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Abstract 
A bivariate exponentiated-exponential geometric regression (BEEGR) model that allows 
any type of correlation is defined and studied. The regression model is based on the 
univariate exponentiated-exponential geometric distribution and the marginal means of the 
bivariate model are functions of the explanatory variables. The parameters of the bivariate 
regression model are estimated by using the maximum likelihood method. Some test 
statistics including goodness-of-fit are discussed. One numerical data set is used to 
illustrate the applications of the regression model. 
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1. Introduction 
The univariate regression models have been used to model count data where the sample 
mean and sample variance are about the same. When the sample mean and the sample 
variance are almost equal, we have an equi-dispersion situation. If the sample variance is 
greater (or smaller) than the sample mean, we have an over-dispersion (or under-
dispersion) situation relative to the Poisson assumption. When the sample mean and sample 
variance are different, other univariate count data regression models have been developed 
and studied. Some of these univariate models have been extended to bivariate, and a few 
have been extended to multivariate count data regression models. See the books by 
Cameron and Trivedi (2013), Winkelmann (2008) and the references therein. 
 
There are many ways to define a bivariate probability distribution (for example, see 
Kocherlakota and Kocherlakota, 1992; Johnson et al., 1997 and the references therein). 
One way is the trivariate reduction method. A disadvantage of the bivariate distribution 
from a trivariate reduction method is that the correlation between the variables is always 
positive. Other approaches that include using correlated random effects, conditional 
probabilities, or copula functions are mentioned by Famoye (2010b), Famoye (2015) and 
the references therein. Famoye (2010a) remarked that the bivariate distributions based on 
copula functions allow positive or negative correlation, but the bivariate distributions are 
very complicated in forms. 
 
Famoye (2010a) defined and studied a new bivariate generalized Poisson distribution 
(BGPD) that allows for any type of correlation and any type of dispersion. The properties 
of Sarmanov (1966) bivariate distributions were discussed by Lee (1996) who gave the 
bivariate Poisson distribution (BPD) as an example. The BPD was later discussed by 
Lakshminarayana et al. (1999). Hofer and Leitner (2012) modified the BGPD in Famoye 
(2010a) and defined a bivariate Sarmanov regression model with generalized Poisson 
marginals. Famoye (2010b) defined and studied a bivariate Sarmanov regression model 
with negative binomial marginals and called it a new bivariate negative binomial regression 
(BNBR) model. The two negative binomial variates are characterized by any type of 
correlation. However, the variates allow for over-dispersion but not under-dispersion. 
 
There are not many regression models that allow for both under-dispersion and over-
dispersion. Winkelmann (2008, pp. 45-56) discussed three such models: the generalized 
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event count model, the double Poisson distribution, and the gamma count distribution. The 
drawbacks of these models include probability mass function in complicated forms and 
their means and variances are not in closed forms. Another model that allows for under-
dispersion and over-dispersion is the generalized Poisson distribution with mean and 
variance in closed forms and the probability mass function is not complicated. 
 
Alzaatreh et al. (2013) developed a general method for generating a univariate probability 
distributions and named it the T-R family. Let ( )Tf t  be a probability density function 
(PDF) of a continuous random variable [ ,  ]T a b∈  for a b−∞ ≤ < ≤ ∞ . Suppose 

( ( ))RW F y  is a monotonic and absolutely continuous function of the cumulative 
distribution (CDF), ( )RF y , of any discrete or continuous random variable R. The CDF 

( )YF y  of a new random variable Y is given by 

 ( ){ }( ( ))
( ) ( ) ( )

R

Y T T R

W F y

a
F y f t dt F W F y== ∫ . (1) 

 
Many families of continuous distributions have been defined by using (1). Alzaatreh et al. 
(2012) used (1) to define the T-geometric family, which consists of the discrete analogue 
to the distribution of any continuous non-negative random variable T. A member of this 
family is the exponentiated-exponential geometric distribution (EEGD) which was studied 
in details by Alzaatreh et al. (2012). 
 
Famoye and Lee (2015) defined the exponentiated-exponential geometric regression 
(EEGR) model, which was based on the EEGD. The EEGR was fitted to three observed 
data sets and it was found that the model is very competitive or performed better than the 
generalized Poisson regression (GPR) model studied by Famoye (1993). 
 
