)

study the spectral properties of a dependent gamma model and build new general families

of time-dependent gamma priors whose trajectories allow for possible discontinuities, and
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Papaspiliopoulos, Ruggiero and Spanò (2016) who show some analytical conjugacy prop-

erties of a class of gamma dependent processes with respect to Poisson point process data

collected at discrete times.

In this note, we discuss some aspects of the transition functions of two dependent

models for Dirichlet and gamma random measures: the Fleming–Viot and the Dawson–

Watanabe process. See Ethier and Kurtz (1993); Dawson (1993); Etheridge (2000); Daw-

son (2010) for reviews. These have been formulated in the mathematical population genet-

ics literature, but can be easily interpreted as time evolving Dirichlet and gamma random

measures respectively, as discussed in the following Sections. Here we are particularly in-

terested in detailing the connections between the transition functions of these models, and

the conjugacy results obtained in Papaspiliopoulos, Ruggiero and Spanò (2016) for related

hidden Markov measures. Specifically, we will outline an interpretation of such dependent

processes from a Bayesian perspective, by relying on a construction strategy based on latent

variables due to Pitt, Chatfield and Walker (2002); Pitt and Walker (2005), which makes

them particularly appealing and relatively easy to interpret. Then, we will summarise how

the transition mechanism for the two models can be reduced to a finite computation under

certain assumptions on the collected data, and we will detail the connection between the

two results.

2. Evolving Dirichlet measures

The above mentioned general recipe for constructing dependent processes using latent vari-

ables was used in Walker et al. (2007) for deriving a class of Fleming–Viot measure-valued

diffusions, and can be quickly summarised as follows. Let x be a Dirichlet process with

base measure α = θP0, denoted as x ∼ Πα, where θ > 0 and P0 is a nonatomic dis-

tribution on some space Y for the observables. For m ∈ Z+ consider sampling, given

x, m independent and identically distributed (iid) observations (Y1, . . . , Ym) from x, and

conditional on such observations sample a random measure from the associated posterior

Dirichlet law. This can be written as the transition mechanism

P (x,dx′ | m) =

∫

Ym

Πα+
∑m

i=1
δyi

(dx′)xm(dy1, . . . ,dym)

where xm denotes the m-fold product measure x× · · · × x. Randomising m, to be chosen

with probability dm, say, yields

P (x,dx′) =

∞
∑

m=0

dm

∫

Ym

Πα+
∑m

i=1
δyi

(dx′)xm(dy1, . . . ,dym).

Let now the distribution of m depend on time, i.e. dm = dm(t), which formally gives

Pt(x,dx
′) =

∞
∑

m=0

dm(t)

∫

Ym

Πα+
∑m

i=1
δyi

(dx′)xm(dy1, . . . ,dym), t ≥ 0. (1)

If the probabilities dm(t) are such that (1) satisfies the Chapman–Kolmogorov equations,

then Pt is the transition function of a well-defined Markov process taking values in the

space of discrete probability measures on Y . It will also have Dirichlet marginals, by

Corollary 1.1 in Antoniak (1974). Supposing in addition that dm(t) is the probability that

a death process Mt, which starts at infinity and jumps from m to m− 1 at rate

λm = m(θ +m− 1)/2, (2)
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is in m at time t, then (1) is the transition function of a Fleming–Viot process. See Ethier

and Griffiths (1993). The precise form of these probabilities has been described in Tavaré

(1984), who computed that for m ∈ N

dm(t) =

{

1−
∑∞

n=1(−1)n−1(θ)(n−1)n!
−1γn,t,θ m = 0,

∑∞
n=m(−1)n−m

(n
m

)

(θ +m)(n−1)n!
−1γn,t,θ, m ∈ N,

(3)

where γn,t,θ = (θ + 2n − 1)e−λnt and a(n) = a(a + 1) . . . (a + n − 1) for n ∈ N is the

