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Abstract
A paradigm providing a context for Statistical Analysis is that we want to proceed from Data to

Information to Knowledge to Decisions, with Statistical Analysis occurring primarily between Data
and Information. A paradigm, found in papers and textbooks, for the new “Predictive Analytics”,
is: Description / Prediction / Prescription. In the discussion itself, we mentioned some precursors to
the elements of the predictive-analytics paradigm. In this proceedings paper, we go into a bit more
detail and include some material on Compound Models and Predictive Distributions.
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1. Introduction and Background
This Roundtable Discussion was sponsored by the Section on Risk Analysis. I was invited
by Professor Susan Simmons (North Carolina State University), former section chair, and
Professor Yishi Wang (University of North Carolina - Wilmington), an organizer for the
section’s program, to present a roundtable discussion. I’ve recently been active in curricu-
lum development and teaching in our new MS in Business Analytics at UIC and so decided
to discuss some aspects of the related field of Predictive Analytics.

Background on the Risk Analysis Section. The Risk Analysis section grew out of a review
boad of the U.S. Nuclear Regulatory Commission) on LPHR – low probability, high risk – events.
Among the members of the committee were Bernie Harris, Lee Abrahamson, Harry Martz and Lisa
Weissfeld.

When their work was done, rather than disband altogether, they decided to petition to form a
new section of ASA, the Section on Risk Analysis. Bernie Harris and I were well acquainted through
previous statistically-related activities. Bernie asked me to sign the petition for the formation of the
new section. He said that they needed someone from a business school (which I am – though I
also have taught in the Math department and the Division of Epidemiology & Biostatistics). Bernie
also said that he wanted someone who wasn’t a Bayesian. ( I’m not ”not a Bayesian” ! Bayesian
methods are just fine with me. But anyway, ignoring Bernie’s wish for non-Bayesianism, I agreed
to Bernie’s request to join the list asking for the new section. I later served as section Chair.)

1.1 Introduction: Predictive Analytics

Predictive Analytics is often described as having Descriptive, Predictive and Prescriptive
aspects:

Description −→ Prediction −→ Prescription

One of the purposes of this presentation is to discuss some of the precursors to Predictive
Analytics appearing in the statistics literature decades ago. Another is to show how Predic-
tive Distributions provide an alternative model to some other statistical models that might
be used in particular situations.

1.2 Description

Description, of course, includes the calculation and presentation of the usual descriptive
statistics, such as the five-point summary (min, max, quartiles), the mean, standard devia-
tion, skewness, kurtosis, and, for two variables at a time, correlations and scatterplots. We
do not here dwell on Description per se, although it will be illustrated in an example to
follow later. For now, let’s move on to Prediction. A couple of seminal papers illustrated
some concepts and steps in moving from Description to Prediction.

1.3 From Description to Prediction

Nicholson (1960), among others over the years, emphasized “shrinkage” of R2, the fact
that R2 using the predicting function from the training sample on a new sample is less than
the original, within-sampleR2. This is obvious, because the originalR2 results from an op-
timization (minimization of residual sum of squares) in the original sample. A comparable
value would be obtained only by the same procedure applied to a complete test sample.

Stein (1960) considered out-of-sample prediction in the regression context. The con-
ditional variance of Y given X1, X2, . . . , Xp is a parameter σ2

y·x, estimated by MSE, the
error (residual) mean square. MSE is the in-sample mean squared error, SSE/(n− p− 1),
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SSE being the sum of squared errors. One chooses the predicting function (subset of ex-
planatory variables) that minimizes MSE. But this is merely choosing the best descriptor.
What if the prediction problem is explicitly formulated?

Now consider predicting the values of Y for a new sample of xs, using a predicting
function estimated from the first (training) sample. That is, we now have

xn+1,xn+2, . . . ,xn+m

for m new individuals and have to predict the corresponding Y s.
This can be analyzed by considering predicting the value Yn+1, given xn+1, the value

of x for a new individual, n+ 1. The Mean Squared Error of Prediction, or MSEP, is

MSEP = E [(Yn+1 − Ŷn+1)2].

