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Abstract
Interval estimation for the risk difference in the correlated binary data is often an important problem
in many biomedical applications. For instance, in the study of cancer and leukemia group B ran-
domized trials (Cooper et al., 1993), it is often of interest to compare two chemotherapy treatments
with respect to success rates of the patients with multiple myeloma who survived at the end of this
study. In this project, the interval procedures are developed for estimating the difference between
success rates of the two chemotherapy treatments in this study. An extensive simulation study is
conducted for the purposes of evaluating and comparing the performance of the proposed intervals,
in terms of coverage and expected lengths. An application to biomedical data is used to illustrate
the proposed methods.

Key Words: correlated binary data, confidence interval, coverage probability, difference between
the proportions, independent binary data

1. Introduction

Independence of the observations is one of the key assumptions of the binominal distri-
bution for binary outcome data. This assumption will be violated if multiple observations
on the same individual are pooled with observations from different individuals, since the
former will tend to show less variability than the latter, i.e. will tend to be positively cor-
related. In many biomedical, toxicological, clinical medicine, and epidemiological appli-
cations, responses are binary as well as positively correlated. For independent binary data,
there are numerous binomial interval procedures available in literature for the estimation of
the difference between the response rates in two treatment groups.

Newcombe (1998) compared 11 methods for constructing the confidence interval for
the difference between the response rates for independent data. Of these 11 methods he
proposed a new method (method 10 in his paper) which is remarkably simple, achieves
better coverage properties, and is a non-iterative asymptotic normality approach. We extend
method 10 of Newcombe (1998) for correlated binary data.

For independent data, there are other classes of methods available, which work well
in situations when the asymptotic distribution of the observed risk difference can be far
from normal especially for the small expected number of observations in either of the two
treatment groups. In such situations, one would use an ”exact” binomial interval such as
Clopper-Pearson interval, which is usually used as a gold standard for calculating confi-
dence interval for a single proportion for independent data. Chen and Tipping (2002) made
direct extension of this method for a single proportion for correlated binary data. We fur-
ther extend this Clopper-Pearson method for the difference between the success rates using
the method of variance estimates recover (MOVER) introduced by Zou and Donner (2008).

In a recent paper by Krishnamoorthy and Zhang (2015), a closed-form approximate
confidence interval for the difference between two independent binomial proportions was
proposed based on the constrained moment estimates discussed on Section 7.2.1 of Caella
and Berger (2001). We also extend this method for the correlated binary data.
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It is, therefore, the primary aim of this paper to develop and evaluate methods for
constructing confidence intervals forπ1 − π2 in the analysis of correlated binary outcome
data by direct extensions of above existing methods for tackling independent data using the
concept of effective sample size.

2. Proposed Method

There are two steps in the proposed procedure. The first step consists of the estimation
of the complex variances for complex survey designs to obtain the degrees-of-freedom
adjusted effective sample sizes as well as adjusted total successes. This adjusted effective
sample size represents the number of independent and identically distributed observations
that is required to achieve the same level of precision in the estimation of proportion.

In the second step, existing binomial interval procedures are applied to calculate the
confidence interval using the degrees-of-freedom adjusted effective sample sizes as well as
adjusted total successes.

2.1 First Step of the Proposed Method

For complex survey designs, it involves clustering of sample persons and differential sam-
pling weights. Due to differential weighting, the complex variance for clustered design is
typically larger than the simple random sample variance for the same sample size. Ignoring
sample weights can lead to biased estimates for proportion. To avoid this problem, Koran
and Graubard (1998) used̂πi as the weighted estimate based on the complex survey design
and calculated its complex variance accordingly as follows.

Letwij (j = 1, . . . ,mi; i = 1, 2) be a set of weights such thatwij ≥ 0 and
∑mi

j=1
wij =

1. Then, an unbiased estimator ofπi and its complex variance estimator can be obtained as

π̂w
i =

mi
∑

j=1

wijπ̂ij and v̂(π̂w
i ) =

1

mi − 1

mi
∑

j=1

wij(π̂ij − π̂w
i )

2.