In this paper, a new Sarmanov bivariate regression model based on the exponentiated-
exponential geometric marginal is defined and studied. Among the important 
characteristics of this new regression model includes (i) the model allows for any type of 
correlation (ii) the model allows for both under-dispersion and over-dispersion for each 
variate, and (iii) the model allows the correlation and the dispersion to be independently 
determined. Even though the probability mass function and CDF are in nice forms, the 
mean and the variance are not in closed forms. The bivariate exponentiated-exponential 
geometric regression (BEEGR) model is defined in section 2. Also in section 2, a zero-
inflated BEEGR model is defined. In section 3, we discuss parameter estimation for the 
BEEGR. Some tests are provided in section 4. One numerical data set is used to illustrate 
the BEEGR model in section 5 and the results are compared with that of bivariate 
generalized Poisson regression model. In section 6, we provide some concluding remarks. 
 

2. Bivariate exponentiated-exponential geometric regression model 
 

The exponentiated-exponential geometric distribution (EEGD) was defined and studied by 
Alzaatreh et al. (2012). The probability mass function is given as 

 ( ) ( )1( ) 1 1 ,  0,1, 2, ,
b by yP Y y yθ θ+= = − − − =   (2) 

where 0 1θ< <  and b > 0. The EEGD is unimodal and skewed to the right. Alzaatreh et 
al. (2012) showed that the EEGD is always over-dispersed when 0 2b< ≤  and when b > 
2, the EEGD can be equi- or under- or over-dispersed. 
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Famoye and Lee (2015) defined the EEGR model as 

 ( ) ( )1( | ) 1 [ ( )] 1 [ ( )] ,  0,1, 2, ,i i
b by y

i i i i iP Y y x x x yθ θ+= = − − − =    (3) 

where ( ) ( , ) 1 / [1 exp( )]ii i ix f x xθ θ β β′= = = + − , 0 1 2 , 1( 1, , , , )i i i i i kx x x x x − ′= =   is a (k – 

1)-dimensional vector of predictor variables, and 0 1 2 1( , , , , )kβ β β β β − ′=   is k-
dimensional vector of regression parameters. In the EEGR model (3), the shape parameter 
b is taken to be a nuisance parameter and this parameter is also the dispersion parameter. 
When b = 1, the EEGR in (3) reduces to the geometric regression model given by  
 ( )( | [ ( )] 1 ( ) ,  0,1, 2,) i

i i
y

i i iP Y y x x x yθ θ= = − =   
 
By using the model in (2), a bivariate exponentiated-exponential geometric distribution 
(BEEGD) can be defined using the system of bivariate Sarmanov (1966) distributions. The 
probability mass function of BEEGD is given by 

 1 2

2
1

1 2 1 2
1

( , ) (1 ) (1 ) [1 ( )( )]t t t ty b y b y y
t t

t

P y y e c e cθ θ λ+ − −

=

= − − − × + − −  ∏ , (4) 

where ( )tY
tc E e−=  for t = 1, 2. In order to determine tc , we need to find the moment 

generating function of the EEGD in (2). The moment generating function of the EEGD is 
given by 

1

0
( ) (1 ) (1 )sY sy y b y b

y
E e e θ θ

∞
+

=

 = − − − ∑  

 = 
( 1)

0 0 0

( 1) ( 1)( ) ( 1) ( 1)( )  
! !

r y ry
sy

y r r

b b b r b b b re
r r

θ θ+∞ ∞ ∞

= = =

 − − + − − − + −
− 

 
∑ ∑ ∑ 

 

 = 
0

( 1) ( 1)( 1) 1
! 1

r r

r s
r

b b b r
r e

θ
θ

∞

=

− − + − −
−∑ 

. 

Hence, 

 1
0

( 1) ( 1)( 1) 1( )
! 1

t

r r
Y

t r
r

b b b rc E e
r e

θ
θ

∞
−

−
=

− − + − −
= =

−∑ 

. (5) 

If b is an integer, the result in (5) reduces to  

 1
1

1( ) ( 1)
1

t

rb
Y r

t r
r

b
c E e

r e
θ
θ

−
−

=

  −
= = −  − 

∑ . 