Pochhammer symbol, with a(0) = 1. The interpretation of these dm(t) in the context of

dependent random measures is that a larger t implies sampling a lower amount of infor-

mation from x with higher probability, resulting in fewer atoms shared by x and x′. The

starting and arrival states therefore have correlation which decreases in t and is controlled

by dm(t). As t → 0, infinitely many samples are drawn from x, and x′ will coincide with

x. The trajectories of the process are continuous in total variation norm (Ethier and Kurtz,

1993). As t → ∞, the fact that the death process which governs the probabilities dm(t)
in (1) is eventually absorbed in 0 implies that Pt(x,dx

′) → Πα as t → ∞, so x′ is sam-

pled from the prior Πα. Therefore this Fleming–Viot is stationary with respect to Πα (in

fact, it is also reversible). See also Jenkins and Spanò (2016) for exact simulation of these

processes, where the difficulty lies on dealing with the dm(t) probabilities, Favaro et al.

(2009); Ruggiero and Walker (2009a,b) for different constructions of Fleming–Viot related

models, Mena and Ruggiero (2016); Mena et al. (2011) for different classes of measure-

valued diffusions with applications to Bayesian nonparametrics.

There is a dynamic counterpart of the well known projective property of Dirichlet pro-

cesses, which yield Dirichlet distributions, for these processes. Projecting a Fleming–Viot

process Xt onto a measurable partition A1, . . . , AK of Y yields a K-dimensional Wright–

Fisher diffusion, denoted here Xt, which is reversible and stationary with respect to the

Dirichlet distribution πα := Dir(α1, . . . , αK), for αi = θP0(Ai), i = 1, . . . ,K . See

(Dawson, 2010; Etheridge, 2009). Consistently, the transition function of a Wright–Fisher

process is obtained by specialising (1) to

Pt(x,dx
′) =

∞
∑

m=0

dm(t)
∑

m∈ZK
+
:
∑

i mi=m

(

m

m

)

x
mπα+m,

where m = (m1, . . . ,mK) and πα+m := Dir(α1 + m1, . . . , αK + mK). See Ethier

and Griffiths (1993). The interpretation is analogous to that of (1) in a finite dimensional

framework.

Let x ∼ Πα be the current state of the process, and suppose at time t0 = 0, condition-

ally iid data Y1, . . . , Ym are collected such that Yi|x ∼ x. Suppose also the data feature

Km ≤ m distinct values Y ∗
1 , . . . , Y

∗
Km

, where Y ∗
i has multiplicity mi. By a well known

result of (Ferguson, 1973), the posterior law is still Dirichlet with updated parameters,

namely

x | y1, . . . , ym ∼ Π
α+

∑Km
i=1

miδy∗
i

Papaspiliopoulos, Ruggiero and Spanò (2016) showed that a Dirichlet dependent process

Xt of Fleming–Viot type is conjugate with respect to these type of data if x above is the

process state, i.e. Xt = x. Specifically, before additional data are collected, we have that

the law of the process X at time t0 + t can be written as

ψt

(

Π
α+

∑Km
i=1

miδy∗
i

)

=
∑

0≤i≤m

pm,m−i(t)Πα+
∑Km

j=1
(mj−ij)δy∗

j

. (4)
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Here we have denoted

ψt(ν)(dx
′) :=

∫

X
ν(dx)Pt(x,dx

′)

the forward propagation of the law ν of x, obtained by means of the Fleming–Viot transition

operator Pt. Furthermore, “≤” denotes a partial ordering whereby for i,m ∈ Z
Km
+ , i <m

if ij ≤ mj for all j = 1, . . . ,Km and ij < mj for some j. Denoting for short |m| =
∑

j mj , the weights pm,m−i(t) equal

pm,m−i(t) =

{

e−λ|m|t, i = 0

C|m|,|m|−|i|(t)p(i; m, |i|), 0 < i ≤ m,
(5)

with

C|m|,|m|−|i|(t) =

( |i|−1
∏

h=0

λ|m|−h

)

