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Abstract
Immuno-oncology has emerged as a new prominence in oncology. Common immunotherapy ap-

proaches include cancer vaccine, effector cell therapy and T-cell stimulating antibodies. Checkpoint
inhibitors such as CTLA-4 and PD-1 antagonists have shown promising results in multiple indica-
tions in solid tumors and hematology. However, the mechanisms of action of these novel drugs pose
unique statistical challenges in the accurate evaluation of clinical safety and efficacy, including late-
onset toxicity, dose optimization, evaluation of combination agents, pseudoprogression, delayed
and lasting clinical activity. Traditional statistical methods may not be most accurate or efficient.
There is high unmet need to develop the most suitable statistical methodologies to efficiently de-
velop cancer immunotherapies. In this paper, we summarize these issues and discuss alternative
methods to meet the challenges in the clinical development of these novel agents for both safe-
ty and efficacy endpoints. For safety evaluation, we propose using the time-to-event model-based
design to handle late toxicity, a simple three-step procedure for dose optimization, and flexible
rule-based or model-based designs for combination agents. For efficacy evaluation, we propose
alternative endpoints/designs/tests including optimal designs for time-specific probability endpoint,
restricted mean survival time, generalized pairwise comparison, immune-related response criteria
and weighted log-rank test. Benefits and limitations of these methods are considered and some rec-
ommendations are proposed for applied researchers to implement these methods in clinical practice.
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1. Introduction

Immuno-oncology is a fast-growing and exciting research area in oncology. Immunother-
apies work by harnessing the immune system to induce anti-tumor response. Immuno-
oncology has been in the limelight over the past several years thanks to the breakthrough
of checkpoint inhibitors including CTLA-4 and PD-1 antagonists that have demonstrated
dramatic and durable activity in multiple indications of solid tumors and hematology.

Cancer cells can bind to T-cells and turn off their ability to detect and kill tumor cell-
s. Immunotherapies can block tumor cells from deactivating T-cells. Depending on the
mechanism of actions, there are a number of approaches to cancer immunotherapies, in-
cluding cancer vaccine, effector cell therapy and T-cell stimulating therapy (2015 PMDA
guidance). Unlike childhood vaccine aiming at preventing diseases, cancer vaccines are
aimed at treating cancer on patients who have it. The idea is to prompt the immune system
to attack the disease by presenting it with some piece of the cancer. Effector (adoptive) cell
therapies work by removing immune cells from the body, altering them genetically to fight
cancer, multiplied then transferred back to the human body to boost their anti-cancer effect.

Most success has come from checkpoint inhibitors which are T-cell stimulating thera-
pies. Checkpoint inhibitors are inhibitory antagonists that block inhibitory receptors such
as CTLA-4 and PD-1. By releasing the brake on the immune system, they can boost the
immune system and have so far led to high therapeutic benefits in many patients. Con-
trary to this approach, stimulatory immunotherapies are agonist antibodies against immune-
stimulating molecules such as 4-1BB, OX-40 and GITR, which are inductively expressed
mainly on activated T cells and serve as receptors transmitting stimulatory immune signals.
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Despite the tremendous success in clinical trials and the result of remarkable and durable
responses observed in multiple cancer indications, the unique mechanisms of action of
these novel drugs pose unique statistical challenges in the accurate evaluation of clinical
safety and efficacy, including late-onset toxicity, dose selection, pseudoprogression, de-
layed and lasting clinical activity. Traditional statistical methods may not be most accurate
or efficient.

In this paper, we discuss these issues and propose alternative methods to meet these
challenges in the clinical development of cancer immunotherapies. Section 2 describes the
statistical challenges and considerations in safety studies of immunotherapies, followed by
efficacy challenges and considerations in Section 3. Section 4 concludes with a discussion.

2. Statistical Challenges and Considerations in Safety Studies of Immunotherapies

The main statistical challenges in safety trial of cancer immunotherapies are management
of toxicity, dose optimization and evaluation of immunotherapy combinations.