 
Let itY  (t = 1, 2; i = 1, 2, …, n; where n is the sample size) be a count response variable, 
and let 0 1 2( 1, , , )it it it it itkx x x x x′ = =   be a vector of predictors. For a bivariate 
exponentiated-exponential geometric regression model, the joint probability distribution of 

1 2( , )i iY Y  for any given 1 2( , )i ix x  is that of BEEGD given in Equation (4). Suppose the 
parameter tθ  in (4) is a function of itx  given by ( ) ( , )t it it tx f xθ β= , where 
0 ( , ) 1it tf x β< <  is differentiable with respect to the vector parameter tβ . It is, in general, 
difficult to know which covariates affect each of the response variables 1iY  and 2iY . To 
simplify the analysis, we assume that the same covariates affect each count response 
variable itY . Under this assumption, 1 2i i id ix x x x= = = = , however, the vector 
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parameters 1β  and 2β  are not assumed to be equal. We take ( , )it tf x β  to be the logit 
function 
 ( ) ( , ) exp( ) / [1 exp( )] 1/ [1 exp( )]t i t it t i t i t i tx f x x x xθ θ β β β β′ ′ ′= = = + = + − . (6) 
This leads to the bivariate exponentiated-exponential geometric regression (BEEGR) 
model given by 

1 2

2
1

1 2 1 2
1

( , | ) (1 [ ( )] ) (1 [ ( )] ) 1 ( )( )it t it t i iy b y b y y
i i i t i t i

t

P y y x x x e c e cθ θ λ+ − −

=

= − − − × + − −      ∏ , 

 (7) 
where tθ  is given by (6) and ( )tY

tc E e−=  is given by (5) for t = 1, 2. When both parameters 

1 2 1b b= = , then the BEEGR model in (7) reduces to the bivariate geometric regression 
model given by 

 ( ) 1 2

2

1 2 1 2
1

( , | ) [ ( )] 1 ( ) 1 ( )( )it i iy y y
i i i t i t i

t

P y y x x x e c e cθ θ λ − −

=

   = − × + − −   ∏ , 

where 1(1 ( )) / (1 ( ) )t t i t ic x x eθ θ −= − − . 
The result in (7) can be extended to the multivariate exponentiated-exponential geometric 
regression (MEEGR) model and this is given by 

1
1 2

1

( , , , ) (1 ) (1 ) 1 ( )( )t t t t t

d d
y b y b y y

d t t t t
tt

P y y y e c e cν
ν ν

ν

θ θ λ+ − −

<=

  = − − − + − −    
∑∏ . 

 
A count data may be truncated in such a way that there are no zeros. It is also possible that 
the proportion of zeros may be inflated. To address these types of situations, one can define 
the zero-truncated or zero-inflated model. We now define a zero-inflated BEEGR model 
for which the proportion of (0, 0) cell is too high. A zero-inflated BEEGR model has the 
probability mass function given by 

 1 2 1 2
1 2

1 2 1 2

(1 ) ( , | ), 0
( , | , )

(1 ) ( , | ),  and  are not both zeros,
i i i i i i i

i i i i
i i i i i i

P y y x y y
f y y x z

P y y x y y
ϕ ϕ

ϕ
+ − = =

=  −
 

  (8) 
where the probability iϕ  is taken to be a function of covariates 0 1 , 1( 1, , , )i i i i mz z z z − ′= =   

and it is defined by the logit function 1/ [1 exp( )]i izϕ δ′= + − , where δ  is an m-
dimensional vector 0 1 2 1( , , , , )mδ δ δ δ δ − ′=   of parameters. The covariates iz  may be a 
subset of the ix  or may be completely different from the ix . It is possible to assume that 

iϕ  is a nuisance parameter instead of taking it to be a function of covariates iz . The 
probability 1 2( , | )i i iP y y x  in (8) is the BEEGR model given by (7) with 

 1 2
1 2 1 2 1 2( 0, 0 | ) [1 ( )] [1 ( )] [1 (1 )(1 )]b b

i i i i iP y y x x x c cθ θ λ= = = − − + − − . 
 
