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Abstract 
 
The application of a novel clustering approach is developed that takes into account the structure 

of gene expression profiles in relation to the distributional assumption as well as information 

based similarity among gene expressions in the data. It is assumed that the gene expression 

profile for each subject follows a known distribution and thus a set of relative likelihood 

functions (likelihood functions rescaled by their mode) can be constructed. The relative 

likelihood functions thus obtained are further weighted (scaled) by the observed Fisher 

information to incorporate information related accuracy across the gene expression profiles. The 

subjects are then eventually clustered based on a distance matrix reflecting the weighted relative 

likelihoods and applying standard clustering methods. 

 

Keywords: Likelihood functions, k means clustering, distance matrix, Fisher Information. 
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1. Introduction 
Clustering is a grouping procedure focused on identifying subgroups within a dataset 

(Rencher 2002). While traditional non-parametric clustering methods such as hierarchical 

clustering and k-means clustering algorithms are commonly used (D'Haeseleer 2005), there has 

been work dedicated to parametric clustering approaches such as model-based clustering 

(Bouveyron and Brunet-Saumard 2014).  Despite the differences in assumptions and approaches, 

the objective of most clustering algorithms is to classify subjects or observations into one of a 

finite set of disjoint clusters while ensuring that subjects within a cluster are more similar than 

subjects across clusters.   

In the context of gene expression data, clustering techniques have been employed to 

identify sub-groups of patients at the molecular level, to understand gene function and 

regulation. It has been applied successfully to group similarly expressed genes across a set of 

subjects as well as to group subjects with similar gene expression profiles (Jiang, Tang et al. 

2004). In the context of clustering gene expression data, hierarchical clustering and k means 

clustering are more commonly used (D'Haeseleer 2005). Other approaches such as fuzzy c means 

clustering, self-organizing maps, and model-based clustering have also been employed (Toronen, 

Kolehmainen et al. 1999, Yeung, Fraley et al. 2001, Gasch and Eisen 2002, Nikkila, Toronen et 

al. 2002, Covell, Wallqvist et al. 2003, Huang, Wei et al. 2006, Arima, Hakamada et al. 2008, 

Zhang, Adamu et al. 2011, Shahdoust, Hajizadeh et al. 2013, Zhang and Shen 2014).   

Our recent work proposes a clustering approach based on the properties of the observed 

likelihood and Fisher Information for each observation in the dataset (Bimali and Brimacombe 

2015). Unlike the traditional non-parametric and model based approach, the proposed method 

takes into account the structure of data in relation to the distributional assumption as well as 

information based similarity among observations in the data. In the context of gene expression, 
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the proposed method assumes that gene expression profile for each subject is follows a known 

distribution and thus a set of relative likelihood functions (likelihood function scaled by their 

mode) can be constructed. The relative likelihood functions can be viewed as a transformation of 

the original gene expression profiles. These relative likelihood functions are then further 

weighted by the Fisher Information to obtain the weighted relative likelihood function. This is 

evaluated at different values of the parameter to obtain a data based distance matrix which can be 

subjected to the clustering algorithms. The proposed clustering approach takes into account the 

variation in mean expression levels as well as the observed Fisher Information across the 

patients. 

Here we apply the proposed clustering approach to the publicly available dataset by Van 

De Vijer et al in clustering primary breast carcinomas patients based on a previously 

recommended set of 70 gene expression profile (van de Vijver, He et al. 2002). The agreement 

between the proposed clustering approach and authors’ classification has been examined. The 

clusters obtained are also examined in relation to two clinical features – time to overall survival; 

and time to metastases. 
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2. Data 
The dataset has been made available by Van De Vijver et al at http://ccb.nki.nl/data/. The 

authors describe the study subject as patients having either I or II breast cancer and younger than 

53 years. The authors have made available expression profiles for 24496 genes, of which 70 

genes formed a subset. Clinical covariates such as time to overall survival, time to distant 

metastases, death status, and the number of positive nodes were also provided. Van De Vijer et al 

used 70 gene expression profiles that were identified by Veer et al, to classify 295 patients with 

primary breast carcinomas into two groups – poor prognosis groups and good prognosis group 

(van 't Veer, Dai et al. 2002). Among the 295 patients, 180 were classified into poor prognosis 

groups while 115 were classified into good prognosis groups.  