Unlike chemotherapies that attach tumor cells directly, immunotherapies target the im-
mune system to elicit effect on cancer cells. The indirect effect could lead to late or cu-
mulative effect on both safety and efficacy outcomes. For safety evaluation, one concern is
late-onset toxicity beyond the traditional first-cycle DLT observation window. Traditional
dose finding designs making dose escalation and de-escalation decisions based upon Cycle
1 of treatment may fail to adequately assess the safety profile of the experimental drug.

Due to the life-threatening nature of cancer, a higher degree of drug toxicity (often re-
ferred as dose limiting toxicity [DLT]) is generally considered acceptable. It is commonly
assumed higher dose will lead to higher toxicity. However, for drug exposure and efficacy,
the same assumption may not hold for cancer immunotherapies, especially for stimulatory
antibodies. It is possible that efficacy could go up first and then go down due to overstimula-
tion of the immune system. As a result, the optimal dose may not be the maximum tolerated
dose (MTD) because higher dose may have higher toxicity but less clinical activity.

It is also appealing to combine two or more immunotherapy agents to elicit synergistic
effect to maximize the immune activity, creating a so called Immunotherapy ”cocktail”.
However, complexity of the design of a phase I trial increases exponentially with the num-
ber of different drugs included in the combination strategy.

2.1 Time-to-Event Continual Reassessment Method for Late-Onset Toxicity

It is desirable to consider a DLT or AE evaluation window of multiple cycles to account
for delayed toxicities due to late and cumulative effect of immunotherapies. However, dose
finding trials are sequential in nature, and a long DLT window will lead to long observation
time and patients are susceptible to early drop-out (which usually requires replacement).
Furthermore, trial accrual is subject to opening and closing which may pose additional risk
to the success of the study.

To address this challenge, a time-to-event continual reassessment method (TITE-CRM)
(Cheung and Chappell, 2000) should be considered as a potential dose finding design in
safety trials. On top of the conventional CRM method (O’Quigley et al., 1990), TITE-
CRM utilizes a time-to-event approach by employing a weight function (conditional prob-
ability of having a DLT during follow-up given it does occur within the DLT window) in
the weighted binomial likelihood function, and can be open to accrual continually, while
making timely dosing decision based on data from all treated patients. The weight (from 0
to 1) is an increasing function of the follow-up time of the patient, and if a DLT occurs, the
weight becomes 1. Patients with incomplete follow-up will be incorporated into the statis-
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tical model without holding enrollment and thus this method results in a faster enrollment
and shorter trial. Variations of TITE-CRM have been developed. Mauguen et al. (2011)
presented a hybrid design (TITE-EWOC) by introducing the time-to-event approach in the
Escalation with Overdose Control (EWOC)method (Babb et al., 1998).Yuan and Yin (2011)
proposed an expectation-maximization (EM) CRM approach to handling late-onset toxici-
ty. Wages et al. (2013) extended the TITE-CRM design in the presence of partial ordering
for a drug combination trial. Liu et al. (2013) proposed a data augmentation design (DA-
CRM) for delayed toxicity by treating the unobserved toxicities as missing data. Huang
and Kuan (2014) proposed an adaptive weight function from patients’ cyclical safety data
to describe the cycle-toxicity pattern by using a Multinomial-Dirichlet conjugate.

Figure 1 illustrates the potential time saving from the TITE-CRM method by simu-
lations when the DLT evaluation time is 2 treatment cycles of 8 weeks, compared to the
conventional CRM design and the standard 3+3 design. It is assumed patients are available
when enrollment is open. For simplicity, the probability of DLT for patient i is linear up
to patient number 16 with DLT rate capped at 25% afterwards. It is also assumed an early
drop-out rate of 15% and the time delay due to early drop-out (which applies to both the
3+3 design and conventional CRM) follows a normal distribution with mean of 3 weeks
and standard deviation of 1 week: N(3, 1). For practical consideration, a short enrollment
pause is assumed for TITE-CRM when a DLT is observed. Three scenarios of TITE-CRM
are presented when enrollment pause follows a normal distribution with expected pause
due to DLT of 1, 2 or 3 weeks, and standard deviation of one-third of the expected pause:
N(k, k3 ), k = 1, 2, 3. Two versions of CRM with altered cohort sizes are compared: CRM
(1) and CRM (3) with cohort size of 1 and 3 respectively. The shaded areas are the 95%
confidence limits. The simulation results demonstrate the apparent advantage of using a
time-to-event endpoint to shorten the trial duration when the DLT evaluation window is
long or when there is a non-negligible rate of loss-to-follow-up.

