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Abstract 
Tests for interaction are used in clinical trials to find a treatment effect that differs by 
subgroup. In this paper, some of the statistical issues surrounding interaction tests will be 
discussed. It will include the subgroup-specific test, quantitative and qualitative 
interaction, and statistical power. Regarding statistical power on interaction test, we will 
discuss the misconception that there is always less statistical power for interactions than 
main effects. We will also discuss the misconception about the interpretability of main 
effects when there is an interaction.   
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1. Introduction 
 
We are often interested in finding out whether there exists any difference in treatment 
effects between gender and how to detect such difference statistically if it exists. Test for 
interaction is an appropriate statistical method in understanding the difference in 
treatment effects between men and women. . The example below will illustrate the 
importance of having adequate numbers of both men and women being included in the 
trial as well as the fallacy of subgroup-specific test in addressing interaction. 
 
1.1 Example: Results stratified by Gender  
A medical device ABC is an ophthalmic device to treat glaucoma subjects. The goal of 
the study was to assess the safety and effectiveness of the device in lowering intraocular 
pressure (IOP) in glaucomatous eyes in conjunction with cataract surgery, as compared to 
eyes treated with cataract surgery alone. The sponsor conducted a randomized clinical 
trial with one of the primary endpoint being the percent of subjects with at least 20% 
reduction in IOP at 24 month from baseline. Each group received cataract surgery, and 
upon completion of uncomplicated cataract removal IOL implantation, they were 
randomized to receive either the ABC or no device (i.e., cataract-only group). A subject’s 
outcome is considered a success, responder, if 24-month IOP decreases by at least 20% 
from baseline.  The results are shown in the table below.  Using Fisher’s Exact Test, there 
was a significant treatment difference (p-value = 0.0005). In the  following table IOPR 
stands for IOP reduction at 24 months. 
 

 ≥ 20% IOPR < 20% IOPR Total Success % p-value 
ABC 148 133 281 53% 0.0005 
Control 92 150 240 38% 
Total 240 283 521   
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However, if we break it down by gender, we can see some interesting results. For the 
male group, there was a significant treatment effect (p-value=0.006), however no 
significant effect was seen for the female group (p-value=0.1). Does it imply that the 
treatment works for male, but not for female?      
 
For Male Group: 

 ≥ 20% IOPR < 20% IOPR Total Success % p-value 
ABC 105 115 220 48% 0.006 
Control 63 123 186 34% 
Total 168 228 406   

 
For Female Group: 

 ≥ 20% IOPR < 20% IOPR Total Success % p-value 
ABC 43 18 61 70% 0.1 
Control 29 25 54 54% 
Total 72 43 115   

 
Let’s look at two tables more closely. The observed treatment differences are about the 
same between two subgroups. The observed treatment difference for male is 14% (48%-
34%), and that for female is 16% (70%-54%). In fact, the larger effect was observed for 
female. It can also be seen in the graph below.  
 
Figure 1: The treatment and control effect stratified by gender. 
 

 
 
 
 
The reason why we see a non-significant result from female group, even with larger 
treatment effect observed compared to male group, is due to its sample size. The sample 
size for female is much smaller than that for male (115 versus 406). If we double the 
sample size for female to 230, the treatment effect becomes significant (p-value=0.009 < 
0.05). This example illustrates why it is important to have adequate numbers of both men 
and women included in the trial. 
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1.2 Subgroup specific test 
Often the investigators use the subgroup-specific test in determining whether there exists 
a differential treatment effect between men and women. In other words, they construct 
separate hypothesis in each subgroup with the null hypothesis being that there is no 
treatment effect for a particular subgroup. In the previous example, hypothesis was 
constructed separately in each subgroup. Below, the first set of hypotheses in (I) is for the 
male subgroup and the second set of hypotheses in (II) for the female group.  
 

(I) H0m: PmA = PmC   vs. H1m: PmA ≠ PmC   for male subgroup 
 
(II)  H0f: PfA = PfC    vs.  H1f: PfA ≠ PfC     for female subgroup   
 

In the mathematical expression of the null and alternative hypotheses (H0m and H1m) for 
the male subgroup in (I), PmA denotes the percentage of male subjects  assigned to the 
ABC group who achieve at least 20% reduction in IOP, and PmC , the percentage of male 
subjects  assigned to the Control group who achieve at least 20% reduction in IOP. 
Likewise, in (II), PfA denotes the percentage of female subjects assigned to the ABC 
group who achieve at least 20% reduction in IOP, and PfC , the percentage of female 
patients assigned to the Control group who achieve at least 20% reduction in IOP.       