Explicit calculations can be done in the multivariate Gaussian (MVN) case (Stein 1960).
The MSEP turns out to be of the form

MSEP = σ2
y.xC(n, p),

where σ2
y.x is the error variance, that is, the conditional variance of Y given x, and C(n, p)

is a constant depending upon n and p, namely

C(n, p) =
n(p+ 1)− 2

n(n− p− 2)
.

The best predicting function is the one minimizing MSEP, not just MSE. Note that in per-
haps simpler form,

C(n, p) =
p+ 1− 2/n

n− p− 2
.

Note also that C(n, p) is an increasing function of p, so, other things being equal, that is,
for equal values of σ2

y.x, models with a smaller value of p, that is, with fewer predictors,
are favored.

The computation proceeds by obtaining the conditional expectation, given the training
sample of n (x, y) pairs and Xn+1, then taking the expectation over the training sample,
and then over Xn+1. to obtain the full MSEP. An important step in the calculation relates
to taking the expectation of the inverse sample sum-of-products matrix. If V is the sum-
of-product matrix of the Xs, and Σxx is their true covariance matrix, then

E [tr ΣxxV
−1] = p E [1 /χ2

n−p] =
p

n− p− 2
.

So, what we have seen is that, at least in the MVN case, alternative predicting functions
can be evaluated in terms of an estimate of MSEP.

It would be nice to be able to extend this beyond the MVN case. However, Lukacs and
Laha (Applications of Characteristic Functions, 1964) showed that linearity of regression
and homoscedasticity imply joint Normality.

But, in terms of the theme of the current presentation, we have shown an instance in
which Description was formally and expertly extended to Prediction. Next, a brief word on
Prescription, and then we shall return to Description / Prediction.
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1.4 Prescription

“Prescription” means optimization, such as by linear, quadratic and mathematical program-
ming and other methods of Operations Research (OR) and applied mathematics.

As a predictive example, we can consider that, having fit a regression function, pre-
scription would involve finding what values of the vector x of the explanatory variables
optimize the predicted y, possibly subject to constraints giving the region of permissible
values of the xs.

We do not here pursue Prescription further, but, focusing more on Prediction, we move
on to discuss early statistical precursors of “predictive distributions”, as they are now called
in Predictive Analytics. In particular, we have in mind the Yule-Greenwood model (1920),
from almost a century ago. (See also Parzen (1962), p. 57.) It is Bayesian and predates
Wald (1950), and Savage (1954), by decades.

2. Levels of Granularity

Levels of granularity for analyzing data include: histograms, distributions, mixtures of
distributions, predictive distributions.

We start with histograms and then move on to consider other levels of granularity.
Given a dataset, histograms with a few different bin widths can be made. A distribution can
be fit, using the method of moments, maximum likelihood, or a combination. The finite
mixture model can be employed.

2.1 An Example

Kenkel (1984) considered a hypothetical dataset of days ill in a year of n = 50 miners. The
days ill are of course integer values. They range from 0 to 18.

Table 1: Frequencies of days ill

days 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
freq 2 3 5 5 2 5 5 4 6 3 0 1 4 1 2 0 0 1 1

The histogram (with bins 0, 1-2, 3-4, . . . ,17-18) suggests bimodality, with modes at
about 7 days and 12 days.

The sample mean is about x̄ = 6.6 days and the sample variance is s2 = 19.07, that is,
the sample standard deviation is s = 4.37 days. (By the way, I use a guideline of reporting
the mean to one more decimal than what’s in the data, and the standard deviation to two
more decimals. Here, the data are integers, so that means one decimal for the mean and
two decimals for the standard deviation.)

A single Poisson would not provide a good fit: for a Poisson distribution, the mean and
variance are equal, but here the variance is much larger than the mean.

A mixture of two Poissons was fit. The mixture model has p.m.f. (probability mass
function) p(x) = π1 p1(x) + π2 p2(x),where p1(·) is the p.m.f. of a Poisson distribution
with parameter λ1 and p2(·) is the p.m.f. of a Poisson distribution with parameter λ2.
The estimates were λ̂1 = 2.8 days, π̂1 = .40, λ̂2 = 9.10 days, π̂2 = .60. The results
were obtained by finding the method-of–moments estimates and doing a grid search in
their vicinity to maximize the likelihood, and also by the EM (Expectation-Maximization)
algorithm, giving λ̂1 = 2.84 days, λ̂2 = 9.20 days, π̂1 = .41, π̂2 = .59.

