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Abstract
Network Granger causality focuses on estimating Granger causal effects from mul-

tivariate time series and it can be operationalized through Vector Autoregressive Models
(VAR). The latter represent a popular class of time series models that has been widely
used in applied econometrics and finance and more recently in biomedical applications.
In this work, we discuss joint estimation and model selection issues of multiple Granger
causal networks. We present a modeling framework for the setting where the same vari-
ables are measured on different entities (e.g. same set of economic activity variables
for related countries). The framework involves the introduction of appropriate structural
penalties on the transition matrices of the respective VAR models that link the underly-
ing network Granger models and use of factor modeling for error covariance estimation.
ADMM algorithm is presented for implementation of joint optimization procedure and
the model is evaluated on synthetic data.
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1 Introduction

There has been a lot of recent interest in the modeling and analysis of high-dimensional
time series data. Application areas include financial data [20] [Vyrost, 2014], medical
data [12] [Flamm, 2012], brain fMRI data [17] [Song, 2010], gene regulatory network
inference [15][Michailidis, 2013], macroeconomic time series forecasting and structural
analysis [1][Banbura, 2010], just to name a few. Their common characteristic is the rel-
atively large number of variables being analyzed, relative to the time points available,
thus leading to a high-dimensional problem. In many cases, the temporal dynamics of
the data under consideration are well captured by autoregressive models and hence the
use of vector autoregressive models (VAR) enables the modeling of both the variables
own temporal dynamics, as well as temporal linear cross-dependencies amongst them.
VAR models are closely related to the notion of network of Granger causality as dis-
cussed in [3][Basu,Shojaie and Michailidis, JMLR 2015]. However, in the presence
of a large number of variables and few time points, one needs to incorporate sparsity
assumptions to estimate the parameters of the VAR model (see [2][Basu, 2015]).
∗usdandres@ufl.edu
†gmichail@ufl.edu
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However, in many applications one deals with multiple related VAR models. As a
motivating application, consider the data analyzed in Section 6. It deals with a num-
ber of employment and economic indicator variables for four US states (Pennsylvania,
Michigan, Ohio and Illinois) that exhibit similarities regarding their economic infras-
tructure with a strong manufacturing base, a fairly large agricultural sector, as well as
strong presence in banking, education and health services and access to the Great Lakes
waterways. At the same time, they also exhibit differences due to specific conditions,
like the developed financial industry in Chicago, or the strong and sustained presence
of the coal, oil and gas industries in Pennsylvania. Hence, it is desirable to extend the
modeling framework to allow for joint estimation of multiple related VAR models. The
problem of joint estimation has received attention in the literature recently, primarily
focused on the estimation of multiple graphical models that ;everaged various penalites
that encouraged both sparsity and joint estimation of the parameters of the multiple mod-
els; see for example, the hierarchical penalty used in [14] [Guo et al, Biometrica 2011],
the group lasso penalty in [8][Danaher et al., 2012], or mixed norm penalties in [7] [Cai,
T. et al, 2015].

Next, we introduce the proposed modeling framework. We consider p stationary
time series X t

k = (X t
1k, ...,X

t
pk)
′ for k = 1, ...,K related phenomena. Then, the corre-

sponding VAR model with lag order 1 is given by:

X t
k = A1

kX t−1
k + ε

t
k, k = 1, · · · ,K, (1)

where the error terms follow a normal distribution; ε t
k ∼ N(0,Σk). The covariance

matrix Σk allows for additional latent contemporaneous dependence between the p vari-
ables under consideration. The standard assumption is that Σk is diagonal and thus no
extra dependence is allowed; however, in [2][Basu, 2015], it was assumed that Σk is a
general sparse covariance matrix. In this work, we assume that Σk is low rank, stemming
from a factor model formulation of the error processes ε t

k. Such a modeling assumption
is widely used in economics and finance applications as discussed in a number of papers
[9][Diebold, 2005],[16][Rudebusch, 2010],[10][Fan et al., 2011]. Although it leads to
significant reduction of the parameters to be estimated, it nevrtheless poses a number
of challenges in a high-dimensional setting. Finally, we employ a fused lasso penalty
([19][Tibshirani et al., 2011]) to connect the estimation of the K VAR models and pre-
sented in detail in the ensuing section.