The TITE-CRM design using a cyclical adaptive weight function (Huang and Kuan,
2014) has been successfully implemented in some immunotherapy studies, including 4
ongoing/completed trials sponsored by Pfizer. To facilitate decision making in a transparent
and systematic manner, it is recommended that a dose escalation steering committee be
established for each study, with a charter written to document the trial conduct process and
operational procedures. Details and additional considerations on practical implementation
of the TITE-CRM design and other novel dose finding designs are discussed in a recent
paper (Huang et al., 2016).

2.2 Statistical Considerations for Dose Optimization

Another challenge in the evaluation of immunotherapies is the selection of dose for sub-
sequent investigation of clinical activity, or dose optimization. The current practice in
oncology trials is to first estimate the MTD, and then further test it in an expansion cohort.
However, depending on the mechanism of the drug, the MTD may not be the most effica-
cious dose, but definitely at least as toxic as the lower doses. In addition, the MTD may
not be able to be identified for some agents (e.g. PD-1 or PD-L1 checkpoint inhibitors) due
to their benign safety profile. Therefore, some work need to be conducted for dose opti-
mization as opposed to following the traditional MTD paradigm in dose escalation safety
trials.

There are novel methods (Braun, 2002; Thall and Cook, 2004; Fox et al., 2002; Pianta-
dosi and Liu 1996; Mandrekar et al., 2007; Polly and Cheung, 2008) developed looking at
composite endpoints such as safety plus efficacy (or biomarker/PK endpoint) as a way to
prospectively select the optimal dose that is safe and efficacious. However, despite the great
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Figure 1: Simulated trial durations comparing the TITE-CRM method with the 3 + 3 design
and conventional CRMmethods. CRM(1) and CRM(3) correspond to cohort size of 1 and
3 respectively.

efforts by researchers, the use of these novel methods in practice is very limited. There are
several reasons behind this. First of all, efficacy requires a much longer follow-up than safe-
ty, making sequential dose escalation/de-escalation more difficult. Secondly, unlike safety,
efficacy is sensitive to patient heterogeneity and the efficacy profile varies dramatically in
different populations. In addition, response occurrence is usually scarce in phase I dose
escalation trials to produce the data needed for model fitting. Furthermore, these designs
are complex Bayesian model-based methods that are computationally intensive with many
parameters, making practical implementation challenging.

Alternatively, we propose a practical and pragmatic approach for dose optimization in
a 3-step procedure:

1. Implement a Bayesian model-based method to prospectively assess safety. The ad-
vantage of a model-based approach is the possibility of allowing flexible definition
of the MTD according to the mechanism of action (e.g. instead of targeting 33%
DLT rate as for cytotoxic drugs, one can target 20% or 15% DLT rate), or revise the
DLT definition by including clinically relevant Grade 2 adverse events.
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2. Conduct adequate retrospective analysis of PK, evaluate relevant PD biomarkers,
investigate the dose-exposure relationship and assess early efficacy signal to have a
good understanding of the totality of the data.

3. Evaluate efficacy of 1-3 doses in the expansion cohort in a homogeneous patient
population, and randomize patients to the selected dose groups. One can use fixed
randomization, or use response adaptive randomization to assign more patients to
potentially more effective doses.

Compared to the designs that prospectively assess safety and efficacy in both dose es-
calation and final dose selection, this pragmatic approach may take longer and require more
patients. However, it does not rely on complex statistical models (only parsimonious safety
models) and can be implemented easily. It also provides reasonable confidence moving
forward in further testing of the treatment in randomized controlled studies. Therefore, the
design may be considered as an alternative approach to other novel methods.