JSM 2016 - Section on Risk Analysis

884



Figure 1: Histogram of days ill

2.2 Comparison of Models by Model-Selection Criteria

The two fits, by histogram and by Poisson mixture, were compared by means of model-
selection criteria. Given K alternative models, indexed by k = 1, 2, . . . ,K, penalized-
likelihood model-selection criteria are smaller-is-better criteria that take the form

MSCk = −2LLk + a(n)mk,

where mk is the number of free parameters used in fitting Model k, LLk is the log max-
imum likelihood of Model k, and a(n) = lnn for BIC (Bayesian Information Criterion;
Schwarz 1978 ) and = 2 for AIC (Akaike’s Information Criterion; Akaike 1974; Kashyap
1982; Sakamoto 1992). That is, for k = 1, 2, . . . ,K alternative models,

AICk = −2 LLk + 2mk,

and
BICk = −2 LLk + (lnn)mk.

The number of parameters for the Poisson mixture is two means plus 2 mixing proba-
bilities, less 1 because the probabilities must add to 1. That is 3 free parameters for the
Poisson mixture. The number of parameters for the histogram, scored by the multinomial
distribution with 17 categories (0 through 18, but 15 and 16 are missing), less 1 because
the multinomial probabilities must add to 1, leaving 16 free parameters.

The results are in the next table. The histogram wins by a bit according to AIC, but
the Poisson mixture wins by a wide margin according to BIC. To see this, note that BIC is
derived (Schwarz 1978) as the first terms in the Taylor series expansion of (-2 times) the
posterior probability of Model k, Pr(Model k | data) = ppk, say. That is,

−2 ln ppk ≈ Const .+ BICk, or BICk ≈ C exp(−BICk/2).

To calculate the posterior probabilities, one subtracts a large constant from each, divides
by 2, exponeniates the negative of this, and sums these, dividing by the sum to normalize.
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Table 2: Comparison of two models

Model, k - 2 LLk mk AICk BICk ppk

k = 1 : histogram 261.6 16 293.6 324.2 5.0 ×10−7

k = 2 : Poisson mixture 283.5 3 289.5 295.2 ≈ 1

Table 3: Calculation of posterior probabilties of alternative models

Model, k BICk same - 295 exp(−same/2) ppk

1 324.2 29.2 4.49× 10−7 4.98× 10−7

2 295.2 0.2 0.90085 1.000
sum = 0.90085

Different bin widths. How should the likelihood for histograms be computed? Let the
sample be indexed by i =, 2, . . . , n. Given data points x1, x2, . . . , xn, the likelihood for
a given p.m.f. p(·) is

L = Πn
i=1 p(xi).

Here p(xi) is the p.m.f. at the data point xi. (For continuous data, we would write the
p.d.f., f(xi). ) But in the context of histograms what we can take p(xi) to be?
Denote the number of bins by J. Let the bin width be denoted by h . This is an increment
along the x-axis.

Let the bins be indexed by j, j = 1, 2, . . . , J. The class limits are

x0, x0 + h, x0 + 2h, . . . , x0 + Jh.

The class intervals (bins) are

[x0, x0 + h), [x0 + h, x0 + 2h), . . . , [x0 + (J − 1)h, [x0 + Jh).

The value x0 is the “location”, often the sample minimum. In the present application,
x0 = 0. Now, let j(xi) denote the bin containing xi and nj(xi be the frequency in that bin.
To approximate f(xi), motivated by f(x1) ≈ [F (x2)− F (x1)] / (x2 − x1), write

f(xi) = probability density at xi
≈ probability in bin containing xi / width of bin

= [nj(xi) /n]/h

= nj(xi)/nh.