(−1)|i|
|i|
∑

k=0

e−λ|m|−kt

∏

0≤h≤|i|,h 6=k(λ|m|−k − λ|m|−h)
,

with λn as in (2) and

p(i; m, |i|) =

(

|m|

|i|

)−1
∏

j≥1

(

mj

ij

)

(6)

being the multivariate hypergeometric probability function, with parameters (m, |i|), eval-

uated at i. The important point to notice in (4) is that despite the transition function (1) of

the Fleming–Viot process has an infinite series expansion, under the above assumptions the

forward propagation of the prior Dirichlet law for Xt0 to time t0+ t, given data collected at

time t0, can be still expressed as a finite sum of Dirichlet measures. This in particular im-

plies that alternating the operations of conditioning to the collected data, and propagating

forward the current law of the random measure to the next data collection time, maintains

the marginal law of the random measure inside the family of finite mixtures of Dirichlet

processes.

The result in Papaspiliopoulos, Ruggiero and Spanò (2016) is obtained by exploiting a

specific structure hidden in the time-reversal of the Fleming–Viot process, namely a dual

process, which ultimately allows to drastically reduce the dimensionality of the transition

operation. The opposite connection can be outlined as follows. Let l = m − i. Then as

|m| → ∞
C|m|,|l|(t) → d|l|(t)

with dm(t) as in (3). See Tavaré (1984), Section 6. Since (6) with l as above equals

(

m1

m1 − l1

)

· · ·

(

mK

mK − lK

)

(

|m|

|m− l|

) =
m1,[l1]

m
· · ·

mK,[lk]

m− k + 1

|l|

l1! · · · lK !
,

where a[n] = a(a+ 1) . . . (a+ n− 1) denotes the descending factorial and ai,[n] the same

applied to ai, it follows that by assuming m/|m| → x we obtain

pm,l(t) → d|l|(t)

(

|l|

l

)

x
l.

Defining now

x(·) :=

∞
∑

i=1

xiδy∗i (·)

one can see that Π
α+

∑Km
j=1

mjδy∗
j

degenerates to x as |m| → ∞ and (4) converges to (1).
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3. Evolving gamma measures

The class of Dawson–Watanabe processes can be considered, roughly speaking, as the

gamma counterpart of Fleming–Viot processes, admitting therefore interpretation as de-

pendent models for gamma random measures. More formally, they belong to the class

of branching measure-valued diffusions taking values in the space of finite discrete mea-

sures. As in the Fleming–Viot case, they describe evolving discrete measures whose sup-

port varies with time and whose masses are each a positive diffusion and sum up to a finite

quantity. See Dawson (1993); Li (2011) for reviews. Here we are interested in the spe-

cial case of Dawson–Watanabe processes who admit the law of a gamma random measure

as invariant measure, which correspond to subcritical branching with immigration. The

transition function of a Dawson–Watanabe process admits a construction similar to that

outlined for Fleming–Viot processes. Let z on Y be a gamma random measure with shape

measure α = θP0, with θ, P0 as in Section 2, and rate parameter β > 0, denoted z ∼ Γβ
α,

so that projections onto disjoint sets A1, . . . , AK ⊂ Y yield independent gamma variables

z(Ai) ∼
ind Ga(α(Ai), β). Denoting (z/|z|)m the m-fold product of the normalised mea-

sure, where |z| := z(Y) is the total mass of z, the transition function reads

Pt(z,dz
′) =

∞
∑

m=0

d|z|,βm (t)

∫

Ym

Γ
β+S∗

t

α+
∑m

i=1
δyi

(dz′)(z/|z|)m(dy1, . . . ,dym). (7)

Here, similarly to (1), a random sample size m is chosen with time-dependent probability

d
|z|,β
m (t); conditional on m, data are collected as above from the normalised starting state,

and given these, the arrival state is sampled from Γ
β+S∗

t

α+
∑m

i=1
δyi

. Unlike the Fleming–Viot

case, not only the probability of m but also a parameter of the gamma law depends on time.