2.3 Statistical Considerations for Combination of Immunotherapies

Clinical trials for combination of agents have become increasingly common in recent years,
especially in the field of immuno-oncology, as it is believed that combining an immunother-
apy with chemotherapies, targeted therapies or other IO agents could elicit synergistic ef-
fect and significantly boost efficacy. A combination of drugs can target cancer cells that
have different drug susceptibilities, achieve a higher intensity of dose if the drugs have
non-overlapping toxicities and reduce the likelihood of drug resistance (Dancey and Chen,
2006). However, complexity of the design of a phase I trial increases exponentially with the
number of different drugs included in the combination strategy. When drugs in combina-
tion have different mechanisms of action or non-overlapping toxicities, the recommended
dose for phase II for the combination may be close to the recommended dose of each drug
given as a single agent. However, as the biological effects of the combination may be quite
complex and the PK/PD drug-drug interaction between the agents is largely unknown, it
is often difficult to administer at the recommended dose of each drug given as a single
agent. Furthermore, unlike single-agent dose escalation where monotonicity is generally
assumed to be true, in drug combination only partial ordering is known for the dose-toxicity
relationship.

A number of escalation strategies have been proposed in the literature and were de-
scribed in Harrington et al. (2013). For dual-agent combination, when escalation occurs on
both agents (no agent is fixed), the rule-based 3+3 or A+B design can be extended to the
3+3+3 or A+B+C design. Some flexible but more complex model-based designs were also
published with model parameters to account for the inherent complexity of drug combina-
tion in the dose-toxicity relationship (Kramar, et al., 1999; Thall et al., 2003; Huang et al.,
2007; Yin and Yuan, 2009; Wages et al., 2011, Mander and Sweeting, 2015). Choosing the
suitable dose escalation strategy and the right doses remains a challenge in the development
of combination therapies, and it should be determined by the best possible scientific and
clinical practice rationale.

3. Statistical Challenges and Considerations in Efficacy Studies of Immunotherapies

There are a number of statistical challenges in efficacy studies of immunotherapies. First of
all, unlike chemotherapies and targeted therapies, immunotherapy agents have an indirect
effect on cancer cells. As a result, it is not uncommon to observe initial pseudoprogres-
sion followed by tumor regression and clinical activity. Response to treatment may also
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demonstrate immune-related patterns that cannot be fully characterized by standard RE-
CIST criteria. Secondly, the proportional hazard assumption used in power calculation of
time-to-event endpoints is unlikely to hold for immunotherapies. Due to the delayed and
durable anti-tumor effect on cancer cells, the survival curves may take a while to separate
and the curve of the immunotherapy agent can have a very long tail. Therefore, the log-
rank test may not be the most appropriate test and the hazard ratio (HR) may be difficult to
interpret. Furthermore, there could be a weak or negative correlation between short-term
surrogate endpoint of time-to-progression (TTP) and progression-free survival (PFS) with
the long-term survival endpoint. Treatments may prolong survival but not imaging-based
surrogate endpoint, as is the case in recent phase 3 trials of nivolumab in advanced nonsqua-
mous non-small-cell lung cancer and renal cell carcinoma (Borghaei et al., 2015; Motzer et
al., 2015).

In recent years, the oncology community are looking for alternative endpoints and s-
tatistical methods and moving beyond the HR to summarize treatment effect (e.g., Uno et
al., 2014; Hoos et al., 2010; Buyse, 2010) Some of these methods related to cancer im-
munotherapies include using time-specific probability endpoint (landmark endpoint), us-
ing restricted mean survival time (RMST) to summarize treatment effect, implementing
immune-related response criteria (irRC), extending the Wilcoxon MannWhitney statistic
for generalized pairwise comparison, and performing weighted log-rank test for hypothesis
testing.