Following Koran and Graubard (1998), based on the weighted estimateπ̂w
i and its com-

plex variance estimate the df adjusted effective sample size forith group can be obtained
as

ne∗
i. =

π̂w
i (1− π̂w

i )

v̂(π̂w
i )

(

tni.−1(1− α/2)

tmi−1(1− α/2)

)2

,

Then, the total number of affected individuals in theith groupyi. can be adjusted asye∗i. =
ne∗
i. π̂

w
i , and treatye∗i. as a binomial random variable with parametersne∗

i. andπi.

2.2 Second Step of the Proposed Method

After adjusting the sample size and the total number of affected individuals in theith group,
we apply three existing methods originally for tackling independent data to the adjusted
data(ne∗

i. , y
e∗
i. ) (i = 1, 2) for the computation of confidence intervals ofπ1 − π2. We

summarize our proposed methods in Table 1.

3. Simulations

This section reports on a simulation study conducted to investigate the small and moderate
sample behavior of the proposed methods in terms of observed coverage probability and
average interval length using the pre-assigned confidence level of95%. We considered two
treatment groups with number of clustersm1 = 19 andm2 = 27. Based on the historical
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Table 1: Summary of abbreviations for various confidence interval estimators.

Abbreviation Confidence interval (CI)
MW1 Wilson CI based on(ne∗

i. , y
e∗
i. ) usingv̂(π̂i) = VEW

MW2 Wilson CI based on(ne∗
i. , y

e∗
i. ) usingv̂(π̂i) = VOW

CP1 Clopper-Pearson CI based on(ne∗
i. , y

e∗
i. ) usingv̂(π̂i) = VEW

CP2 Clopper-Pearson CI based on(ne∗
i. , y

e∗
i. ) usingv̂(π̂i) = VOW

CM1 Constrained Moment CI based on(ne∗
i. , y

e∗
i. ) usingv̂(π̂i) = VEW

CM2 Constrained Moment based on(ne∗
i. , y

e∗
i. ) usingv̂(π̂i) = VOW

Table 2: Median coverage probability (CP) and median expected length (EL) of the 95%
confidence intervals forπ based on 180 parameter combinations for 15 methods.

Length Comparison
Method Median CP Median EL individual/R
MW1 0.957 0.303 1.070
MW2 0.959 0.296 1.043
CP1 0.969 0.326 1.151
CP2 0.971 0.317 1.119
CM1 0.959 0.304 1.072
CM2 0.956 0.297 1.048
R 0.946 0.284 1.000

data in biomedical applications, we allowed equal and unequal intraclass correlation coeffi-
cients between two treatment groups as(φ1, φ2) = (0.1054, 0.2148), (0.249, 0.324), (0.10,
0.01), and (0.30, 0.30). We also considered the fixed cluster sizes for the two treatment
groups taken from the low-dose and control groups for the data of Paul (1982). A common
value ofπ2 = 0.20 and a set of values forδ = π1 − π2 = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.45, 0.50 were considered. We generated data from the beta-binomial
distribution using the IMSL random number generators RNBET and RNBIN.

We compute the observed coverage probability for the intraclass correlation by the
relative frequency out of 1000 intervals that contained the true value. The average interval
length is the mean of the lengths computed on the basis of 1000 intervals. The results are
reported in Tables 2-4 from which we make the following observations:

• The CP results between equal and unequal intraclass correlations among both treat-
ment groups for all seven methods are in remarkable agreement irrespective of the
difference between proportions. Specifically, the CPs for all methods are virtually
the same across all parameter combinations.

• As expected, he CP2 method shows somewhat conservative coverage across the
board, and it becomes highly conservative coverage for larger values ofδ for all
combinations of the proportion parameters.

• All methods except CP2 show reasonable coverage across the board; however, the
CPs for these methods are slightly improved for larger values of intraclass correla-
tions.
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Table 3: The coverage probabilities of the confidence intervals by the methods with nomi-
nal level,1− α = 95% for fixed litter sizes.