Specifically, we have where

d|z|,βm (t) = Po

(

m
∣

∣

∣

β|z|

eβt/2 − 1

)

and S∗
t :=

β

eβt/2 − 1
.

See Ethier and Griffiths (1993b). The main difference with respect to (1), apart from the

different distributions involved, is that since in general S∗
t is not integer–valued, the inter-

pretation as sampling the arrival state z′ from a posterior gamma law is not formally correct

under the usual Gamma-Poisson conjugate model. The sample sizem is chosen with proba-

bility d
|z|,β
m (t), which is the probability that an N-valued death process which starts at infin-

ity at time 0 is inm at time t, if it jumps fromm tom−1 at rate (mβ/2)(1−eβt/2)−1. Note

that this death process admits representation as a time-changed Poisson process, whereby

the above formulation. See Ethier and Griffiths (1993b) for details. So z and z′ will share

fewer atoms the farther they are apart in time. The Dawson–Watanabe process with the

above transition is known to be stationary and reversible with respect to the law Γβ
α of a

gamma random measure. See Shiga (1990); Ethier and Griffiths (1993b).

The Dawson–Watanabe process satisfies a projective property similar to that seen in

Section 2 for the Fleming–Viot process. Specifically, a projection of Zt with transition (7)

onto a measurable partition A1, . . . , AK of Y , yields the vector (Zt(A1), . . . , Zt(AK))
of independent components Zt(Ai) each driven by a Cox–Ingersoll–Ross (CIR) diffu-

sion (Cox, Ingersoll and Ross, 1985). These are reversible and ergodic with respect to

a Ga(αi, β) distribution, with transition function

P
(1)
t (zi,dz

′
i) =

∞
∑

mi=0

Po

(

mi

∣

∣

∣

ziβ

eβt/2 − 1

)

Ga
(

dz′
∣

∣

∣
αi +mi, β + S∗

t

)

. (8)
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This is not immediately clear as for (1)-(4). For everyK and every collection (A1, . . . , AK)
of disjoint measurable sets of Y , the evolution of the components zi,t = Zt(Ai) for t ≥
0 and each i = 1, . . . ,K can be read from (7) to be, for any z = (z1, . . . , zK), z′ =
(z′1, . . . , z

′
K),

Pt(z,dz
′) =

∞
∑

m=0

d|z|,βm (t)

∫

Yn

Γ
β+S∗

t

α+
∑m

i=1
δyi

(dz′)(z/|z|)m(dy1, . . . ,dym).

=
∞
∑

m=0

Po

(

m
∣

∣

∣

|z|β

eβt/2 − 1

)

∑

|m|=m

(

m

m

)(

z

|z|

)m K
∏

i=1

Ga

(

z′i

∣

∣

∣
αi +mi, β + S∗

t

)

=
∞
∑

m1+···+md=0

K
∏

i=1

Po

(

mi

∣

∣

∣

β

eβt/2 − 1
zi

)

Ga

(

z′i

∣

∣

∣
αi +mi, β + S∗

t

)

=
K
∏

i=1

∞
∑

mi=0

Po

(

mi

∣

∣

∣

ziβ

eβt/2 − 1

)

Ga

(

z′i

∣

∣

∣
αi +mi, β + S∗

t

)

=

K
∏

i=1

P
(1)
t (zi,dz

′
i),

where P
(1)
t is as in (8). See e.g. Spanò and Lijoi (2016) Sections 3 and 5.1 for further

details.

Consider now, given the current process state z, Poisson data such that

yi | z,m
iid
∼ z/|z|, m | z ∼ Po(|z|).