3.1 Time-Specific Probability Endpoint

There are a number of benefits in using a time-specific survival probability endpoint (e.g.
12-month PFS, 2-year OS). We can potentially assess benefit risk early if the median time-
to-event is long, an appealing feature particularly in phase 2 proof-of-concept (POC) s-
tudies. Unlike time-to-event endpoints, a time-specific probability endpoint is not event
driven, thus operationally more predictable with respect to the timeline of interim and final
analyses. When delayed treatment effect exists, selection of a landmark timepoint after the
curves separate may provide greater statistical power. Unlike the HR, the interpretation of
the time-specific probability endpoint is easy even when there is large departure from the
proportional hazard assumption. Recent European Medicines Agency draft guidelines on
the evaluation of anti-cancer medicinal products (EMA,2011) noted that progression would
be observed at a slow rate for some conditions, so event rates at a specified fixed time might
be appropriate.

One obvious limitation is that it does not capture the entire survival distribution as it
only evaluates the probability of event occurrence at one landmark time, the selection of
which may be arbitrary. Under the proportional hazard assumption, the hypothesis test
based upon the time-specific probability has lower statistical power and requires a larger
sample size compared to the log-rank test (Huang and Thomas, 2014) because the latter
evaluates all the data up to the time when the maximum number of events is achieved. Since
efficacy studies often include interim analysis for early stopping, one major limitation of the
time-specific probability endpoint is that patients need to be followed for a fixed period (up
to the landmark time) for endpoint availability, which is a significant operational challenge
in multi-center multi-regional clinical trials.

3.1.1 Optimal Designs with Interim Analysis for Time-Specific Probability Endpoint

To address the statistical and operational challenge of the need for conducting interim anal-
ysis, statistical designs utilizing the Nelson-Aalen estimator (Nelson 1969) of the time-to-
event distribution have been proposed (Lin et al., 1996; Case and Morgan, 2003; Huang,
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Talukder and Thomas, 2010; Huang and Thomas, 2014).
Huang et al. (2010, 2014) propose a class of optimal designs for time-specific proba-

bility endpoint. The design can be set up in both the single-arm and two-arm randomized
settings that allow 1 or 2 interim analyses. Optimality is defined as minimizing the ex-
pected sample size or expected the study duration under the null hypothesis. The variance
term of the test statistic Z(x; t) depends on the survival distribution which is assumed to be
weibull. x is the landmark time and t is the study time. Z(x; t) follows a stochastic Gaus-
sian process and the joint distribution of Z(x; t1) and Z(x; t2) is asymptotically bivariate
normal with correlation coefficient of ρ =

√
I(x; t1)/I(x; t2) at t1 < t2, where I(x; t)

corresponds to the Fisher information at study time t. Early stopping for either efficacy or
futility is built into the optimal design. Another nice feature of the design is that it assumes
flexible accrual distribution (piecewise uniform) and allows a brief preplanned pause (≥ 0)
in accrual before interim analyses to more efficiently use data from the accrued patients,
and to allow focused data collection before the interim analyses. An R package OptInterim
was developed (https://cran.r-project.org/) that creates the optimal designs and also simu-
lates their properties to check asymptotic approximations and the robustness of the designs
to differing conditions.

3.2 Restricted Mean Survival Time

The difference or ratio of restricted mean survival time (RMST) (Irwin, 1949; Zucker,
1998) is an alternative between-group statistical measurement of time-to-event endpoint to
the commonly used HR. The RMST µ(τ) is the mean survival time truncated by a specific
time τ and is simply the area under the survival curve S(t) from t = 0 to t = τ .

µ(τ) =

∫ τ

0
S(t)dt (1)

where S(t) can be estimated by the Kaplan-Meier method from the actual data. µ̂(τ) =∫ τ
0 Ŝ(t)dt approximately follows a normal distribution with its variance term derived as in

Klein and Moeschberger (2005).
The RMST depends on the selection of time τ , which need to be pre-specified to avoid

the introduction of bias. Common selections include fixed landmark times of clinical rele-
vance (e.g. x-year), minimum of the largest observed event time in each of the two groups
(Trinquart et al., 2016), or minimum of the largest observed time (event or censoring) in
each of the two groups.