That is, the concept involved is that probability density is probability per unit length along
the x axis. Thus the likelihood is

L = Πn
i=1 p(xi)

= Πn
i=1 (nj(xi) / nh)

= (1/hn) Πn
i=1 (nj(xi)/n)

= (1/hn) ΠJ
j=1 (nj/n)nj .
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Note that p(x1, x2, . . . , xn) = Πn
i=1 pj(xi) = ΠJ

j=1 p
nj

j is a multinomial p.m.f.
with probabilities pj and frequencies nj for the J categories. The maximized likelihood
L is this multinomial (with pj estimated as nj/n ), divided by hn, which may be viewed
as an adjustment to the likelihood due to the bin width h. In computing the likelihood,
the probability density is to be used, where “density” is probability / bin width. Note
that with a continuous variable we would compute probability density as f(xi)/h, that is,
f(xi)/(Lebesgue measure of the bin interval), whereas with a discrete variable we are re-
ally computing probability density as p(xi)/h, where now h is the counting measure of the
bin interval.

Number of parameters for fitting histograms. I do want to introduce a word of cau-
tion relating to the computation of the number of parameters for fitting histograms. The
number mk is supposed to be the number of free (independent) parameters used in fitting
model k. But in fitting histograms, there is a connection between the bin width h and the
number K of bins, in that range/h = K. I am investigating this further.

Varying bin widths. In the case of non-constant bin widths, with a bin-width of hj
for the j-th interval, take the probability density at xi to be nj(i) /hj(i), where hj(i) is the
width of the interval in which xi falls and nj(i) (short for nj(xi) ) is the frequency (count)
in that interval. The likelihood is

L = Πn
i=1 p(xi) = Πn

i=1 (nj(i) / n) / hj(i) = (1/nn) Πn
i=1 nj/ hj(i).

Table 4: Sample distribution with a bin width of 2

days 0 -1 2-3 4-5 6-7 8- 9 10- 11 12- 13 14- 15 16-17 18-19
freq 5 10 7 9 9 1 5 2 1 1

Table 5: Sample distribution with varying bin widths: bins 0, 1, 2-3,4-5.6-7, . . . , 16-17, 18

days 0 1 2-3 4-5 6-7 8- 9 10- 11 12- 13 14- 15 16-17 18
bin width 1 1 2 2 2 2 2 2 2 2 1
freq 2 3 10 7 9 9 1 5 2 1 1

According to AIC, the histogram with varying bin widths wins, the Poisson mixture com-
ing in second. According to BIC (and, equivalentlly, posterior probability), the Poisson
mixture scores the best, by far. But the point is not just which model wins, but that such a
comparison can be made.

Levels of Granularity, cont’d. Perhaps another level of granularity is approached by
predictive distributions, which may be viewed as getting to the individual level of granular-
ity. Predictive distributions may be viewed in the light of compound distributions resulting
from a prior distribution on the parameter at the individual level. From the viewpoint of
modern statistics, a predictive distribution is merely the marginal distribution of the observ-
able random variable, having integrated out the prior on the parameter. (Details to follow.)
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Table 6: Comparison of models

Model, k - 2 LLk mk AICk BICk ppk

histogram, bin width h=1 261.6 16 293.6 324.2 .000
histogram, bin width h=2 273.2 9 291.2 308.4 .001
histogram, varying bin widths 267.8 9 285.8 303.0 .020
Poisson mixture 283.5 3 289.5 295.2 .978

The Yule-Greenwood model approaches modeling at the individual level, stating that
each individual may have his or her own accident rate λ and so is an example of a compound
model. In terms of granularity, the Yule-Greenwood model is a classical example at the
level of the individual in that it employs a Poisson model for each individual’s accident rate
λ and then puts a (Gamma) distribution over the population of values of λ. The model is
the Gamma-Poisson model (sometimes called the Poisson-Gamma model) and is a prime
example of a compound model. The Gamma is a conjugate prior distribution for the
Poisson, meaning that the posterior distribution of λ is also a member of the Gamma family.

3. An Example with Continuous Data

The variable in the next example will be expenditure in a week (£) of n = 60 English fam-
ilies on fruits and vegetables (Connor and Morrell 1977, data from the British Institute of
Cost and Management Accountants). The data are reported to two decimals. The minimum
is 0.21 £; the maximum, 2.13 £. The frequency distribution suggests possible bimodality.

The distribution above has a bin width h of 0.10. We consider also the results for h =
0.2, for fitting a single Gamma and also for fitting a mixture of two (Gaussian) distributions.
We compare these four fits by means of AIC and BIC.