Hence, the main contributions of this work are the development of a joint estimation
modeling framework for multiple related VAR models, together with the development
of fast scalable algorithms for the estimation of their parameters. The remainder of the
paper is organized as follows: in Section 2, the modeling framework is introduced along
with the proposed optimization algorithm. Section 3 provides details of the estimation
of the low rank covariance matrices and additional algorithmic details, while Section
4 presents the performance evaluation of the proposed modeling framework applied to
synthetic data and the motivation application discussed above.

The rest of the paper is organized as follows: in Chapter 2 the modeling framework
is introduced along with the ADMM algorithm, in Chapter 3 we discuss aspects of
error covariance estimation, Chapter 4 contains full estimation algorithm layout while
Chapters 5 and 6 describe results of our modeling approach on synthetic and real data
respectively. Conclusion can be found in Chapter 7.
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2 Single and Joint Model Setup

We will present model setups for both single and joint estimation approaches for the
case of general K number of entities. Suppose that we observe p variables per entity
over T time points.

2.1 Single Model

For single model assume that X t = (xt
1, ...,x

t
p)
′
is a vector of variable values at time t for

one entity, t = 1, ...,T . A will denote p× p transition matrix, Σ - p× p error covariance
matrix.

Model setup:

X t = AX t−1 + ε
t ,ε t ∼ N(O,Σ), t = 1, ..,T (2)

We assume a sparse A because the model is intended for high-dimensional cases(at
least 20 variables). Next assumption is for error covariance matrix to follow a factor
model. We claim that for economic/finance variable it is more reasonable to assume
for error covariance to be driven by a low number of common factors rather than just
having a sparse inverse. The factor model will be explained in more detail in chapter 3.
Besides, for simplicity purposes, error process {ε t} is considered covariance-stationary
and uncorrelated over time.

Problem (2) has an equivalent formulation as a standard regression problem:

W = Zβ + ε,ε ∼ N(O, Σ̃) (3)

This can be achieved by letting:

• W = (X1, ...,X p)
′, where X i = (XT

i , ...,X
1
i )
′
,i = 1, ..., p

• ZT×p = (X (−T,+0)
1 , ...,X (−T,+0)

p )
′
, where X (−T,+0)

i = (XT−1
i , ...,X0

i )
′

• Z = Ip×p⊗WT×p. Let β =(A11,A12, ...,A1p,A21, ...,A2p, ...,App)
′ (matrix A stretched

into a vector)

• ε = (ε1, ...,ε p)
′, where ε i = (εT

i , ...,ε
1
i ), i = 1, ..., p

• Σ̃ = Σ⊗ IT×T

In case of a known true Σ̃ the optimization criterion is a standard lasso problem that
can be solved with least angle approach or coordinate descent algorithm:

min
β

||Σ̃−1/2(W −Zβ )||22 +λ ||β ||1. (4)

2.2 Joint Model

Let X t
i = X t = (xt

i,1, ...,x
t
i,p)

′
- vector of variable values for entity i, i = 1, ...,K at time

t, t = 1, ...,T . Model setup for K different entities:X t
1

...
X t

K

= A

X t−1
1
...

X t−1
K

+ ε
t ,ε t ∼ N(O,ΣK p×K p), t = 1, ..,T (5)
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where AK p×K p - block-diagonal with ith block equal to a p× p matrix Aii,i = 1, ...,K,
ε t = (ε t

1, ...,ε
t
K)

For matrices Aii, i = 1, ...,K we make assumptions of similarity and sparsity. By
similarities we mean similar structure(positions of non-zero elements) and similar values
of corresponding elements in matrices. Although we are dealing with different entities
we still expect to see common patterns of relationship between p variables on those
entities and there will be plenty of common zero elements because of sparsity. Σii, i =
1, ...,K follow a factor model by the same logic as described for single model. And the
final simplifying assumption - ΣK p×K p is block-diagonal with ith block equal to a p× p
matrix Σii.