The prognostic classification was based on correlation of these 70 genes with the average 

profile of these 70 genes in tumors from patients with a good prognosis. The threshold of 0.4, 

used for correlation coefficients, was determined based on a previous study of 78 tumors which 

resulted in a false negative rate of 10 percent. The two groups differed significantly with respect 

to the overall 10-year survival time as well as with respect to time to distant metastases. The 

authors mentioned that the classification system based on 70 genes outperformed all clinical 

variables in predicting the risk of distant metastases within 5 years. The dataset provided used by 

Van De Vijer has been made available publicly. We restrict our attention to the 70 gene 

expression profiles and examine the subsequent clusters of 295 patients formed based on these 

70 gene expressions.  
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3. Method 
Genes in each subject are assumed to follow normal distribution and thus likelihood 

functions are constructed. The likelihood functions are further scaled by their maxima to 

transform them into relative likelihood functions. A data matrix is then developed by evaluating 

the weighted relative likelihood functions at different values in the parameter space, the weights 

being the Fisher Information matrix evaluated at the mode of the likelihood functions. The 

proposed approach thus takes into account the structure of data via the distributional assumption 

as well as information similarity between observations in the data. We assume that the genes for 

each subject follow a normal distribution. 

Let us consider data matrix 𝑿𝑿 = (𝒙𝒙𝟏𝟏 … 𝒙𝒙𝒏𝒏)′  where 𝒙𝒙𝒊𝒊 = (𝑥𝑥𝑖𝑖1 … 𝑥𝑥𝑖𝑖𝑖𝑖)  

𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖 are 𝑖𝑖𝑖𝑖𝑖𝑖 observations with pdf 𝑓𝑓𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖|𝜃𝜃𝑖𝑖�; 𝑗𝑗 = 1, … ,𝑇𝑇𝑖𝑖 and 𝜽𝜽 = (𝜃𝜃1 … 𝜃𝜃𝑛𝑛)  

We assume that 𝜃𝜃𝑖𝑖′𝑠𝑠 share the same support. Thus for each 𝜃𝜃𝑖𝑖 we can construct likelihood 

functions reflecting assumed pdf giving rise to 𝑛𝑛 likelihood functions based the data matrix 𝑿𝑿. 

𝑳𝑳𝑿𝑿(𝜽𝜽) = (𝐿𝐿𝒙𝒙𝟏𝟏(𝜃𝜃1) … 𝐿𝐿𝒙𝒙𝒏𝒏(𝜃𝜃𝑛𝑛))′ 

where 𝐿𝐿𝒙𝒙𝒊𝒊(𝜃𝜃𝑖𝑖) = ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖𝑖𝑖|𝜃𝜃𝑖𝑖)𝑖𝑖
𝑖𝑖=1 . Let 𝜃𝜃�𝑖𝑖 be the 𝑚𝑚𝑚𝑚𝑚𝑚 of 𝜃𝜃𝑖𝑖. Then the relative likelihood function 

for each 𝜃𝜃𝑖𝑖 can be constructed as follows: 

𝑹𝑹𝑿𝑿(𝜽𝜽) = (𝑅𝑅𝒙𝒙𝟏𝟏(𝜃𝜃1) … 𝑅𝑅𝒙𝒙𝒏𝒏(𝜃𝜃𝑛𝑛))′ 

with 𝑅𝑅𝒙𝒙𝒊𝒊(𝜃𝜃𝑖𝑖) =
𝐿𝐿𝒙𝒙𝒊𝒊(𝜃𝜃𝑖𝑖)

𝐿𝐿𝒙𝒙𝒊𝒊(𝜃𝜃
�𝑖𝑖)

 . Note that the Fisher information, by definition is the same for both the 

initial and relatively re-weighted likelihood function.  

To improve the assessment of similarity across the set of evaluated likelihoods, the Fisher 

information matrix for each observation can be used as a weight and we have; 

𝑤𝑤𝑥𝑥𝑖𝑖�𝜃𝜃�� = 𝐼𝐼�𝜃𝜃�� where 𝐼𝐼(𝜃𝜃) = 𝐸𝐸 �� 𝜕𝜕
𝜕𝜕𝜃𝜃
𝑚𝑚𝑙𝑙𝑙𝑙(𝐿𝐿(𝜃𝜃|𝒙𝒙𝒊𝒊))�

2
� 
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For exponential families with 𝑖𝑖𝑖𝑖𝑖𝑖 observations, note that the Fisher Information matrix can be 

simplified to 𝐼𝐼(𝜃𝜃) = −𝐸𝐸 � 𝜕𝜕2

𝜕𝜕𝜃𝜃2
log 𝑚𝑚(𝜃𝜃|𝒙𝒙𝑖𝑖)�   

The value of the likelihood functions can be evaluated at different values of the 𝜃𝜃𝑖𝑖′𝑠𝑠. For 

each observation 𝒙𝒙𝒊𝒊, we can compute the value of likelihood functions at 𝑘𝑘 different 𝜃𝜃𝑖𝑖 values. 

Thus we can construct a matrix 𝑷𝑷𝑿𝑿 with rows containing the weighted relative likelihood 

functions evaluated at different values of 𝜃𝜃𝑖𝑖 . 