The sample mean is x̄ = 1.022 £, the sample standard deviation, s = 0.4562 £(sample
variance s2 = 0.2081).

The estimates of the Gamma parameters of the Gamma p.d.f.

f(x) = λm−1e−x/β/Γ(m)βm, x > 0.

The mean is mβ. The variance is mβ2. Method-of-moments estimates are, for the scale
parameter β = σ2/µ, β̂ = s2/x̄ = 0.2081/1.022 = 0.2035. and for the shape parameter
m = µ/β, so m̂ = x̄/β̂ = 1.022/0.2035 = 5.0246.

The mixture model has p.d.f. f(x) = π1 f1(x) + π2 f2(x), where f1(·) is the p.d.f.
of a Gaussian distribution with mean µ1 and variance σ2

1 and f2(·) is the pdf of a Gaus-
sian with mean µ2 and variance σ2

2. The estimates are µ̂1 = 0.72£, µ̂2 = 1.46£, σ̂1 =
0.23£, σ̂2 = 0.27£, π̂1 = .62, π̂2 = .38. The results were obtained by appoxi-
mate maximization of the likelihood doing an EM (Expectation-Maximizatiion) iteration.
Note that the estimates of σ1 and σ2 are somewhat different; the ratio of variances is
(0.27/0.23)2 = 0.075/0.051 = 1.46.

The table summarizes the results. The Gamma wins, both according to AIC and BIC.
The Gaussian mixture comes in second according to both criteria.
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Table 7: Frequency distribution of weekly expenditure (£)

lower limit upper limit Frequency
0.21 0.3 1
0.31 0.4 3
0.41 0.5 4
0.51 0.6 4
0.61 0.7 4
0.71 0.8 6
0.81 0.9 5
0.91 1.0 5
1.01 1.1 4
1.11 1.2 4
1.21 1.3 5
1.31 1.4 2
1.41 1.5 2
1.51 1.6 3
1.61 1.7 2
1.71 1.8 3
1.81 1.9 1
1.91 2.0 1
2.01 2.1 0
2.11 2.2 1

4. Compound Models

4.1 Probability Function Notation

First, notation notation for probability functions will be reviewed.
The probability density function (p.d.f.) of a continuous random variable (r.v.) X,

evaluated at x, will be denoted by fX(x). The p.d.f. of a continuous random variable Y,
evaluated at y, is similarly denoted by fY (y).

Now consider a bivariate variable x = (y, z). The joint p.d.f. of the r.v.s Y and Z,
evaluated at (y, z) is fY,Z(y, z). Example: Y = WT,X = HT, the value of the joint
p.d.f. at y = 80 kg and z = 170 cm is fWT,HT (80, 170).

Other notations include:
fY |X(y|x): conditional probability density function of the r.v. Y, given that the value of
the r.v. X is x. Example: fWT |HT (wt |HT = 170cm). This represents the bell-shaped
curve of weights for men of height 170 cm.

fY,Z(y | z) = fY |Z(y|z) fZ(z): This is the joint p.d.f. expressed as the product of the
conditional of Y given Z and the marginal of Z

fY (y) =
∫
fY,Z(y, z) dz =

∫
fY |Z(y|z) fZ(z) dz: marginal pdf of Y

In the development that follows, fZ(z) plays the role of the prior probability function
on the parameter. That is, denoting the parameter by θ, the function fZ(z) will become
fΘ(θ).

4.2 Compound Models

The elements of compound models are:
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Figure 2: Histogram of Expenditure

Table 8: Comparison of results

Model, k - 2 LLk mk AICk BICk ppk

histogram, bin width h=0.1 61.68 18 97.68 135.38 .000
histogram, bin width h=0.2 66.25 9 84.25 103.10 .000
Gamma 71.75 2 75.75 79.94 .999
Gaussian mixture 72.88 5 82.88 93.35 .001

• The distribution of the observable r.v., given the parameter(s), that is, the conditional
distribution of X , given the parameter(s); and the marginal distribution (predictive
distribution). The marginal distribution will have the hyperparameters among its
parameters.

• the prior distribution. Its parameters are called hyperparameters.

A generic symbol for the parameter(s) of the conditional distribution of X is the conven-
tional θ. As a generic symbol for the hyperparameters, one could use α, since the prior
comes first in the model when one thinks of the parameter value being given first, and then
the value of the variable being observed.