Via analogous set of assignments as for single model we can get a standard regres-
sion setup for the joint problem(equivalent to equations (6)):

W = Zβ + ε,ε ∼ N(O, Σ̃), (6)

where Z - block-diagonal with ith block being T× p matrix Zii, β =(β11,β22, ...,βKK)
′

with βii being matrix Aii stretched into a vector, ε = (ε1, ...,εK), ε i - error vector for en-
tity i. Σ̃ - block-diagonal matrix with ith block equal to Σ̃ii defined as in section 2.1.

The optimization criterion is a generalized fused lasso problem:

||Σ̃−1/2(W −Zβ )||22 +
K

∑
i=1

λi||βi||1 + ∑
i, j∈1,..,K

λi, j||βii−β j j||1, (7)

The ADMM algorithm to solve problem (7) will be introduced in section 2.4.

2.3 Case of K=2

In that paper we emphasise the case of two entities. Let X t = (xt
1, ...,x

t
p)
′
, where xt

i -
value of variable i at time t, Y t = (yt

1, ...,y
t
p)
′
, where yt

i - value of variable i at time t,
ε t = (ε t

1, ...,ε
t
2p)

′
, the vector of observation errors at time t.

Model setup: (
X t

Y t

)
= A

(
X t−1

Y t−1

)
+ ε

t ,ε t ∼ N(O,Σ), t = 1, ..,T (8)

where

A2p x 2p =

(
A11 Op×p

Op×p A22

)
, (9)

The standard regression setup for the joint problem(equivalent to equations (8)):(
Y1
Y2

)
=

(
Z1 O
O Z2

)
β + ε,ε ∼ N(O, Σ̃), (10)

where Σ̃ =

(
Σ̃11 O
O Σ̃22

)
, β2p2×1 =

(
β11
β22

)
.

The optimization criterion would be(simplified down to just one sparsity parameter
and one fusion parameter):
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||
(
(Σ̃11)

−1/2Y1

(Σ̃22)
−1/2Y2

)
−
(
(Σ̃11)

−1/2Z1β11

(Σ̃22)
−1/2Z2β22

)
||22

+ λ1||β ||1 +λ2||β11−β22||1, (11)

2.4 ADMM Algorithm for K entities

To solve this optimization criterion for arbitrary choice of (λ1,λ2) we introduce an
ADMM algorithm.

The criterion (11) can be written in the following form:

min
β

||C−Dβ ||22 +λ1||β ||1 +λ2||Lβ ||1, (12)

with L such that Lβ =(β11−β22,β11−β33, ...,β11−βKK ,β22−β33, ...,β22−βKK , ...,βK−1,K−1−
βKK)

T .

We can represent (12) in the following form:min
β ,γ

f (β )+g(γ)

Lβ = γ,
,

where f (β ) = ||C−Dβ ||22 +λ1||β ||1 - convex function of β ,
g(γ) = λ2||γ||1 - convex function of γ .

By [6][Boyd et al, 2011] ADMM algorithm with following update rules will break
down our optimization problem in a set of simpler convex problems:

β (k+1) = argmin
β

( f (β )+ ρ

2 ||Lβ − γ(k)+u(k)||22),

γ(k+1) = argmin
γ

(g(γ)+ ρ

2 ||Lβ (k+1)− γ +u(k)||22),

u(k+1) = u(k)+Lβ (k+1)− γ(k+1).

First equation is a lasso optimization problem with respect to β that can be solved
with least angle approach or coordinate descent algorithm.

Second equation has closed form solution:

γ(k+1) = sλ2/ρ(Lβ (k+1)+u(k)),

where sb(a) =

{
sign(a)|a−b|, |a|> |b|,
0, |a| ≤ |b|

For convergence diagnostics of the algorithm please check Appendix A.
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3 Error covariance estimation

We will compare three approaches for error inverse covariance estimation: graphical
lasso, factor models and ensemble of the two.

3.1 Graphical lasso

Graphical lasso is a very popular approach for sparse estimation of inverse covariance
matrix described in [13][Friedman et al.,2007].In my case I apply graphical lasso to es-
timate inverse error covariance matrices for each entity separately. For tuning parameter

I pick value λ =
√

log(p)
t which is a theoretically approved choice[11][Fan et al., 2013].