(φ1, φ2) d MW1 MW2 CP1 CP2 CM1 CM2 R
0.105, 0.215 0.00 0.9602 0.9626 0.9717 0.9728 0.9614 0.9575 0.9530

0.05 0.9557 0.9605 0.9686 0.9713 0.9621 0.9568 0.9508
0.10 0.9587 0.9640 0.9723 0.9750 0.9670 0.9619 0.9537
0.15 0.9571 0.9612 0.9695 0.9732 0.9642 0.9580 0.9489
0.20 0.9572 0.9591 0.9699 0.9719 0.9640 0.9584 0.9463
0.25 0.9587 0.9629 0.9705 0.9735 0.9678 0.9620 0.9503
0.30 0.9587 0.9621 0.9690 0.9729 0.9666 0.9592 0.9489
0.35 0.9610 0.9635 0.9716 0.9737 0.9679 0.9629 0.9514
0.40 0.9600 0.9652 0.9726 0.9750 0.9694 0.9627 0.9505
0.45 0.9600 0.9610 0.9709 0.9715 0.9640 0.9577 0.9471
0.50 0.9580 0.9594 0.9694 0.9723 0.9644 0.9583 0.9461

0.249, 0.324 0.00 0.9501 0.9537 0.9653 0.9688 0.9498 0.9479 0.9481
0.05 0.9520 0.9563 0.9676 0.9699 0.9543 0.9538 0.9495
0.10 0.9562 0.9592 0.9693 0.9707 0.9553 0.9532 0.9443
0.15 0.9553 0.9594 0.9682 0.9710 0.9572 0.9551 0.9460
0.20 0.9577 0.9623 0.9723 0.9751 0.9609 0.9582 0.9437
0.25 0.9530 0.9560 0.9674 0.9695 0.9555 0.9541 0.9407
0.30 0.9553 0.9590 0.9683 0.9714 0.9589 0.9559 0.9412
0.35 0.9574 0.9599 0.9686 0.9712 0.9597 0.9570 0.9436
0.40 0.9584 0.9627 0.9722 0.9744 0.9599 0.9585 0.9434
0.45 0.9548 0.9597 0.9689 0.9725 0.9582 0.9561 0.9402
0.50 0.9584 0.9596 0.9717 0.9740 0.9593 0.9580 0.9394

0.10,0.10 0.00 0.9617 0.9629 0.9732 0.9744 0.9676 0.9612 0.9566
0.05 0.9589 0.9620 0.9705 0.9728 0.9679 0.9620 0.9545
0.10 0.9583 0.9652 0.9705 0.9746 0.9693 0.9617 0.9489
0.15 0.9602 0.9650 0.9718 0.9734 0.9703 0.9620 0.9513
0.20 0.9616 0.9640 0.9733 0.9736 0.9711 0.9630 0.9511
0.25 0.9607 0.9685 0.9721 0.9760 0.9740 0.9650 0.9491
0.30 0.9636 0.9632 0.9736 0.9733 0.9710 0.9629 0.9483
0.35 0.9587 0.9624 0.9685 0.9715 0.9697 0.9624 0.9506
0.40 0.9636 0.9619 0.9738 0.9739 0.9689 0.9607 0.9479
0.45 0.9581 0.9620 0.9703 0.9733 0.9691 0.9614 0.9486
0.50 0.9612 0.9626 0.9726 0.9733 0.9696 0.9625 0.9530

0.30, 0.30 0.00 0.9503 0.9574 0.9674 0.9729 0.9526 0.9520 0.9533
0.05 0.9518 0.9542 0.9667 0.9707 0.9488 0.9472 0.9417
0.10 0.9533 0.9568 0.9691 0.9732 0.9527 0.9521 0.9412
0.15 0.9585 0.9594 0.9697 0.9723 0.9589 0.9570 0.9440
0.20 0.9598 0.9615 0.9739 0.9738 0.9585 0.9570 0.9440
0.25 0.9570 0.9607 0.9698 0.9718 0.9547 0.9522 0.9388
0.30 0.9563 0.9587 0.9700 0.9705 0.9553 0.9545 0.9386
0.35 0.9550 0.9561 0.9690 0.9696 0.9555 0.9532 0.9368
0.40 0.9558 0.9597 0.9692 0.9727 0.9586 0.9584 0.9406
0.45 0.9546 0.9585 0.9683 0.9691 0.9548 0.9534 0.9407
0.50 0.9571 0.9604 0.9715 0.9738 0.9577 0.9570 0.9422
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Table 4: The expected lengths of the confidence intervals by the methods with nominal
level,1− α = 95% for fixed litter sizes.