RMST-based statistical measures do not rely on any model assumptions. Thus, when
there is departure from the proportional hazard assumption, the interpretation is still s-
traightforward. In contrast, the HR varies by time and the value derived from the Cox-PH
model cannot be interpreted as the average HR across times. Furthermore, unlike median
event-free time and time-specific probability endpoint, the RMST can capture the entire
event-free distribution up to time τ as the area under the Kaplan-Meier curve. Important-
ly, both the difference and ratio in RMST provide a clinically meaningful summary of the
group difference in a randomized study. Unlike the HR, the difference allows for quantify-
ing the absolute survival difference and the magnitude of clinical benefit. The capability of
dual presentation of both relative and absolute measures is an important benefit of using the
RMST. The lack of absolute measure from the HR is a major limitation in the evaluation
of benefit-risk profile of the experimental drug, particularly when the absolute measure of
time to event is small.

One limitation of the RMST is that its value depends on the truncated time τ , which
should be clinically meaningful and closer to the end of the study follow-up so that the
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majority of survival outcomes will be covered by the time interval. Due to censoring and
early events, the number of patients in the later part of the curve is small, resulting in
increased variability of the curve shape by a small number of events. A curve based on
the RMST over time RMST(t) (t ∈ [τ1, τ2]) as an alternative summary to the survival
function can be considered. The RMST curve can be constructed for each arm and for the
difference in RMST between the treatment arm and the control arm. It provides a temporal
profile of RMST or difference of RMSTs for evaluating the benefit of the experimental
treatment over the control treatment over time and overcomes the restriction of selecting
a single truncated time τ . The time interval [τ1, τ2] can be selected to reflect the window
of clinical relevance. For example, τ1 can be selected as the minimum of (median survival
time for the experimental arm, median survival time for the control arm), and τ2 can be
selected as the minimum of (largest observed survival time for the experimental arm, largest
observed survival time for the control arm). Zhao et al. (2016) proposed inference based on
simultaneous confidence bands for a single RMST curve and also the difference between
two RMST curves.

Trial design and sample size calculation solely based on the RMST is not easily attain-
able, and depends heavily on assumptions. The precise relationship between the amount
(and pattern) of censoring and the variance term of RMST is complex with no closed for-
m derivation. In a typical trial with censoring induced by staggered entry of patients, for
example, it is unclear how to determine realistic within-group variances (Royston and Par-
mar, 2011). As a result, it is recommended to design the trial based on the log-rank test and
perform the RMST analysis whether or not the proportional hazard assumption is met.

3.3 Immune-Related Response Criteria

Unlike other cancer therapies, immunotherapies may have an indirect effect on cancer cells
because of the mechanism of action specific to cancer immunotherapies. As a result, it is
not uncommon to observe initial pseudoprogression followed by tumor regression and clini-
cal activity. Response to treatment may demonstrate immune-related patterns that cannot be
fully characterized by standard RECIST criteria. First observations of this immune-related
response patterns were identified in anti-CTLA4 agents ipilimumab and tremelimumab in
melanoma (Wolchok et al., 2008; Healey et al., 2010). Patients were allowed to continue
treatment after initial progression due to enlarged lesions or new lesions. The early pro-
gression could be enlargement of target lesions, appearance of new lesions, and progression
on non-target lesions. Subsequent responses compared to baseline and shrinkage of new
lesions were observed in some patients. Some responses were quite durable.

To better quantify the clinical activity observed in patients treated with cancer im-
munotherapies, immune-related response criteria (irRC) were proposed as criteria for tumor
regression, in both unidimensional (irRECIST) and bidimensional (irWHO) measurements
(Wolchok et al., 2009; Nishino et al., 2013). Immune-related objective response (irOR) and
immune-related PFS (irPFS) can be determined using these criteria. It may be necessary to
use irRC and other new criteria in some cases, which may provide higher correlation with
OS than the RECIST/WHO criteria, as demonstrated in melanoma. However, more experi-
ences with irRC in patients treated with next-generation immunotherapies and in different
indications are needed to better understand the mechanics and whether such criteria offer
additional clinical relevant data to assess the benefit-risk of these novel treatments.