For use in compound models, the probability functions include the following:
The conditional distribution of the observable r.v. X, given the value of the parameter,

is fX|Θ(x | θ); pdf of X for given θ.
The prior distribution on the parameter θ with hyperparameter vector α, fΘ(θ;α).
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The naming of compound models takes the form, Prior distribution – conditional dis-
tribution. In the Gamma-Poisson model, the conditional distribution of X given λ is
Poisson(λ) and the prior distribution on λ is Gamma. In the Beta-Binomial mode, the
conditional distribution of X given p is Binomial with success probability p and the prior
distribution on p is Beta.

5. The Gamma-Poisson Model

5.1 Probability Functions for the Gamma-Poisson Model

In the Gamma-Poisson model, the distribution of X is Poisson with parameter usually
called λ. The p.m.f. is

p(k) = e−λ λk / k!, k = 0, 1, 2, . . . .

The mean and variance are both equal to λ.
Such a distribution can be considered, say, for the number of accidents per individual

per year. For the days ill dataset (days ill in a year for a sample of N = 50 miners), we have
fit a single Poisson (with mean 6.58 days per year). We looked at histograms and observed
bimodality. Further, the fact that the sample variance of 19.06 was considerably larger than
the sample mean was a hint of inadequacy of a single Poisson. A mixture of Poissons was
fitted, with mixing probabilities about .6 and .4 and means about 3 days and 9 days. A finer
level of granularity would be obtained by saying that each person has his own value of λ
and putting a distributon on these over the population.

5.2 Gamma Family of Distributions

A gamma distribution could be a good choice. It is non-restrictive in that the family can
achieve a wide variety of shapes. The single-parameter gamma has a shape parameter m;
the two-parameter gamma family has, in addition, a scale parameter, β. (The reciprocal of
β is the rate parameter.) A Gamma distribution with parameter m, has p.d.f.

f(λ) = Const.λm−1 e−λ, λ > 0.

The constant is 1/Γm. More generally, the two-parameter Gamma can be used: the p.d.f.
is

f(λ) = λm−1e−λ/β/Γ(m)βm, λ > 0.

The mean is mβ.The variance is mβ2.

5.3 Exponential Family of Distributions

The special case of m = 1 in the Gamma family gives the negative exponential family of
distributions. So the

f(λ) = e−λ/β/Γ(m), λ > 0.

The mean is β. The variance is β2.

5.4 Development of the Gamma-Poisson Model

Putting a population distribution over a parameter can be a very helpful way of modeling.
The resulting model is called a compound model. In a compound model, the random vari-
ableX is considered as the result of sampling that yields an individual and that individual’s
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value of a parameter, and then the individual’s value of X is observed, from a distribution
with that value of the parameter.

In this discussion, focus is on a couple of particular compound models, the Gamma-
Poisson, and later, the Beta-Binomial.

The Yule-Greenwood model, from a modern viewpoint, is an application of the Gamma-
Poisson model to a financial, in fact, actuarial, situation. It is in terms of a model for ac-
cident rates in a population. Suppose that the yearly number of accidents of any given
individual i in a population is distributed according to a Poisson distribution with param-
eter λi accidents per year. (This is count data, similar to the days ill data.) Then the
probability that individual i, with parameter value λi, has exactly k accidents in a year, k =
0, 1, 2, . . . , is

eλi λki /k!, k = 0, 1, 2, . . . , .

Some individuals are more accident prone (have a higher accident rate) than others, so
different individuals have different values of λ. A distribution can be put on λ to deal with
this. This is the Yule-Greenwood model, dating from 1920; a precursor of the Predictive
Distributions of the new Predictive Analytics, predating even Abraham Wald as a founder
of modern mathematical statistics and decision theory and Jimmie Savage as a founder of
modern Bayesian Statistics.

The standard choice of s prior distribution on λ is a Gamma distribution.

5.4.1 The Joint Distribution of X and Λ

The joint probability function of X and Λ is

fX,Λ(x, λ) = fΛ(λ) pX|Λ(x |λ), x = 0, 1, 2, . . . , λ > 0.