 
The p-values from statistical hypothesis testing of (I) and (II) were reported as 0.006 and 
0.1 for male and female subgroup groups, respectively. The investigators may use these 
subgroup p-values in determining whether there exists a differential treatment effect 
between female and male. They may argue that there is a difference between genders 
because there is a treatment effect in men, but not in women and conclude that the 
treatment works for men, but not for women. This kind of misleading conclusion (which 
is to claim heterogeneity on the basis of separate tests of treatment effects within each of 
the levels of the baseline variable) is commonly seen in clinical trials.  

 
If the overall result is significant, almost inevitably some subgroups will and some will 
not show significant differences depending on chance. Therefore, investigators should be 
cautious when undertaking subgroup analyses. This subgroup-specific test may result in 
inappropriate subgroup claims as it can be seen in the previous example where the 
investigators may claim that the treatment only works for men, but not for women. The 
appropriate statistical analysis to determine whether there exist a differential treatment 
effect between men and women should include the interaction of treatment by gender, 
which will be discussed below.  
 
 

2. Interaction test 
 
Interaction between treatment and gender (or interaction of treatment by gender) may be 
defined as the difference in treatment effects between men and women. The correct 
assessment of the treatment by gender interaction may require the appropriate statistical 
test and adequate sample sizes for the two subgroups. The appropriate statistical test to 
determine whether there exists a differential treatment effect between men and women is 
a test of interaction. In the previous example, the difference in the proportions of subjects 
achieving more than 20% IOP reduction between ABC group and Control group in men, 
or simply the treatment effect in men would be expressed as follows:  
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Treatment effect in men = PmA – PmC    

 
Likewise, the treatment effect in women would be expressed as follows: 

Treatment effect in women = PfA – PfC  
 

A test of interaction is to determine whether these two treatment effects are the same or 
not, and it may be expressed as follows: 

 
H0: PmA – PmC  = PfA – PfC   vs.  H1: PmA – PmC  ≠ PfA – PfC .     
 

If we use Breslow-Day test (one method of testing interaction) for the previous example, 
we obtain the p-value>0.2, and can conclude that the two treatment effects are the same 
between men and women, which leads to the correct conclusion. This example shows that 
why test of interaction is appropriate in understanding the difference in treatment effects 
between men and women.  In summary, Interaction test asks if there are any differences 
in treatment effect between subgroups (appropriate when making inferences from 
subgroup analyses). Subgroup-specific test asks if there is any treatment effect within 
each subgroup. Pocock et al (2002) stated that statistical tests for interaction are the most 
appropriate methods for making subgroup inferences, but are often not used.   
 
 

3. Qualitative and quantitative interaction 
 
There are two different kinds of interaction - “quantitative interaction” and “qualitative 
interaction”. Quantitative interaction means that the treatment is effective in both men 
and women (or treatment effects are in the same direction), but the magnitude of the 
effect is different. Qualitative interaction means that the treatment is effective in one 
gender but ineffective or harmful in the other. Quantitative interaction is model 
dependent and sometimes it is possible to remove them by a transformation of the 
variable. However, qualitative interaction is model independent and may not be removed 
by transformation or any other modeling. The following graphs show these two types of 
interactions.    
 
Figure 2: Quantitative and qualitative interactions  
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4. Power of main effect and interaction 
 
One of the misconceptions about interaction is that there is always less statistical power 
for interactions than for main effects. In this section, we will examine whether this is true. 
Suppose that we have two treatments (T and C), two subgroups (M and F), and let’s 
assume normality and homogeneous variances. There are four population means, μMT , 
μMC , μFT , μFC. The expression μFT – μFC will denote the treatment effect in females and 
μMT – μMC the treatment effect in males. Then, the overall main effect can be written as 
𝜃1= { (μFT – μFC ) + (μMT – μMC ) }/2 and the interaction effects can be written as  
𝜃2= { (μFT – μFC ) – (μMT – μMC ) }/2. 
 
If we let 𝑋�𝑀𝑀 , 𝑋�𝑀𝑀 ,  𝑋�𝐹𝑀 , and 𝑋�𝐹𝑀 denote the point estimates of four population means 
observed in the trial, then the main and interaction effects can be estimated as follows: 
𝜃�1 = {(𝑋�𝐹𝑀 − 𝑋�𝐹𝑀) + (𝑋�𝑀𝑀 − 𝑋�𝑀𝑀)}/2 
 
𝜃�2 = {(𝑋�𝐹𝑀 − 𝑋�𝐹𝑀) −(𝑋�𝑀𝑀 − 𝑋�𝑀𝑀)}/2.  
 