By using a similar method that leads to equation (8), one can define a zero-truncated 
BEEGR model. A simple zero-truncated BEEGR model is a situation when both 1y  and 

2y  are not allowed to be zeros, and it is given by 
 1 2 1 2 1 2( , | , ) ( , | ) / [1 ( 0, 0 | )],i i i i i i i i i if y y x z P y y x P y y x= − = =  
where 1iy  and 2iy  are not both zeros. 
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3. Maximum likelihood estimation of BEEGR model parameters 
 
Suppose a random sample of size n is taken from the BEEGR model in (7). We now discuss 
the estimation of the BEEGR model parameters by the method of maximum likelihood. 
The log-likelihood function for the BEEGR model in (7) is given by 

1 2
1

( , , ) log ( , | )
n

t t i i i
i

b P y y xβ λ
=

= =∑   

 = 1 2

2
1

1 2
1 1

log (1 [ ( )] ) (1 [ ( )] ) log 1 ( )( )it t it t i i

n
y b y b y y

t i t i
i t

x x e c e cθ θ λ+ − −

= =

− − − + + − −
         

∑ ∑ ,  

  (9) 
 
On taking the first partial derivatives of (9) with respect to the (2 3)k +  parameters, we 
obtain the maximum likelihood equations. The second partial derivatives can be used to 
compute the Hessian matrix which is used to obtain the standard errors of the parameter 
estimates. In the application section, these maximum likelihood estimates are computed in 
SAS by using the NLMIXED procedure. This procedure also gives the AIC and BIC as 
well as the standard errors of the parameter estimates. The initial estimates can be obtained 
by first fitting the univariate EEGR model to each of the dependent variables (See Famoye 
and Lee, 2015). To fit the BEEGR, these initial estimates from the EEGR model can be 
combined with taking parameter λ  to be 1 as the starting solutions for the BEEGR model. 
 
Similar to taking the log-likelihood function of BEEGR model in (7), one can take the log-
likelihood function for the zero-inflated BEEGR (ZIBEEGR) model in (8) to obtain 
  [ ]

1 2

1 2
0

( , , , ) log (1 ) ( 0, 0 | )
i i

zi t t i i i i i
y y

b P y y xβ δ λ ϕ ϕ
= =

= + − = =∑   

  + [ ]1 1log(1 ) log ( , | )i i i iP y y xϕ
Ω

− +∑ , 

where Ω  is the set for which 1iy  and 2iy  are not both zeros. Note that the iϕ  may be a 
function of covariates iz . 
 

4. Tests and goodness-of-fit statistics 
 
In this section, we test for independence of the two count response variables 1y  and 2y . 
We will compare the BEEGR with bivariate geometric regression (BGR) model to 
determine whether BEEGR is more suitable. This test is equivalent to checking whether 
the count data exhibit any form of dispersion. For the BEEGR, 1b  and 2b  are both 
dispersion parameters. We will test if these parameters are equal to an unknown nuisance 
parameter. This test is equivalent to constant dispersion parameter for both count response 
variables. We will test for zero-inflation and briefly mention some goodness-of-fit 
statistics. 
 
4.1 Test for Independence 
The count response variables 1y  and 2y  are independent when the parameter λ is zero. 
For independence, we test the null hypothesis 
 0 : 0 against : 0.aH Hλ λ= ≠  (10) 
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Suppose indL  is the likelihood function when the null hypothesis is true and aL  is the 
likelihood function when the null hypothesis is false. The test statistic for testing the 
hypothesis in (10) is given by 2 2 log( / )ind ind aL Lχ = − , which is approximately chi-
squared with one degree of freedom. An alternative to using the chi-square test is to use 
the Wald asymptotic t-test, which is given by ˆ ˆ/ ( )indt seλ λ= , where λ̂  is the MLE of λ  

and ˆ( )se λ is the standard error of λ̂ . The test statistic is asymptotically normal and 0H  is 

rejected when /2indt zα≥ . 
 
4.2 Test for dispersion or test of BEEGR model against BGR model 
The BEEGR model reduces to the bivariate geometric regression (BGR) model when the 
parameters 1tb =  (t = 1, 2). To test if the BEEGR model should be used in place of BGR 
model, we test the hypothesis that tb  is 1. This is equivalent to a situation in which there 
is no dispersion. To test for no dispersion, we test the null hypothesis 
 0 1 2 0: 1 against :  is not true.aH b b H H= =  (11) 
Let disL  be the likelihood function when the null hypothesis is true and aL  be the likelihood 
function when the null hypothesis is false. The test statistic for testing the hypothesis in 
(11) is given by 2 2 log( / )dis dis aL Lχ = − , which is approximately chi-squared with two 
degrees of freedom. 
 