By a well known result of (Lo, 1982), the posterior law is still gamma with updated param-

eters, namely

z | y1, . . . , ym ∼ Γβ+1

α+
∑Km

i=1
miδy∗

i

,

where the notation is as in Section 2. Papaspiliopoulos, Ruggiero and Spanò (2016) showed

that a gamma dependent process Zt of Dawson–Watanabe type is conjugate with respect to

these type of data if z above is the process state, i.e. Zt = z. Specifically, before additional

data are collected, we have that the law of the process Z at time t0 + t can be written as

ψt

(

Γβ+s

α+
∑Km

i=1
miδy∗

i

)

=
∑

0≤i≤m

p̃m,m−i(t)Γ
β+St

α+
∑Km

i=1
(mi−ii)δy∗

i

, (9)

where β + s is the value at time t of the rate parameter. Here ψt is as in (4) with Pt as in

(7),

p̃m,m−i(t) =Bin(|m| − |i|; |m|, p(t))p(m − i; m, |m| − |i|),

p(t) =St/S0, St =
βS0

(β + S0)eβt/2 − S0
, S0 = s,

p(m − i; m, |m| − |i|) is as in (6) and Bin(|i|; |m|, p(t)) is a Binomial pmf with param-

eters (|m|, p(t)) evaluated at |m| − |n|. Note that as t → 0, we have p(t) → 1 which

implies Bin(|m|; |m|, p(t)) → 1 and p(m; m, |m|) = 1. That is, (9) puts mass one on the

component Γβ+s

α+
∑Km

i=1
miδy∗

i

which coincides with the starting state. As t→ ∞ the opposite

occurs, and as st → 0, (9) puts mass one on the component Γβ
α which coincides with the

prior. See Papaspiliopoulos, Ruggiero and Spanò (2016), Section 1.3 for an illustration of

this point.
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A similar interpretation as that for the Fleming–Viot case holds here. Despite the tran-

sition function expansion of the Dawson–Watanabe process is in the form of an infinite

series, under these assumptions on the data collection the propagation operation (5) can

be reduced to a finite operation. The weights of the mixture have a different form, and in

particular they also feature a deterministic component St which has no analog in (5). The

alternation of Bayesian updating and propagation leave therefore the marginal law of Zt

inside the family of finite mixtures of gamma random measures.

In order to obtain the transition function from (9), as done for the Fleming–Viot process,

let l := m − i, and assume that, as |m| → ∞, |m|/s → |z| > 0. Then, since St →

β
(

eβt/2 − 1
)−1

, we have

|m|
St
s

→
β|z|

eβt/2 − 1
.

The Poisson limit property of the binomial distribution now implies that

Bin(|l|; |m|, p(t)) → Po

(

|l|
∣

∣

∣

β|z|

eβt/2 − 1

)

and one can see that (9) converges to the transition function (7) as expected.
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de Saint-Flour XXXIX. Lecture Notes in Math. 2012. Springer.

ETHERIDGE, A.M. (2000). An introduction to superprocesses. University Lecture Series, 20. American

Mathematical Society, Providence, RI.

ETHIER, S.N. and GRIFFITHS, R.C. (1993). The transition function of a Fleming–Viot process. Ann. Probab.

21, 1571–1590.

ETHIER, S.N. and GRIFFITHS, R.C. (1993b). The transition function of a measure-valued branching diffusion

with immigration. In Stochastic Processes. A Festschrift in Honour of Gopinath Kallianpur (S. Cambanis,

J. Ghosh, R.L. Karandikar and P.K. Sen, eds.), 71-79. Springer, New York.

ETHIER, S.N. and KURTZ, T.G. (1993). Fleming–Viot processes in population genetics. SIAM J. Control

Optim. 31, 345–386.

FAVARO, S., RUGGIERO, M. and WALKER, S.G. (2009). On a Gibbs sampler based random process in

Bayesian nonparametrics. Electron. J. Statist. 3, 1556–1566.

FERGUSON, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209–230.
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SPANÒ, D. and LIJOI, A. (2016). Canonical correlations for dependent gamma processes. arXiv:1601.06079.
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