We can immediately see that θ�1 and  θ�2 have the same standard error. Let’s calculate 
the power of main effect and interaction, and compare: 
  
𝐻0 :  𝜃1 = 0 vs. 𝐻1 :  𝜃1 ≠ 0 at significance level 𝛼   
 
𝑃𝑃𝑃𝑃𝑃 for main effect = 𝑃(reject 𝐻0 when 𝐻1 is true) 
              = 2𝑃( 𝑍 > 𝑧𝛼 −  𝜃1

𝑠.𝑒.(𝜃�1)
 ),  

 
Similarly, power for interaction effect =  2𝑃( 𝑍 > 𝑧𝛼 −  𝜃2

𝑠.𝑒.(𝜃�2)
 ) 

 
We notice that the power for main effect and interaction are equal as long as  θ1 =  θ2. 
Therefore, mathematically speaking, we cannot say that there is always less statistical 
power for interactions than for main effects.  
 
However, in the real situation, it is less likely that θ1 =  θ2.  Let’s consider the situation 
where the treatment effects for females and males are 10 and 4, respectively. In this 
situation, the main effect will be 7 since it is the average of the treatment effects for 
females and males. And, the interaction effect will be 10/2 – 4/2 = 3. The only way the 
interaction term equals 7 is if you get all the treatment effect in one subgroup and none in 
the other: 14/2 – 0/2 = 7, which is unlikely in practice.  
 
We have used simulation to illustrate the difference in statistical power between the main 
and interaction effects. The following graph shows that the simulated power for the main 
and interaction power when the significance level is 0.05 (the left graph) and 0.15 (the 
right graph). These two graphs also show that the interaction effect has less statistical 
power compared to the main effect.   
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Figure 3: Simulated power for the main and interaction power when the significance 
level is 0.05 (the left graph) and 0.15 (the right graph) 

 
 
 

5. Effect and Dummy Coding 
In this section, we will discuss the misconception about the interpretability of main 
effects when there is an interaction. The question is whether interaction always makes 
main effect uninterpretable. This problem is related to the coding of the categorical 
variables, that is, effect and dummy coding.  
 
A designed experiment is orthogonal if the effects of any factor balance out (sum to zero) 
across the effects of the other factors. Effect coding for orthogonality guarantees that the 
effect of one factor or interaction can be estimated separately from the effect of any other 
factor or interaction in the model. With dummy coding the estimate of the interaction is 
fine but main effects are not "true" main effects but rather what are called simple effects, 
i.e., the treatment effect at one level of the subgroup. With an interaction of two 
categorical variables, effect coding provides some benefits. The primary benefit is that 
you get reasonable estimates of both the main effects and interaction using effect coding. 
Let’s illustrate this using the simple example. Suppose we have a following model with 
two main effects and its interaction:   
 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽12𝑋1𝑋2 + 𝜀, 
 
where 𝑋1 and 𝑋2 denote gender and treatment. 
 
Let’s consider an effect coding with 0.5 and -0.5, that is male=0.5, female=-0.5, 
treatment=0.5, CNT=-0.5). The treatment effect for female can be written as: 

 
E(𝑌|𝑋1=-0.5, 𝑋2=0.5)-E(𝑌|𝑋1=-0.5, 𝑋2=-0.5)= 𝛽2 - 0.5 𝛽12,  

 
and the treatment effect for male can be written as: 
 E(𝑌|𝑋1=0.5, 𝑋2=0.5)-E(𝑌|𝑋1=0.5, 𝑋2=-0.5)= 𝛽2 + 0.5 𝛽12.  
 
In this example, the main effect will be 𝛽2, and the interaction effect will be  - 𝛽12/2. 
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With a dummy coding with 0 and 1, that is, female=0, male=1, control=0, and 
treatment=1, the main effect can be written as: 
                                                 ( 𝛽2 + ( 𝛽2 + 𝛽12) )/2 = 𝛽2 + 𝛽12/2,  
 
and the interaction effect as - 𝛽12/2. 
 
In summary, with effect coding, the estimates of the main effects are "true" main effects 
regardless of the presence of interaction, and interaction can be estimated separately from 
the main effects. However, that is not true with dummy coding.  
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