(φ1, φ2) d MW1 MW2 CP1 CP2 CM1 CM2 R
0.105, 0.215 0.00 0.271 0.265 0.291 0.284 0.266 0.261 0.250

0.05 0.282 0.276 0.303 0.295 0.279 0.273 0.261
0.10 0.290 0.283 0.312 0.304 0.289 0.282 0.270
0.15 0.296 0.289 0.318 0.309 0.296 0.289 0.276
0.20 0.301 0.293 0.324 0.314 0.302 0.294 0.280
0.25 0.304 0.296 0.327 0.317 0.305 0.297 0.283
0.30 0.304 0.296 0.327 0.317 0.306 0.298 0.284
0.35 0.303 0.295 0.326 0.317 0.306 0.297 0.283
0.40 0.300 0.292 0.323 0.314 0.303 0.294 0.280
0.45 0.295 0.287 0.317 0.308 0.297 0.289 0.276
0.50 0.288 0.281 0.311 0.302 0.291 0.283 0.270

0.249, 0.324 0.00 0.312 0.312 0.338 0.338 0.306 0.306 0.297
0.05 0.324 0.324 0.351 0.351 0.320 0.320 0.310
0.10 0.334 0.333 0.363 0.361 0.332 0.332 0.320
0.15 0.342 0.341 0.371 0.370 0.342 0.341 0.329
0.20 0.347 0.346 0.377 0.376 0.349 0.347 0.335
0.25 0.350 0.349 0.381 0.379 0.353 0.351 0.339
0.30 0.351 0.349 0.382 0.380 0.354 0.353 0.340
0.35 0.349 0.348 0.380 0.378 0.353 0.352 0.339
0.40 0.345 0.344 0.376 0.375 0.349 0.348 0.335
0.45 0.339 0.338 0.370 0.368 0.343 0.342 0.329
0.50 0.331 0.330 0.360 0.359 0.334 0.333 0.320

0.10,0.10 0.00 0.252 0.244 0.270 0.260 0.248 0.241 0.229
0.05 0.263 0.254 0.282 0.272 0.261 0.253 0.241
0.10 0.273 0.263 0.292 0.281 0.272 0.263 0.250
0.15 0.279 0.269 0.300 0.288 0.280 0.270 0.257
0.20 0.284 0.274 0.305 0.293 0.286 0.275 0.262
0.25 0.287 0.277 0.308 0.296 0.289 0.278 0.265
0.30 0.287 0.277 0.308 0.296 0.290 0.279 0.265
0.35 0.287 0.276 0.308 0.295 0.289 0.278 0.265
0.40 0.283 0.273 0.304 0.292 0.286 0.275 0.262
0.45 0.278 0.268 0.299 0.287 0.281 0.270 0.257
0.50 0.271 0.262 0.291 0.280 0.273 0.263 0.250

0.30, 0.30 0.00 0.318 0.319 0.345 0.346 0.311 0.312 0.304
0.05 0.331 0.331 0.360 0.360 0.327 0.328 0.318
0.10 0.341 0.342 0.372 0.372 0.340 0.340 0.330
0.15 0.349 0.349 0.381 0.380 0.350 0.350 0.339
0.20 0.355 0.355 0.387 0.387 0.357 0.357 0.346
0.25 0.357 0.357 0.390 0.390 0.360 0.360 0.350
0.30 0.359 0.358 0.392 0.391 0.362 0.362 0.351
0.35 0.357 0.357 0.389 0.389 0.361 0.361 0.350
0.40 0.353 0.353 0.386 0.386 0.358 0.358 0.346
0.45 0.347 0.347 0.379 0.379 0.351 0.351 0.339
0.50 0.338 0.338 0.369 0.369 0.342 0.342 0.330
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• The MW1, MW2, CM2, and R methods produces better coverage compared to the
other methods, especially for larger correlation parameter combinations irrespective
of equal and unequal correlations.