3.2 Factor model

In particular, we implement a latent factor setup which assumes unobserved factors.
Estimation of Σ11 and Σ22 is done separately and both procedures are identical therefore
it is satisfactory to describe it for one of the classes.

The error vector is assumed to have the following structure:

ε
t = ΛFt + εU , εU ∼ N(0,ΣU), cov(Ft) = IK , t = 1, ...,T

Σ = ΛΛ
′+ΣU , (13)

where Ft - K×1 vector of unobserved factors(K - number of factors, K < p), Λ - p×K
matrix of factor loadings, ΣU - p× p matrix with a sparse inverse(idiosyncratic compo-
nent).

In order to get estimate Σ̂11 we will have to get estimates Λ̂11 and Σ̂U and the fol-
lowing algorithm will be used for that:

• Step 1. For single model problem set Σ = Ip×p, get sparse estimate Â (criterion
for picking sparse estimates will be described in Chapter 4).

• Step 2. Get residuals ε̂1 =W −ZÂ, calculate the number H of spiked eigenvalues
for the residuals covariance matrix Σ̂ε - it will act as an estimate of a number of
latent factors for the corresponding factor model.

• Step 3. Do eigenvalue decomposition for this matrix: eigenvectors corresponding
to spiked eigenvalues will act as columns of Λ̂.

• Step 4. Use Σ̂ε−Λ̂Λ̂′ as data to get Σ̂U through a graphical lasso procedure(which
works well under assumption of sparse inverse).

• Step 5. Get the estimate Σ̂ = Λ̂Λ̂′+ Σ̂U , take its inverse and get ˆ̃
Σ−1.

3.3 Ensemble of graphical lasso and factor model.

It turns out that factor models do a good job of estimating off-diagonal elements of in-
verse covariance while graphical lasso does better on diagonals. Therefore, for each
entity I just take factor model estimate of inverse error covariance and switch it’s diag-
onal elements to the diagonal of graphical lasso estimate of inverse error covariance for
the same entity.
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4 Model selection and full algorithm layout

4.1 Model selection

Here we discuss tuning parameter selection for optimization criterions of separate and
joint methods. In both cases cross-validation proves way too demanding considering the
size of matrices in the regression setup while BIC picks models that are too sparse to be
true.

For separate method the following AIC criterion has proven to be efficient:

AIC(λ1) = n log(||W −Zβ̂λ1 ||
2
2/n)+2 d fλ1 , (14)

where d fλ1 - number of distinct non-null coefficients of β̂λ1

For joint method this particular AIC was struggling to pick up on similarities be-
tween classes even in cases of simulated data with identical transition matrices for both
classes - it would pick a very small λ2 and virtually estimate transition matrices sepa-
rately. After heuristically trying out different versions of AIC criterion(which included
running simulations and comparing estimates with the true transition matrices), the fol-
lowing formula yielded best results:

AIC(λ1,λ2) = n log(||W −Zβ̂λ1,λ2 ||
2
2/n)+3 d fλ1,λ2 , (15)

where d fλ1,λ2 - number of distinct non-null coefficients of β̂λ1,λ2

4.2 Full estimation algorithm

The steps for our main estimation algorithm are the following:

• Step 1. Use algorithm from Chapter 3 to get Σ̂11 and Σ̂22.

• Step 2. Insert these estimates into optimization problems of form (5) for separate
method and into optimization problem of form (8) for joint method.

• Step 3. Use cyclical coordinate descent algorithm(implemented in R package
glmnet) to come up with solution path for λ1 for separate optimization problems
and use criterion (12) to pick the estimate

• Step 4. Do a sequential search of tuning parameters λ1 and λ2:

– Step 4.1. Initialize λ2 with λ̂2 = 0.

– Step 4.2. Do a 1D grid search for λ1 using criterion (13) with λ2 fixed. Get
λ̂1.

– Step 4.3. Do a 1D grid search for λ2 using criterion (13) with λ1 = λ̂1 fixed.
Get λ̂2. Go back to step 4.2. Repeat a couple of times.