4.3 Test for constant dispersion parameter 
The two dispersion parameters for the BEEGR model are 1b  and 2b . To test for a constant 
dispersion parameter, we test the null hypothesis 
 0 1 2 0:  against :  is not true.aH b b b H H= =  (12) 
Suppose conL  is the likelihood function when the null hypothesis is true and aL  is the 
likelihood function when the null hypothesis is false. The test statistic for testing the 
hypothesis in (12) is given by 2 2 log( / )con con aL Lχ = − , which is approximately chi-
squared with one degree of freedom. 
 
4.4 Test for zero-inflation 
If iϕ ϕ=  is a nuisance parameter, then it is not a function of the covariates. For this case, 
we test the null hypothesis 
 0 : 0 against : 0.aH Hϕ ϕ= ≠  (13) 
Suppose 01L  is the likelihood function when the null hypothesis is true and aL  is the 
likelihood function when the null hypothesis is false. The test statistic for testing the null 
hypothesis in (13) is given by 2

01 012 log( / )aL Lχ = − , which is approximately chi-squared 
with one degree of freedom. One can also use the Wald asymptotic t-test given by 

* ˆ ˆ/ ( )t seϕ ϕ= , where ϕ̂  is the MLE of ϕ  and ˆ( )se ϕ  is the standard error of ϕ̂ . 
 
If iϕ  is a function of the covariates, then we have 1/ [1 exp( )]i izϕ δ′= + − , where δ  is an 
m-dimensional vector of parameters. For this case, we test the null hypothesis 
 0 0 1 2 1 0: 0 against :  is not true.m aH H Hδ δ δ δ −= = = = =  (14) 
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Suppose 02L  is the likelihood function when the null hypothesis is true and aL  is the 
likelihood function when the null hypothesis is false. The test statistic for testing the null 
hypothesis in (14) is given by 2

02 022 log( / )aL Lχ = − , which is approximately chi-squared 
with m degrees of freedom. 
 
4.5 Goodness-of-fit statistics 
A goodness-of-fit statistic for the BEEGR is the log-likelihood statistic in (9). In addition 
to the log-likelihood, alternative measures of goodness-of-fit are the Akaike Information 
Criterion (AIC) and the Bayesian Information Criterion (BIC). These statistics, which are 
based on the log-likelihood statistic, are defined as follows: The AIC is defined as 
AIC 2 2 p= − +  while the BIC is defined as BIC 2 log( )p n= − + , where n is the sample 
size, p is the number of estimated parameters in the model, and   is the log-likelihood 
statistic in (9). Both the AIC and BIC take into consideration the number of parameters in 
the regression model to control over-parameterization. These measures are provided by 
SAS NLMIXED procedure. 
 
A goodness-of-fit statistic for the BEEGR can be based on the Pearson’s chi-squared 
statistic, which is defined as 2 2

,
( ) /ij ij ij

i j
O E Eχ −∑= , where jiO  is the observed frequency 

in cell (i, j) and jiE  is the expected frequency in cell (i, j). The expected frequency is 

calculated by summing all the probabilities 1 2( , )P Y i Y j= =  for all observations in the 
data set. Note that the probabilities are not the same for two observations, except if the two 
observations have exactly the same values for all predictor variables. If the expected values 
are too small, one can combine some of the cells. But there is no unique way to combine 
some of the cells. 
 

5. Application 
 
In this section we apply a domestic violence data to illustrate the usefulness of the BEEGR 
model and compare the results with that of BGPR model, which is a special case of the 
multivariate generalized Poisson regression model defined by Famoye (2015). The BGPR 
model is given by 

 
12

1 2
1

(1 ) (1 )( , | ) exp
1 ! 1

it
it

y y
it t it it t it

i i i
t t it it t it

b y b yP y y x
b y b
µ µ
µ µ

−

=

   + − +
=    + +   
∏  

  1 2
1 21 ( )( )i iy ye c e cλ − − × + − −  , (15) 

where mean ( | ) ( ) exp( )it i it i i tE Y x x xµ β′= =  for t = 1, 2, tb  is a dispersion parameter, and 

tc  is exp[ ( 1) / (1 )]t it t t itc s bµ µ= − + , with ln ( 1) / (1 ) 1 0t t it t t its b s bµ µ− − + + = . 
 