• For all methods, the ELs increase as the difference between the proportions increases
and also the ELs decrease as the difference between the intraclass correlation param-
eters(φ1, φ2) increases.

• The MW1, CP1, and CM1 methods tend to have similar ELs which are larger than
the ELs of the MW2, CP2, and CM2 methods.

• The R method has among the lowest ELs which in many situations is at the expense
of somewhat under-coverage, whereas good coverage properties of the MW2,and
CM2 methods tend to have larger ELs compared to the R method, but smaller ELs
compared to the MW1, CP1, and CM1 methods.

4. Example: Chemotherapy Study

In cancer and leukemia group B randomized trials (Cooper et al., 1993), patients with
multiple myeloma from different institutions were randomly assigned to one of the two
chemotherapy treatment groups, where each institution was considered as the randomiza-
tion unit or cluster. There were 21 institutions in each treatment group with cluster sizes

Table 5: Summary statistics for the data set in a chemotherapy study

Chemotherapy
Treatments # of subjects # of clusters mean cluster size success rate

Treatment I 72 21 3.43 0.542

Treatment II 84 21 4.00 0.524

ranging from 2 to 12 in treatment I and from 2 to 11 in treatment II. A total of 156 eligi-
ble patients was accrued in the 21 institutions. Table 5 provides summary statistics of this
study.

Treatment I

Cluster−level proportion

Fre
que

ncy

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Treatment II

Cluster−level proportion

Fre
que

ncy

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Figure 1: The distributions of cluster-level proportions for both treatment groups in a
chemotherapy study.

Post-treatment responses for both treatment groups from the same institution are signifi-
cantly correlated due to the fact that patients from the same institution often have similar
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treatment outcomes due, possibly, to unmeasured variables such as the skill of the staff or
the quality of the hospital equipment, which leads to inflated variances of the post-treatment
response rates. The distributions of cluster-level proportions for both treatment groups are
shown in Figure 1. The estimated success probability and the estimated intraclass correla-
tion for both treatment groups and the estimated common intraclass correlation are provided
in Table 6.

Table 6: The point estimates of the parameters obtained based on the four different methods
for the data set in a solar protection study.

Methods π1 π2 φ1 φ2

ML 0.586 0.521 0.194 0.083

AOV 0.542 0.524 0.226 0.142

EW 0.621 0.518

OW 0.521 0.586

In this study, it is of interest to compare two chemotherapy treatments with respect to
success rates of the patients with multiple myeloma who survived at the end of this study.
Then, the 95% confidence intervals forπ1 - π2 obtained using the proposed methods as
well as the method recommended by Paul and Zaihra (2008) are given in Table 7.

Table 7: The 95% confidence intervals forπ1 - π2 obtained using the MW1, MW2, CP1,
CP2, CM1, CM2, and R methods.

Comparison
Method Lower Limit Upper Limit Length ind/ML
MW1 -0.078 0.273 0.351 0.933
MW2 -0.074 0.269 0.343 0.912
CP1 -0.091 0.288 0.378 1.006
CP2 -0.086 0.283 0.369 0.982
CM1 -0.171 0.204 0.376 0.999
CM2 -0.167 0.200 0.367 0.976
R -0.188 0.188 0.376 1.000

5. Conclusion

This article proposed a number of alternative CIs forπ1 − π2 for correlated binary data
by direct extensions of existing methods for tackling independent data using the concept
of design effect for complex survey designs. The results of a simulation study suggest that
the proposed methods generally perform well as their observed CPs are very close to the
nominal coverage level. However, the MW2 and CM2 methods are preferable compared
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to the other methods in the sense that they generally possess shorter ELs in almost all data
situations considered here.
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