5 Simulation study

We test the performance of our joint model on simulated data and compare the results
with separate estimation approach. In particular, we look at how well was the transition
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First entity

2 4 6 8 10

10
8

6
4

2

0 0.6

Second entity

2 4 6 8 10

10
8

6
4

2

0 0.6

Figure 1: Generated transition matrices for first enitiy(left) and second entity(right) for
the case of A11 ∼ A22

matrix structure estimated(positioning of non-zero elements), how close were the esti-
mated non-zero element values to true non-zero values. First one is measured by False
Positive rate, False Negative rate and Matthews Coefficient, while the second aspect
is captured via Normalized Frobenius Difference between the estimate and the true ma-
trix. Also, the predictive performance is compared by looking at one-step Mean Squared
Forecasting Error. All of these measures will be described in detail in subsection 5.2.

While the main goal of our model is to estimate transition matrices, it can’t really be
done without proper error covariance estimation(or its inverse). Therefore we demon-
strate the performance of all three approaches described in section 3 and compare the
resulting Normalized Frobenius Differences.

5.1 Generation mechanism

Transition matrices A11 and A22 from (8) & (9) are generated with maximum eigenvalue
0.6 so that the resulting VAR model is stationary. We look at two cases: A11 ≡ A22 and
A11 ∼ A22(similar matrices but with more heterogeneity introduced).

For generation of transition matrices we have the following settings:

• signal to noise ratio equals maxi, j|Ai, j|
sd({X t

i ,t=1,...,T}) = 2

• edge density of transition matrices(percentage of non-zero off-diagonal elements)
A11 and A22 varies depending on number of variables: 5% for p = 10(about 4-5
non-zero off-diagonal elements), 3% for p = 20(11-12 elements), 1-2% for p =
30(12-18 elements)

For the case A11 ∼ A22 we generate matrices with certain amount of shared non-zero
off-diagonal elements between A11 and A22. Afterwards we add a certain amount of non-
zero elements with randomly generated positions which leads to structural heterogeneity
between the two matrices. Example can be seen in Figure 1.

JSM 2016 - Section on Statistical Learning and Data Science

824



To generate error covariance matrix that follows factor model(Σ = ΛΛ′+ΣU ) we use
approach introduced in [10][Cai et al.,2011]:

• Λp×H = (b) ji, b ji ∼ N(0,1), j ≤ p, i≤ H,

• H(number of factors) = 1

• For ΣU - generated a diagonal matrix to make sure that the inverse is sparse and
the signal of ΛΛ′ to ΣU is not small(restricted it to be between 1.5 and 3)

5.2 Performance measures

Assume that Â11 = (âi, j)
(1) and Â22 = (âi, j)

(2) are the final estimates of A11 = (ai, j)
(1)

and A22 = (ai, j)
(2) respectively. To measure the quality of those estimate we look at:

- Normalized Frobenius Difference:

NFD =
||Â11−A11||22 + ||Â22−A22||22

||A11 +A22||22
- Matthews Coefficient:

MC =
T P×T N − FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
,

where

FP =
1
2

2

∑
k=1

∑1≤i< j≤p I(a(k)i, j = 0, â(k)i, j 6= 0)

∑1≤ j< j′≤p I(a(k)i, j = 0)
, T N = 1−FP

,

FN =
1
2

2

∑
k=1

∑1≤i< j≤p I(a(k)i, j 6= 0, â(k)i, j = 0)

∑1≤i< j≤p I(a(k)i, j 6= 0)
, T P = 1−FN

.

- 1-step Mean Squared Forecast Error. We train the model on first T −1 time points
and check its predictive performance by calculating MSFE with the actual observation
at time point T . Let R = (R1, ...,R2p)

′ - vector of 2p observed values at next time point,
R̂ = (R̂1, ..., R̂2p)

′ - vector of 2p predicted values at next time point:

MSFE =
2p

∑
i=1

(R̂i−Ri)
2

2p

We will be looking to minimize Normalized Frobenius Difference and maximize
Matthews Coefficient.
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5.3 Results

First we present the results of Σ−1 estimation(Normalized Frobenius Difference mea-
sure) in Figure 2 below. Methods used were pure graphical lasso(Glasso), pure factor
models(Factor) and the aforementioned ensemble of the two(Our method):