The expressions for the Gamma and Poisson are put into this. That is, the weight assigned
to pX | |Λ(x |λ) is fΛ(λ).

The joint probability function is is used to obtain

• the marginal distribution of X , by integrating out λ, and

• then the posterior distribution of Λ given x, by dividing the joint probability function
by the marginal probability mass function of X.

.
Putting in the expressions for the Gamma and Poisson, it is seen that the marginal

distribution of X, the number of accidents that a randomly selected individual has in a
year, is of the form

fX(x) =

∫ ∞
0

fX,Λ(x, λ) dλ =

∫
fX|Λ(x|λ) fΛ(λ) dλ.

When the prior is Gamma and the conditional is Poisson, this marginal distribution can be
shown to be negative binomial. Its parameters are m and p = 1/(1 + β).

In the Bayesian model, the parameter of the conditional distribution of X , say θ, is
treated as a random variable Θ.

In the Gamma-Poisson model, θ is the Poisson parameter λ.
The conditional distribution of X given that Θ = θ is Poisson(λ). The probability

mass function is
pX|Λ(x;λ) = e−λ λx / x!, x = 0, 1, 2, . . . , .

The joint pdf of X and Λ can be written as pX | |Λ(x |λ) which is fΛ(λ)(x, λ) =
fΛ pX|Λ(x|λ.
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As mentioned above, from this, the posterior distribution of Λ, that is, the distribution
of Λ given x, can be computed, and the marginal distribution of X can be computed.

5.4.2 Posterior Distribution of Λ

Analogous to Pr(B|A) = Pr(A ∩ B)/Pr(A), the pdf of the posterior distribution is the
joint pdf, divided by the marginal pdf of X :

fΛ|X(λ|x) = fX,Λ(x, λ) / fX(x).

This will turn out to be a Gamma distribution, that is, it is in the same family as the
prior. The Gamma is a conjugate prior for the Poisson.

5.4.3 Marginal Distribution of X

In Predictive Analytics, the marginal distribution of X is computed as a model of a future
observation or observations of X.

The marginal distribution of X is obtained by integrating the joint distribution with
respect to the parameter. Note that this computation combines information, by weighting
the conditional distribution ofX given λ with the prior on λ. This computationof the p.d.f.
is, as stated above, fX(x) =

∫∞
0 t f(x|λ) fΛ(λ) dλ.

5.4.4 Moments

The mean of the marginal distribution of X is mq/p = mβ. The variance of the marginal
distribution of X is mq/p2 = mβ(1 + β).

5.5 Empirical Bayes estimation

Empirical Bayes estimation, at least in the present context, means estimating the param-
eters of the prior using observations from the marginal distribution.

5.5.1 The hyperparameters in terms of the moments of the marginal

The parameters of the prior are called hyperparameters. In this case, they are λ and β.
Suppose we solve for them in terms of the first two moments of the marginal.

5.5.2 Estimating the prior parameters from the marginal

Estimates of the prior parameters m and β can be obtained by, for example, taking the
expressions for the hyperparameters m and β in terms of the first two raw moments and
plugging in estimates m′1 and m′2. Given a sample X1, X2, . . . , XN , we have m′1 = X̄ =∑N
i=1 Xi /N and m′2 =

∑N
i=1 X

2
i /N.

5.6 Application to the Days Ill dataset

Kenkel (1984) considered a hypothetical dataset of days ill of n = 50 miners. The days ill
in a year ranged from 0 to 18; the distribution seems to be bimodal.

The p.m.f. of the Negative Binomial distribution with parameters m and p is where k is
the number of trials in excess ofm required to getm Heads. In the Gamma-Poisson model,
the marginal distribution of X is Negative Binomial with parameters with parameters m
and p = 1/(1 + β).
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Given that the true mean of the marginal (“predictive distribution”) Negative Binomial
is µ = mq/p = mβ and the true variance is σ2 = mq/p2 = mβ(1 + β), and the sample
mean x̄ = 6.58 and the sample variance s2 = 19.07, one can set up two equations and
solve for method of moments estimates of the hyperparameters m and β in the Gamma
prior for λ.
The equations are [1] : mβ = 6.58; [2] : mβ(1 + β) = 19.07.
Putting [1] in [2] gives 6.58(1+β) = 19.07, 1+β = 19.07/6.58 ≈ 2.898, ˆbeta ≈ 1.898.
Then m ≈ 6.58/β = 6.58/1.898 ≈ 3.467. Now, µ = m(1− p)/p = m/p−m, µ+m =
m/p, p = m/(µ+m) or, estimating p = 3.467/(6.58 + 3.467) = 3.467/10.05 = 0.345.
So now we have estimates of the hyperparameters.