𝑷𝑷𝑿𝑿 = �
𝑤𝑤𝒙𝒙𝟏𝟏�𝜃𝜃�� ⋯ 𝑤𝑤𝒙𝒙𝟏𝟏�𝜃𝜃��

⋮ ⋱ ⋮
𝑤𝑤𝒙𝒙𝒏𝒏�𝜃𝜃�� ⋯ 𝑤𝑤𝒙𝒙𝒏𝒏�𝜃𝜃��

� ∘ �
𝑅𝑅𝒙𝒙𝟏𝟏(𝜃𝜃1) ⋯ 𝑅𝑅𝒙𝒙𝟏𝟏(𝜃𝜃𝑖𝑖)

⋮ ⋱ ⋮
𝑅𝑅𝒙𝒙𝒏𝒏(𝜃𝜃1) ⋯ 𝑅𝑅𝒙𝒙𝒏𝒏(𝜃𝜃𝑖𝑖)

� 

where 𝑤𝑤𝑥𝑥𝑖𝑖(𝜃𝜃�) is the Fisher Information evaluated at the mle. 𝑅𝑅𝑥𝑥𝑖𝑖(𝜃𝜃𝑖𝑖) is the value of the relative 

likelihood function for 𝑥𝑥𝑖𝑖 evaluated at 𝜃𝜃𝑖𝑖  and ∘ is the Hadamard product operator between the 

two matrices. The matrix 𝑷𝑷𝑿𝑿 can be subjected to various standard clustering algorithms to 

explore for patterns and clusters in the data matrix 𝑿𝑿. 

Under the assumption of normality of genes for each subject, the weighted relative 

likelihood function for each subject can be shown to be as follows: 

𝑤𝑤𝒙𝒙𝒊𝒊(𝜃𝜃) =
𝑛𝑛
𝜎𝜎�2

× exp �−0.5 ×
𝑛𝑛
𝜎𝜎�2

�𝜃𝜃 − 𝜃𝜃��
2
� 

The above weighted relative likelihood function can be evaluated across different values of 𝜃𝜃 for 

each subject to obtain a matrix of weighted relative likelihood functions. 
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4. Analysis 
The assumption of normality of genes for each subject was tested using the Shapiro-

Wilk’s test of non-normality. Among the 295 subjects, 88 subjects showed significant deviation 

from the normality assumption based on 𝛼𝛼 −level of 0.01, and were thus excluded from the 

analysis. Table 1 provides summary statistics on the survival time, time to distant metastases, for 

good and poor prognosis subjects. The pair-wise correlation of genes across the subjects was 

examined. The correlations of the gene expression profiles across 207 patients were examined 

and genes that were moderately to highly correlated with other genes were excluded to be 

consistent with the 𝑖𝑖𝑖𝑖𝑖𝑖 assumption. The absolute correlation threshold was set at 0.8, 0.7, and 0.5 

respectively. Thus the data matrix that was analyzed consisted of 207 patients with gene 

expression profiles whose correlation (absolute value) was below the specified threshold.  

For each of the 207 subjects, a weighted relative likelihood function was constructed. The 

weighted relative likelihood function was then evaluated at 1000 equi-spaced intervals 

within (−0.4,0.3). For each gene expression profile, the evaluated weighted relative likelihoods 

were non-zero in this range. The matrix of evaluated weighted relative likelihood function was 

then subjected to k means clustering with 2 clusters. Choosing two clusters allows us to examine 

the agreement between the authors classification of poor and good prognosis as the cluster 

formed based on proposed approach. 
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4.1 Correlation threshold set at 0.8 
The number of gene expression profiles dropped from 70 to 64 𝑖𝑖. 𝑚𝑚.  6 genes were highly 

correlated (correlation ≥  0.8) with other genes and were dropped from analysis. The data matrix 

obtained by evaluating the weighted relative likelihood functions was subjected to k means 

clustering. Fig 1 provides a plot of the weighted relative likelihood functions colored by their 

cluster assignment. Log-rank test showed that the two clusters differed significantly with respect 

to overall survival time (p value =  5.5 × 10−4) as well as time to distant metastases (p-value 

= 4.79 × 10−3) (fig 1). Table 2 provides a summary of the agreement between the authors’ 

classification and the clustering based on weighted relative likelihood function. The summary 

statistics of the two clusters is provided in Table 1. 
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Fig 1: Top − Plot of weighted relative likelihood functions evaluated at 1000 different values of 
the mean parameter. Bottom-left – KM survival plots for overall survival time between the two 
clusters. Bottom-right – KM survival plots for time to distant metastases between the two 
clusters. Correlation threshold set at 0.8. 