Setup Glasso Factor Our method
p=10 t=30(1000 replicates) 0.76(0.1) 0.65(0.12) 0.52(0.11)
p=10 t=40(1000 replicates) 0.81(0.11) 0.81(0.13) 0.64(0.12)
p=20 t=40(200 replicates) 0.76(0.08) 0.64(0.09) 0.52(0.09)
p=20 t=50(200 replicates) 0.8(0.08) 0.75(0.08) 0.6(0.08)
p=20 t=60(200 replicates) 0.82(0.09) 0.87(0.1) 0.67(0.09)
p=30 t=50(100 replicates) 0.8(0.08) 0.71(0.08) 0.59(0.08)
p=30 t=60(100 replicates) 0.82(0.07) 0.81(0.08) 0.65(0.07)
p=30 t=70(100 replicates) 0.84(0.06) 0.88(0.07) 0.69(0.06)

Figure 2: Results of Σ−1 estimation(Normalized Frobenius Difference) for three meth-
ods: pure glasso, pure factor models and our method(combination of the former two).

As discussed before, our method combines advantages of pure graphical lasso and
factor model estimation for diagonal and off-diagonal elements of Σ−1 respectively. It
ourperforms both pure graphical lasso and pure factor model approaches in Frobenius
difference for all the cases.

AIC(λ1) criterion from (14) is used for tuning parameter selection in separate ap-
proach and heuristic AIC(λ1,λ2) criterion from (15) for joint approach. Hard threshold
of 0.1 was applied to the resulting estimates.

To further improve the joint estimates we applied a refitting procedure(this procedure
didn’t help as much with separate estimates case so we left those unaffected):

• assumed the estimated structure of transition matrices to be true;

• applied OLS estimation procedure to the reduced set of parameters(the non-zeros
in initial estimates)

We ran at least 100 replicates for all cases and the results are summarised in Figure
3 below.

One can see the dominance of joint modeling approach in terms of Matthews and
frobenius difference measures: it outperforms the separate approach on both accounts in
all of the studied cases. If we actually break down Matthews coefficient and study false
positive and false negative rates, we notice that there is a trade-off in false negatives for
joint estimates in some cases. That is to be expected considering that joint estimates
appear to be more sparse. Meanwhile, false positive rate performance is much better for
the joint approach.

As for forecasting performance, MSFE values appear to be slightly smaller for joint
method in most cases. The biggest reason why separate and joint approaches are com-
parable in that regard is because separate estimates are less sparse and more inclined
to overfitting the data. They keep a lot of non-zero elements in the transition matrices,
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Setup Method MSFE FP FN Matthews Frob
p=10 t=30
A11 ≡ A22

S
J

0.18(0.14)
0.17(0.12)

0.26(0.1)
0.09(0.1)

0.1(0.06)
0.07(0.12)

0.65(0.12)
0.84(0.14)

0.80(0.22)
0.49(0.15)

p=10 t=40
A11 ∼ A22

S
J

0.18(0.15)
0.17(0.13)

0.19(0.07)
0.06(0.05)

0.04(0.04)
0.04(0.06)

0.78(0.08)
0.90(0.07)

0.57(0.11)
0.36(0.13)

p=20 t=40
A11 ≡ A22

S
J

0.18(0.12)
0.15(0.08)

0.24(0.09)
0.02(0.06)

0.09(0.03)
0.07(0.08)

0.67(0.1)
0.90(0.09)

0.87(0.25)
0.33(0.12)

p=20 t=50
A11 ∼ A22

S
J

0.20(0.14)
0.17(0.11)

0.14(0.06)
0.02(0.02)

0.05(0.07)
0.09(0.13)

0.81(0.08)
0.89(0.11)

0.60(0.16)
0.35(0.11)

p=30 t=50
A11 ≡ A22

S
J

0.20(0.12)
0.16(0.13)

0.34(0.11)
0.01(0.01)

0.16(0.04)
0.1(0.07)

0.51(0.13)
0.89(0.07)

1.34(0.42)
0.41(0.13)

p=30 t=60
A11 ∼ A22

S
J

0.19(0.11)
0.19(0.12)

0.15(0.06)
0.01(0.00)

0.04(0.02)
0.09(0.05)