The BGPR model when 1y  = 2y  = 0 is given by 

 [ ]1 2
1 2 1 2

1 1 2 2

( 0, 0 | ) exp 1 (1 )(1 )
1 1

i i
i i i

i i

P y y x c c
b b
µ µ λ
µ µ

 
= = = − − × + − − + + 

. 

Similar to the zero-inflated BEEGR model, one can write down the probability mass 
function for the zero-inflated BGPR by using the above results. We will first describe the 
data used for the analysis and then provide the results of the data analysis. 
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5.1 Description of the Data 
In 1995-1996, the National Violence Against Women (NVAW) Survey was conducted and 
a public-use data set was obtained. Completed interviews were obtained from men and 
women, but the data used in this paper is a subset of the 8000 interviews from women who 
were 18 years of age or older residing in United States households. Respondents to the 
survey were asked questions on various topics including (a) their general fear of violence 
and how they managed their fears, (b) emotional abuse they had experienced by their 
partners and (c) physical assault they had experienced as adults by any type of perpetrator. 
For more details, the reader is referred to Tjaden and Thoennes (1999), ICPSR 2566. 
 
The count response variables used in the data analysis are control (this will be denoted by 

1y ) and physical assault or violence (this will be denoted by 2y ). Control is the total 
number of controlling behaviors the current partner and/or all former partners exerted on 
the woman. A controlling behavior is made up of thirteen actions and this variable ranges 
from 0 to 12. Violence is the number of incidents of physical assault. This is the total 
number of twelve possible violent physical actions directed toward a woman by her current 
and/or former partners. This variable also ranges from 0 to 12. A high score on any of these 
variables indicates the woman experienced severe control or violence. See Cheng and Lo 
(2015) who used some of the variables to examine racial disparities in women’s experience 
of intimate partner violence. 
 
The eight explanatory variables used in the data analysis are as follows: age in years; level 
of education is one of the seven school levels (0 = no schooling to 6 = postgraduate); race 
(1 = white, 0 = others); number of children under 18 years of age (nchild); respondent’s 
income level is one of 10 levels (1 = below $5,000 to 10 = over $100000); being stalked 
(stalk) is a binary variable with 1 = yes and 0 = no; health level is one of 5 levels (0 = poor 
to 4 = excellent), and drug is a binary variable that indicates illicit drug use with 1 = yes 
and 0 = no. The variable drug indicates if a woman had used marijuana, cocaine, heroin, 
angel dust, etc. in the past month. After excluding the cases having missing information, 
we have 4171 observations. The descriptive statistics for the variables used in the analysis 
are given in Table 1. A simple correlation between control and violence is computed and 
it is 0.244 with a p-value of less than 0.0001. Thus, both variables are significantly 
correlated. By using the sample means and sample variances of 1y  and 2y , both response 
variables appear to be over-dispersed. 
 

Table 1: Descriptive statistics for the variables 

Variable Description  Mean ±  SD Proportion of 1’s 
age Age in years 41.92 ±  13.32  
educ Education level 3.85 ±  1.14  
race Race  0.856 
nchild Number under 18 yrs. 1.09 ±  1.23  
income 1995 income level 4.07 ±  2.53  
stalk Ever been stalked  0.119 
health Health condition 2.82 ±  1.05  
drug Illicit drug use  0.013 
control ( 1y ) Dependent variable 0.88 ±  1.60 
violence ( 2y ) Dependent variable 1.09 ±  2.20 

SD = standard deviation 
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5.2 Data Analysis and Results 
The BEEGR model in (7) and the BGPR model in (15) are applied to fit the data with 
‘control’ and ‘violence’ as the two response variables. We also applied their zero-inflated 
regression models. We computed the expected frequencies for BEEGR, ZIBEEGR and 
ZIBGPR and compared them with the observed frequencies. Even though the ZIBGPR 
provided the best expected frequency for the (0, 0) cell, but overall, its expected frequencies 
for many cells are furthest from the corresponding observed frequencies. The response 
variables 1y  and 2y  range from 0 to 12. The observed frequencies for possible 
combinations of 1y  and 2y  values range from 0 to 1960. Because of the small expected 
frequencies, we combine all classes for 1 7y ≥  and all classes for 2 9y ≥  and this lead to 
an 8 by 10 contingency table. The chi-square statistics based on this contingency table is 
computed. The chi-square values for ZIBGPR, ZIBEEGR and BEEGR models are 
respectively 403.97, 254.60, 252.97. The ZIBEEGR and BEEGR models provide a much 
closer expected values to the observed frequencies than the ZIBGPR model. 
 