3.4 Generalized Pairwise Comparison

Buyse (2010) proposed a generalized pairwise comparison method, an extension of the
U-statistic of the Wilcoxon-Mann-Whitney test for the comparison between two groups
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of observations. The observations can be outcomes of any type (e.g. discrete, continuous,
time to event). Let Xi be the outcome of the ith subject in the treatment arm (i = 1, . . . , n),
Yj be the outcome of the jth subject in the control arm (j = 1, . . . ,m).

Uij =


+1 if(Xi, Yj)pair is favorable
−1 if(Xi, Yj)pair is unfavorable
0 otherwise

(2)

Let U = 1
mn

∑n
i=1

∑m
j=1 Uij . Then U is the difference between the proportion of favorable

pairs and the proportion of unfavorable pairs, or called the ”net chance of a better outcome”
∆. The empirical distribution of test statistic U can be obtained by permuting the treatment
labels in order to construct confidence intervals and obtain p-value.

The generalized pairwise comparison method offers an alternative approach to standard
non-parametric tests for the two-sample problem. It naturally leads to a patient-relevant,
general measure of treatment effect, and allows for testing of differences thought to be
clinically relevant. For survival analysis of time-to-event endpoint, this method can be used
to assess the benefit-risk of new cancer immunotherapies whether or not the assumption of
proportional hazards is met, with ∆ being an intuitive measure interpreted as the net chance
of longer survival by certain month (Peron et al., 2016). One limitation of this method
is the lack of closed analytical form of the test statistic distribution, making derivations
of statistical significance and confidence intervals computationally intensive, especially in
simulations.

3.5 Weighted Log-Rank Test

The Log-rank test is the most commonly used statistical test for comparing survival curves.
It assigns constant 1 as the weight function in the test statistic for each event. Alterna-
tively, weighted log-rank test assigns unequal weights to events, with the choice of weight
function being the number of patients at risk, function of time, or a function of the survival
distribution. The log-rank test is aimed at detecting a consistent difference between hazards
in the two groups and is best placed to have optimum power when the proportional hazard
assumption applies.

For immunotherapy agents, as it takes time for immune activation and building of an
immune response, the survival curves of the two treatment arms may take a while to sep-
arate and the curve tail of the experimental arm may be long due to the durable responses
experienced by some patients. The idea of using weighted log-rank test is that putting more
weights on the curve tails (late events) may provide us higher statistical power.

Fleming and Harrington (1981) proposed a very general class of tests that includes, as
a special case, the log-rank test. Their weight function is given by

Wp,q(ti) = Ŝ(ti−1)
p[1− Ŝ(ti−1)]

q, p ≥ 0, q ≥ 0 (3)

where Ŝ(ti−1) is the Kaplan-Meier survival function at the previous death time. When
p = q = 0, we have the log-rank test. When p = 1 and q = 0, we have a version of the
Mann-Whitney-Wilcoxon test. When q = 0 and p > 0, these weights give the most weight
to early departures between the hazard rates, whereas, when p = 0 and q > 0, these tests
give most weight to departures which occur late in time (Table 1).

The benefits of using weighted log-rank test for late separation is that, it will yield po-
tentially higher statistical power. It is also in the same non-parametric testing framework as
log-rank test, with log-rank test as the special case. However, there are several limitations.
One major concern is the introduction of bias with manipulation of the weight selection,
which may face regulatory hurdles in the acceptance of the test result and interpretation of
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Table 1: Fleming-Harrington Test.

Parameter values Test statistic Weighting summary
p = 0, q = 0 Log-rank test Equal weighting
p = 1, q = 0 Wilcoxon test Most weight on early deviations
p > 0, q = 0 Fleming-Harrington test Most weight on early deviations
p = 0, q > 0 Fleming-Harrington test Most weight on late deviations

Table 2: Statistical challenges and considerations in safety and efficacy evaluation of can-
cer immunotherapies.