0.82(0.07)
0.90(0.05)

0.67(0.13)
0.35(0.08)

p=30 t=70
A11 ∼ A22

S
J

0.16(0.12)
0.13(0.08)

0.09(0.03)
0.01(0.00)

0.02(0.01)
0.07(0.07)

0.90(0.04)
0.92(0.06)

0.51(0.07)
0.29(0.09)

Figure 3: Results of a simulation studies comparing Joint(J) and Separate(S) methods
for multiple combinations of p and t. Means and standard deviations are shown over 50
replicates for one-step mean squared forecasting error(MSFE), false positive rate(FP),
false negative rate(FN), Matthews coefficient(Matthews) and normalized frobenius dif-
ference(Frob).

which typically is not the case for the true underlying model. Here we know for a fact
that the true model is sparse and that joint modeling approach does considerably better
in terms of capturing the matrix structure.

6 Joint modeling of multivariate economic series application

Joint modeling method was applied to simultaneously model economic time series data
for multiple states in United States. In particular, considering their similar industrial
activity, we focused on Pennsylvania, Michigan, Ohio and Illinois. The data was taken
from Federal Reserve website and consists of 14 monthly economic variables spanned
over time period from December 2006 to December 2015. The variables under consid-
eration were:

• totals of employees in five sectors(one variable for each of the sectors) - construc-
tion, education/health services, financial activities, manufacturing, goods produc-
ing;

• hourly earnings for each of the aforementioned five areas(five variables;

• totals of employees in government sector;

• total of employees in non-farm sector;

• leading index;

• unemployment rate.

Details on variable descriptions/abbreviations can be found in Appendix B.
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As already mentioned, to estimate the error covariance matrix we use factor models
which relies on assumption of several common underlying factors. It was demonstrated
in multiple papers ([18][Stock & Watson, 2002]; [4] [Bernanke, 2004]; [5][Boivin,
2008]) that this assumption makes sense for econometric applications. The only dif-
ference is we assume that errors, not economic variables themselves, are being driven
be a few common underlying factors.

In this particular application we emphasize figuring out the structure of transition
matrix(positions of non-zero elements). The estimation procedure is carried out the
following way: after fixing initial time point t and time period length l, the model is
trained for that period and its performance tested on next time point(which is available).
Then the procedure is ”shifted” by one time point: make t + 1 our initial point while
keeping period l fixed, train the model for the new period, test on the next time point.
Repeat until we run out of time points available in the dataset. That way a number of
transition matrix estimates is accumulated and one can see how stable those are while
also checking their forecasting performance.

To see how stable the estimates of transition matrices are, we summarized them
into one cumulative matrix: value in each position of that matrix corresponds to the
proportion of times that position contained a non-zero element in the estimate. For
example, if we have 20 various estimates Âi, i = 1, ..,20 of transition matrix A, then
Acum

k, j = ∑
20
i=1 I(Âi

k, j 6= 0).
Instead of doing a big combined estimation procedure for K = 4, all possible pair-

wise estimation procedures were performed(six of those). That way one ends up with
three cumulative matrices for each state(off the pairwise comparisons with other three
states). Then we simply average these three matrices to get the final joint estimate of
transition matrix structure for each particular state. For comparison the separate estima-
tion procedure was carried out for all the states and summarized in respective cumulative
matrices as well.

The results for each state can be seen on Figures 4 and 5 on next two pages.
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Figure 4: The cumulative transition matrices(defined in the paragraphs above) for Pen-
sylvania(upper row) and Ohio(lower row). Separate(left) and joint(row) estimates are
presented for each state.
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Figure 5: The cumulative transition matrices(defined in the paragraphs above) for Michi-
gan(upper row) and Illinois(lower row). Separate(left) and joint(row) estimates are pre-
sented for each state.
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One can notice a much sparser structure for joint estimates along with the fact that it
picks up on diagonals more consistently than separate method. Separate method is way
too dense which is indicative of overfitting. A slight advantage can be seen in terms of
forecasting performance of joint method over separate(Figure 6).