In Table 2, we report part of the 8 by 10 contingence table. Table 2 shows the observed 
and expected frequencies for the data where majority (over 80%) of the observed 
frequencies are distributed. From Table 2, the model with the worst expected frequency is 
ZIBGPR. Even though, the definition of BEEGR model does not include a special 
consideration for the zero inflation, it does well in taking care of the zero-inflation when 
the data has such a characteristic. 
 

Table 2: Observed and expected frequencies for ZIBGPR, ZIBEEGR and BEEGR 

1y \ 2y →    0 1 2 3 

0 Observed 
ZIBGPR 
ZIBEEGR 
BEEGR 

1960 
1962.06 
1975.88 
1941.96 

170 
251.51 
219.59 
255.55 

109 
121.51 
115.79 
121.48 

82 
68.87 
71.26 
70.68 

1 Observed 
ZIBGPR 
ZIBEEGR 
BEEGR 

560 
392.50 
428.28 
477.52 

69 
144.70 
110.36 
106.19 

40 
71.94 
64.34 
61.78 

42 
41.37 
41.28 
39.06 

2 Observed 
ZIBGPR 
ZIBEEGR 
BEEGR 

189 
200.95 
210.08 
208.97 

32 
76.14 
59.70 
56.26 

23 
38.42 
36.03 
34.51 

20 
22.34 
23.53 
22.38 

3 Observed 
ZIBGPR 
ZIBEEGR 
BEEGR 

85 
105.52 
110.52 
104.67 

23 
40.59 
32.72 
30.47 

19 
20.72 
20.10 
19.17 

15 
12.19 
13.29 
12.66 

 
The fit by the BEEGR, ZIBEEGR and ZIBGPR are reported in Table 3. The log-likelihood 
for the BGPR model (which is not reported) is -10414.065. This value is worse than any 
of the values reported in Table 3 for BEEGR, ZIBEEGR and ZIBGPR. The fit by BGPR 
is very poor, hence the ZIBGPR is applied and it provides a much better fit by using the 
AIC. From Table 3, the model with the best fit is the ZIBEEGR by using the AIC. The 
BEEGR model performs better than the ZIBGPR model. 
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In all the regression models, including BGPR model, only the ZIBGPR model shows an 
insignificant correlation parameter (see Table 2). This is quite a surprise and we have no 
explanation for it. Both the BEEGR and ZIBEEGR in Table 2 has significant correlation 
parameter. All the tests proposed in sections 4.1 to 4.4 are significant when tested for both 
the ZIBGPR and ZIBEEGR models. The test with the smallest statistic is the zero-inflation 
for ZIBEEGR model. The observed value of the test statistic is 70.97, and the statistic has 
a chi-square distribution with 9 degrees of freedom. For this test, the p-value is less than 
0.0001. 
 

Table 2: Parameter estimates (standard errors in parentheses) for BEEGR and BGPR 

Variable ZIBGPR model ZIBEEGR model BEEGR model 
constant ( 10x ) 1.295 (0.170)* 1.349 (0.171)* 1.750 (0.160)* 
age ( 11x ) -0.003 (0.002) -0.003 (0.002) -0.007 (0.002)* 
educ ( 12x ) -0.128 (0.028)* -0.141 (0.029)* -0.156 (0.025)* 
race ( 13x ) -0.296 (0.073)* -0.294 (0.073)* -0.373 (0.069)* 
nchild ( 14x ) 0.065 (0.025)* 0.067 (0.025)* 0.056 (0.023)* 
income ( 15x ) -0.007 (0.013) -0.008 (0.013) 0.0002 (0.011) 
stalk ( 16x ) 0.133 (0.074) 0.205 (0.073)* 0.365 (0.074)* 
health ( 17x ) -0.120 (0.028)* -0.125 (0.028)* -0.169 (0.026)* 
drug ( 18x ) 0.484 (0.196)* 0.518 (0.193)* 0.535 (0.194)* 