4.2 Correlation threshold set at 0.7 
The number of gene expression profiles dropped from 70 to 58, i.e. 12 genes that are 

moderately correlated with other genes were dropped from analysis. The data matrix obtained by 

evaluating the weighted relative observed likelihood function was subjected to k means 

clustering. Fig 2 provides a plot of the weighted relative likelihood functions colored by their 

cluster assignment. Log rank test showed that the two clusters differed significantly with respect 

to overall survival time (p value ≈ 10−5) as well as time to distant metastases (p-value = 1.28 ×

10−3) (Fig 2). Table 2 provides a summary of the agreement between the authors’ classification 

and the clustering based on weighted relative likelihood function. The summary statistics of the 

two clusters is provided in Table 1. 
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Fig 2: Top − Plot of weighted relative likelihood functions evaluated at 1000 different values of 
the mean parameter. Bottom-left – KM survival plots for overall survival time between the two 
clusters. Bottom-right – KM survival plots for time to distant metastases between the two 
clusters. Correlation threshold set at 0.7. 
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4.3 Correlation threshold set at 0.5 
The number of gene expression profiles dropped from 70 to 45 i.e. there were 25 genes 

moderately correlated (correlation ≥  0.5) with other genes and were dropped from analysis. The 

data matrix obtained by evaluating the weighted relative observed likelihood function was 

subjected to k means cluster with 2 clusters. Fig 3 provides a plot of the weighted relative 

observed relative likelihood functions colored by their cluster assignment. Log rank test showed 

that the two clusters differed significantly with respect to overall survival time (p value ≈

0.012); however there was no significant difference between time to distant metastases (p-value 

≈ 0.055) (Fig 3). Table 2 provides a summary of the agreement between the authors’ 

classification and the clustering based on weighted relative likelihood function. The summary 

statistics of the two clusters is provided in Table 1. 
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Fig 3: Top − Plot of weighted relative likelihood functions evaluated at 1000 different values of 
the mean parameter. Bottom-left – KM survival plots for overall survival time between the two 
clusters. Bottom-right – KM survival plots for time to distant metastases between the two 
clusters. Correlation threshold set at 0.5. 
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Prognosis/Cluster Count Median Overall Survival Median Time to Metastases 
Good 92 8.91 (4) 4.98 (12) 
Poor 115 6.93 (40) 2.94 (50) 
Correlation threshold set at 0.8 (n = 64) 

Cluster 1 104 6.88 (34) 3.03 (43) 
Cluster 2 103 8.81 (10) 3.66 (19) 
Correlation threshold set at 0.7 (n = 58) 

Cluster 1 91 8.77 (10) 4.05 (22) 
Cluster 2 116 6.93 (34) 4.14 (40) 
Correlation threshold set at 0.5 (n = 45) 

Cluster 1 116 7.27 (35) 13.98 (45) 
Cluster 2 91 8.37 (9) 16.96 (17) 
Note: Values for (𝑛𝑛 = ) represents the number of gene expressions used for clustering. 
Values in parenthesis in table represent number of subjects experiencing event of interest. 

Table 1: Median Survival time (overall survival and time to metastases) between the two clusters 
at different correlation thresholds. 
 

Van De Vijver et 
al’s Classification 

Correlation threshold 
set at 0.8 (n = 64) 

Correlation threshold 
set at 0.7 (n = 58) 

Correlation threshold 
set at 0.5 (n = 45) 

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 
Good Prognosis 
(92 subjects) 

22 70 19 73 30 62 

Poor Prognosis 
(115 subjects) 

82 33 72 43 86 29 

Note: Values of n in parenthesis represents the number of gene expressions used for clustering. 
Table 2: Bivariate Table showing agreement between authors classification and clustering results 
at different correlation thresholds. 
 

5 Discussion 
The use of the likelihood function as a summary of the available information in a set of 

observed data subject to a distributional assumption is well known. Here the likelihood function 

is used to develop a distance matrix which can be used for clustering. The clusters of patients 

obtained takes into consideration the variation across the mean expression level of the genes as 

well as variation across level of the observed Fisher Information. The correlation threshold was 

set at 0.8,0.7, and 0.5. It is not surprising that as the correlation threshold was relaxed, the 

number of gene expression profiles decreased gradually from 64 to 58 to 45. The two clusters 
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differ significantly with respect to overall survival time as well as time to distant metastases for 

each of the three correlation thresholds.  

Unlike previous authors classification methods, our clustering algorithm uses fewer 

number of gene expression profiles to be consistent with the assumptions in the proposed 

methodology. Our clustering results show clusters of patients that differed significantly with 

respect to overall survival time as well as time to distant metastases based on subset of the 70 

gene expression profiles.  
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