Setup Separate Joint
14 variables, WeeklyH 0.38(0.20) 0.33(0.14)
14 variables, HourlyE 0.18(0.12) 0.16(0.11)
19 variables 0.30(0.13) 0.26(0.09)

Figure 6: Results of 1-step forecasting for all states combined for each of the setups(3
of those) and modeling approaches(separate and joint).

7 Conclusion

In this paper joint modeling approach is introduced for a problem of estimating two
sparse Granger networks. It can be very advantageous when one either doesn’t have
enough data for separate estimation and when assumption of similarity between classes
is true. Especially in case of high-dimensional sparse models joint method will almost
always outperform separate method purely because of abundance of shared zero ele-
ments. One of the possible improvements in the future include extending the problem
to any number H of entities. But considering that even for relatively small examples(of
20,30 variables per entity) it takes hours to run 1 replication the other area of improve-
ment is coming up with a less computationally demanding approach.
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Appendix A

Convergence diagnostics of ADMM algorithm.

Here we provide the ADMM algorithm convergence diagnostics via combination of
the following four plots:

• ||β (k)−β (k−1)||22(denoted as Frob(β (k)−β (k−1))) against iteration number

• ||γ(k)−Lβ (k)||22(denoted as Frob(γ(k)−Lβ (k))) against iteration number

• | f (k)ob j− f (k−1)
ob j |(denoted as Frob( f (k)ob j− f (k−1)

ob j )) against iteration number

• f (k)ob j against iteration number

In particular, we will demonstrate the plots for cases when it took over 40 iterations
for the algorithm to converge. See the Figures 7 and 8 below (starting points for ADMM
algorithm: u0 = (0, ...,0),γ0 = (0, ...,0)).
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Figure 7: Diagnostics plot 1: four measures(discussed above) plotted against iteration
number, fixing λ1 = 0.01,λ2 = 0.137.
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Figure 8: Diagnostics plot 2: four measures(discussed above) plotted against iteration
number, fixing λ1 = 0.005,λ2 = 0.029.

One can see how the sequence of estimates {β (k)} stabilizes with respect to Frobe-
nius norm(top left panel), the restriction γ(k)−Lβ (k) = 0, k = 1,2, ... of the algorithm al-
ways approximately holds(top right panel), the objective function value stabilizes(botom
panels). All of that is indicative of good convergence performance of our ADMM algo-
rithm.
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Appendix B

Variable description & abbreviation on FRED website(on
example of Illinois)

Abbreviation* Description Units
ILCONS All Employees: Construction in Illinois Thousands of Persons
ILEDUH All Employees: Education and Health Thousands of Persons

Services in Illinois
ILFIRE All Employees: Financial Activities Thousands of Persons

in Illinois
ILGOVT All Employees: Government in Illinois Thousands of Persons
ILMFG All Employees: Manufacturing in Illinois Thousands of Persons
ILNA All Employees: Total Nonfarm in Illinois Thousands of Persons
ILSLIND Leading Index for Illinois Percent
ILUR Unemployment Rate in Illinois Percent
SMS17000000600000001 All Employees: Goods Producing Thousands of Persons

in Illinois
SMU17000000600000002SA Average Weekly Hours of All Employees: Hours

Goods Producing in Illinois
SMU17000000600000003SA Average Hourly Earnings of All Employees: Dollars per Hour

Goods Producing in Illinois
SMU17000002000000002SA Average Weekly Hours of All Employees: Hours

Construction in Illinois
SMU17000002000000003SA Average Hourly Earnings of All Employees: Dollars per Hour

Construction in Illinois
SMU17000003000000002SA Average Weekly Hours of All Employees: Hours

Manufacturing in Illinois
SMU17000003000000003SA Average Hourly Earnings of All Employees: Dollars per Hour

Manufacturing in Illinois
SMU17000005500000002SA Average Weekly Hours of All Employees: Hours

Financial Activities in Illinois
SMU17000005500000003SA Average Hourly Earnings of All Employees: Dollars per Hour

Financial Activities in Illinois
SMU17000006500000002SA Average Weekly Hours of All Employees: Hours

Education and Health Services in Illinois
SMU17000006500000003SA Average Hourly Earnings of All Employees: Dollars per Hour

Education and Health Services in Illinois

* There might be some inconsistencies in abbreviations across the states.
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