constant ( 20x ) 1.525 (0.263)* 2.029 (0.227)* 2.463 (0.218)* 
age ( 21x ) -0.014 (0.004)* -0.012 (0.003)* -0.017 (0.003)* 
educ ( 22x ) -0.100 (0.039)* -0.104 (0.035)* -0.118 (0.033)* 
race ( 23x ) -0.050 (0.101) -0.033 (0.091) -0.125 (0.090) 
nchild ( 24x ) 0.0002 (0.034) 0.013 (0.030) 0.002 (0.029) 
income ( 25x ) -0.001 (0.017) -0.002 (0.015) 0.004 (0.014) 
stalk ( 26x ) 0.868 (0.107)* 0.896 (0.089)* 1.107 (0.092)* 
health ( 27x ) -0.111 (0.036)* -0.111 (0.033)* -0.156 (0.032)* 
drug ( 28x ) 0.500 (0.311) 0.527 (0.251)* 0.584 (0.262)* 

constant ( 0z ) -2.880 (0.423)* -3.921 (0.755)* 
age ( 1z ) 0.017 (0.005)* 0.024 (0.008)* 
educ ( 2z ) 0.121 (0.057)* 0.102 (0.088) 
race ( 3z ) 0.422 (0.177)* 0.623 (0.329) 
nchild ( 4z ) 0.020 (0.051) 0.053 (0.075) 
income ( 5z ) -0.023 (0.025) -0.032 (0.036) 
stalk ( 6z ) -2.552 (0.909)* -17.0 (1284.9) 
health ( 7z ) 0.239 (0.060)* 0.297 (0.094)* 
drug ( 8z ) -0.809 (0.661) -0.846 (1.176) 
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Dispersion ( 1̂b ) 0.413 (0.033)* 0.863 (0.053)* 0.627 (0.025)* 

Dispersion ( 2̂b ) 0.856 (0.056)* 0.392 (0.022)* 0.298 (0.012)* 

Correlation ( λ̂ ) 0.141 (0.186) 0.625 (0.150)* 1.310 (0.101)* 
Log-likelihood -10331.9153 -10235.4025 -10270.8863 
AIC  20724.0 20531.0 20584.0 

*Significant at 5% level 

 
The two dispersion parameters are significant indicating that the bivariate Poisson 
regression model and the bivariate geometric regression model will not perform well in 
fitting this data set. The dispersion parameter estimates lie between 0 and 2, which indicates 
over-dispersion. The data is over-dispersed and hence, the bivariate negative binomial 
regression can be used as an alternate model. However, it cannot handle situations with 
under-dispersion. This is one main advantage possessed by the BGPR and BEEGR models. 
 

6. Summary and Conclusion 
 
A new bivariate count data regression model, the BEEGR, is defined and studied. The 
model can be applied to fit data with over-dispersion or under-dispersion relative to the 
Poisson assumption. The parameter measuring the association between the two response 
variables can be positive or negative. Thus, the model allows for positive or negative 
correlation. 
 
It is interesting to note that the BGPR model did not perform as well as the ZIGPR model 
for the domestic violence data. We notice that the likelihood ratio test for zero-inflation in 
both ZIBGPR and ZIBEEGR models show significant results. In examining the predicted 
zero proportion, the ZIBGPR model provided the best prediction while the ZIBEEGR over-
estimated the zero proportion. The ZIBGPR model has six of the nine parameters 
measuring the zero-inflation to be significant at 5%. On the other hand, the ZIBEEGR 
model shows that three of the nine parameters measuring zero-inflation are significant. 
This may not be unconnected with why the BEEGR model provided good expected 
frequencies to the data when compared with the zero-inflated models. It is conjectured that 
BEEGR model seems to perform well for cases where the data appears to show zero-
inflation. Future work to investigate this conjecture will be undertaken. 
 
A limitation of the Sarmanov bivariate/multivariate regression model is that the correlation 
coefficient could be restricted to a subset of the interval [-1, 1] depending on the parameters 
of the marginal distribution (Lee, 1996). A disadvantage of the BEEGR model is that its 
mean and variance are not in closed forms. The advantages of the BEEGR model includes 
a likelihood function that is in closed form. The parameter estimation is less time-
consuming. The example provided in the paper is on a bivariate data with positive 
correlation. Will the BEEGR model perform well for negative correlation? This is a 
problem which will be explored in future work. 
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