Challenges Considerations

Safety

management of late/cumulative toxicity, TITE-CRM design with multiple treatment cycles
MTD not identified, revise the MTD definition and

broaden the DLT criteria
dose optimization randomized dose-response analysis of

safety, efficacy, PK and PD
combination of agents statistical designs that account for

partial ordering

Efficacy

pseudoprogression, Alternative methods:
immune-related response, time-specific probability endpoint,
non-proportional hazard, weak/negative restricted mean survival time,
correlation between PFS and OS generalized pairwise comparison,

irOR, irPFS,
weighted log-rank test,
co-primary endpoint of OS and PFS

the data. Using the weighted log-rank test is also a double-edged sword because it may
lose power if the curve assumption is wrong (e.g. bigger early separation, smaller late sep-
aration). Another major limitation is the lack of corresponding measure of difference as
opposed to using the HR under the proportional hazard assumption.

4. Discussion

The clinical development of cancer immunotherapies pose unique statistical challenges in
both safety and efficacy evaluations. In this paper, we present some alternative methods
and statistical considerations to address these challenges, as summarized in Table 2.

The main challenges in early safety studies include management of late-onset toxicity
beyond 1st cycle of treatment, dose optimization and evaluation of combination agents.
It is recommended that a Bayesian model-based time-to-event design using the continual
reassessment method be implemented to capture late or cumulative toxicities without a sig-
nificantly prolonged trial and to handle missing data due to patient drop-out. On the other
hand, the MTD may not always be identifiable for novel immunotherapy agents, particu-
larly T-cell stimulatory antibodies, and higher dose may not provide clinically improved
activity to patients. A pragmatic three-step procedure is proposed to select the recommend-
ed dose for further investigation of the benefit-risk profile of the experimental treatment,
by prospectively evaluating safety in dose escalation, retrospectively assessing efficacy, PK
and PD data, and prospectively testing multiple doses via randomization. The proposed
methods have been utilized in clinical practice and are accepted by health authorities.
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In efficacy trials of cancer immunotherapies, selection of adequate statistical design,
analysis method and hypothesis test is of paramount importance to assess the clinical activ-
ity of these novel agents. The traditional methods for the evaluation of chemotherapies and
targeted therapies may not be most appropriate or efficient. Alternative methods related to
cancer immunotherapies should be considered in suitable settings. Some of these method-
s include using time-specific probability endpoint, using restricted mean survival time to
summarize treatment effect, implementing immune-related response criteria, extending the
Wilcoxon-Mann-Whitney statistic for generalized pairwise comparison, and performing
weighted log-rank test for hypothesis testing.

There are additional practical approaches to further de-risk in the design of randomized
pivotal studies by taking into consideration the unique mechanisms and patterns of efficacy
assessment in immuno-oncology. For instance, the timing of interim and final analyses
and choice of futility boundaries should be determined with great caution to reduce the
risk of inflating the probability of making a false negative decision. Simulations are also
important and should be conducted routinely to evaluate the operating characteristics of
the trial design and analysis method in various scenarios, including but not limited to large
departure from the proportional hazard assumption. Piecewise exponential distribution,
weibull distribution or cure rate model can be considered for the survival distribution in
different scenarios.

With the ever increasing cost of conducting clinical trials and increasing discovery of
molecular subtypes of cancer, efficient designs such as umbrella trials and basket trials are
of particular interest as multiple drugs or drug combinations can be assessed in multiple
cancer indications or histologies in the same trial. Specifically, a basket trial design facili-
tates a particular targeted therapeutic strategy (i.e., inhibition of an oncogenically mutated
kinase) across multiple cancer types. Examples are NCI’s Molecular Analysis for Therapy
Choice (MATCH) and the Molecular Profiling based Assignment of Cancer Therapeutics
(MPACT, NCT01827384) trials (Conley and Doroshow, 2014). The concept of a basket
trial design is ideal in immuno-oncology as immunotherapies targeting the immune system
are more likely to work in multiple tumor types. One can utilize a Bayesian approach with
hierarchical models to borrow information across tumor types, or a frequentist approach
with statistical rigor for a confirmatory study (Chen et al., 2016).

In summary, immuno-oncology is an exciting research area that provides both oppor-
tunities and challenges to statisticians. Novel methods have been and are being developed
to meet the challenges and to better assess the benefit-risk profiles of cancer immunothera-
pies. More use of these methods in clinical practice is encouraged to gather more data and
experience in order to be accepted by health authorities.
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