To estimate the mean and variance of the Gamma prior, one can proceed as follows.
The mean of the prior is mβ, estimated as 6.58 days ill per year. The variance of the prior
is mβ2, estimated as 6.58(1.898) ≈ 12.49. The standard deviation is thus estimated as√

12.49 ≈ 3.03 days ill per year.
Maximum likelihood estimates are not in closed form but numerical values for them

could be obtained by numerical maximization of the likelihood function. It is helpful to
use the method of moments as a quick and simple method to get an idea of the values of
the parameters.

The table includes the marginal negative binomial with m = 3 and p = .344 in the
comparison.

Table 9: Comparison of models, cont’d

Model, k - 2 LLk mk AICk BICk ppk

histogram, bin width h=1 261.6 16 293.6 324.2 .000
histogram, bin width h=2 273.2 9 291.2 308.4 .000
histogram, varying bin widths 267.8 9 285.8 303.0 .002
Poisson mixture 283.5 3 289.5 295.2 .100
marginal Negative Binomial 283.0 2 286.0 290.8 .898

According to AIC, the histogram with varying bin widths still wins, the Negative Binomial
coming in second. According to BIC (and, equivalentlly, posterior probability), the Nega-
tive Binomial scores the best, by far. This Negative Binomial is unimodal with a mode of
.115 at 3 days. Because it is unimodal, it perhaps does not capture the flavor of the original
data, which is reflected better by the Poisson mixture.

6. Some Other Compound Models: Beta-Binomial; Normal-Normal

6.1 Beta-Binomial Model

Another compound model is the Beta-Binomial model.
In this model, the conditional distribution of X given p is Binomial(n,p). The prior on

p is Beta(α, β).
The posterior distribution of p given x is Beta(α+ x, β + n− x). It is as if there had

been a first round of α+ β trials, with α successes, followed by a second round of n trials,
with x successes.
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Method of Moments estimates of the parameters of the prior can be relatively easilty
obtained. So can the Bayes estimates.

6.2 Normal-Normal Model

We have considered the Gamma-Poisson model and, briefly, another prominent compound
model, the Beta-Binomial model, with a Beta prior on the Binomial success probability
parameters. Still another compound model is the Normal-Normal model.

In the Normal-Normal model, X is distributed according to N (µ, σ2), the Gaussian
distribution with mean µ and variance σ2. The prior on µ can be taken to be N (µ0, σ

2
0),

or perhaps a Gaussian with a different mean if there is some particular reason to do this.
The posterior distribution is again Normal. That is, the Normal family is the conjugate

family for the Normal distribution. The marginal distribution is also Normal, with mean
E [X] = E [E [X|µ] = E [µ] = µ0. The variance of the marginal distribution is the mean
of the conditional variance plus the variance of the conditional mean, V[X] = E [σ2] +
V[E [µ] = σ2 + V[µ] = σ2 + σ2

0. These two terms are the “components of variance”. The
decomposition of the variance can be obtained also by doing the requisite algebra on the
product of the prior and conditional.

This model is similar to a Random Effects model (Model II) in ANOVA. The parameter
σ2 is the error variance, and σ2

0 is the variance of the random effects.
Multivariate generalizations could be interesting.

Comments on References

The books mentioned on predictive analytics, those of Murphy and Bishop, do not discuss
the Gamma-Poisson model explicitly. Those who wish to consult these books may however
refer to them to find

• Murphy, p. 41 on the Gamma family of dsitributions and/or

• Bishop, p. 688 on the Gamma family.

As mentioned, an original paper, anticipating the subject, is that of Greenwood and Yule
(1920). To review background in Probability Theory in general, see, for example, Parzen
(1992) or Ross (2014). To review background in probability models, see also Parzen,
Stochastic Processes (1962) or Ross (1970, 1992).
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