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Abstract 
Geometric Brownian motion (GBM) model basically suggests that the distribution of asset returns is 
normal or lognormal. But, many empirical studies have revealed that return distributions are usually not 
normal. These studies, time and again, discover evidence of non-normality, such as heavy tails, excess 
kurtosis, etc. This paper recommends the GBM model based upon the t-distribution to approximate the 
return distributions of assets, and compares the distribution with normal distribution. In evaluating the 
recommended GBM level of precision, the model parameters are estimated. A Sequential Monte Carlo 
(SMC) technique based on t-distribution is developed to estimate the random effects and parameters for 
the extended model.  The SMC or particle filter based upon the t-distribution for the GBM model, which 
involves randomness, volatility and drift, can precisely capture the aforementioned statistical 
characteristics of return distributions and can predict the random changes or fluctuation in stock prices. 
Consequently, it provides an approximate solution to non-Gaussian estimation problem. Through 
stochastic simulations and the accuracy of the models which was proven by the lower value of the Mean 
Absolute Percentage Error (MAPE), our analysis shows that the GBM model based on student-t is 
empirically more successful than the normal distribution. 
  
Keywords: Geometric Brownian motion, Student-t distribution, normal distribution, drift, volatility, 
particle filter. 
 
1.0 Introduction 
Most of the models utilized in the description of financial time series are written in terms of a continuous 
time diffusion tS  that satisfies the stochastic differential equation (SDE):  
                                               tttt dBSdtSdS                                                 
where ),0(~ dtNdBt is the increment to Brownian motion process , tS  and tS  denote the volatility 
and  drift function, respectively. This class of parametric model has been extensively used to portray the 
dynamics of financial variables, including stock prices, interest rates, and exchange rates. A stochastic 
process tS  is said to follow a Geometric Brownian Motion (GBM) if it satisfies the above stochastic 
differential equation. 
 
The GBM is one of the most popular stochastic processes, and without doubt, an effective instrument in 
modelling and predicting the random changes in stock prices that evolves over time. It is essentially 
useful for this index price study because the process in question assumes that percentage changes are 
independent and identically distributed over equal and non-overlapping time length (Luenberger, 1995; 
Ross, 2000). The GBM assumes that the instantaneously expected rate of return is constant. Hence, the 
constant instantaneous expected drift assumption of the standard Brownian process is substituted with the 
constant expected rate of return in the geometric Brownian process (Hull, 2000). The GBM model usually 
assumes that the distribution of asset returns is normal or lognormal. However, financial data often have 
heavier tails than can be captured by the standard GBM model. As such, there is need to use non-normal 
distributions to better model and to deal with the heavy tails (Carol, 2004; Tan 2005, Tan and Tokinaga 
2006, Tan 2007a, Tan and Chu 2012). However, intractable likelihood functions for SDEs make inference 
challenging, necessitating the resort to simulation-based techniques to estimate and maximize the 
likelihood function. The sequential Monte Carlo methods or the particle filter have allowed for the 
accurate evaluation of likelihoods at fixed parameter values. 
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This work is structured thus: Section One introduces the work. Section Two reviews the relevant 
literature; Section Three gives a synopsis of the standard version of the GBM model, and extends the 
model by modeling the return distributions of assets using a student-t distribution and gives a brief 
analysis of the SMC procedure and its implementation. Section Four presents the simulation results and 
application to the real data that confirms the proposed method based on student-t and normal. Finally, 
Section Five concludes the work. 
 
2.0 Review of Relevant Literature 
A lot of literature has been generated in the area of GBM as a model for stock prices. Some scholars have 
tried extending and, hence improving the standard GBM model. Duplantier (2005) refers to Louis 
Bachelier who mentioned in his PhD thesis in 1900 that the stock price dynamics follows Brownian 
Motion. The process he applied can produce shares that allowed both negative security prices and option 
prices that exceeded the price of the underlying asset. Osborne (1959) refined the Bachelier model by 
employing the stochastic exponential of the Brownian motion to model stock price. Samuelson (1965) 
extended the GBM by using the discount rate in pricing. For him, the return rates, instead of the stock 
prices, follow Geometric Brownian Motion (Piasecki, 2006). Some scholars represent rare events by 
jumps and introduce a model of jump diffusion (see Merton (1976) and Kou (2002)). Others presented a 
more realistic stochastic process for the underlying process (e.g., stock price) by bringing in a stochastic 
process for the volatility, i.e., with the variance of the stock return as random {for example Hull and 
White (1987), Stein and Stein (1991) and Heston (1993)}.  
Thao (2006) tried replacing the Brownian motions with fractional Brownian motions in the diffusion 
model. Sattayatham et al. (2007) improved on Thao’s results by adding a Poisson jump into the model. 
 
GBM has been expansively used as a model for the stock prices, commodity prices and growth in demand 
for products and services and real options analysis (Nembhard et al., 2002; Thorsen, 1998; Benninga and 
Tolkowsky, 2000). It has also been used for representing future demand in capacity studies (Whitt, 1981; 
Lieberman, 1989; Ryan, 2006). On the whole, its acceptance was motivated from the assumption that 
random changes over time follow a GBM process (Marathe and Ryan, 2005). On the other hand, some 
scholars have raised relevant questions concerning the accuracy of the GBM (for example Watteel-
Sprague (2000), Ross (1999) Thorsen (1998), Marathe and Ryan (2005)). 
 
Works on modeling return distributions of financial assets also exist. The most used are the normal, the 
lognormal and the non-Gaussian stable distributions. Other types of distributions, such as the Student t, 
the skewed Student t, the generalized t, the Generalized Error Distribution (GED), the skewed GED, and 
mixture distribution of Gaussian distributions have been applied. The normal distribution is one of the 
most usually applied distributions. It was extensively used in the 1700’s; in 1800, Karl Gauss successfully 
applied it to astronomical data analysis. It became known as the Gaussian distribution. Empirical 
analyses, from the late 1960s, were not successful in supporting the normal assumption on estimating the 
return distribution of real financial data. Mandelbrot (1963) affirmed that while financial prices or its 
logarithm following a Brownian motion is mathematically convenient; it is hard to fit the real financial 
data with this assumption. Fama (1965) analyzed equilibrium asset pricing and noted that the daily return 
distribution follows a non-Gaussian distribution. Both Mandelbrot (1963) and Fama (1965) pointed out 
that excess kurtosis and heavy tails exist in real financial data. 
 
Hsu, et al. (1974) and Hagerman (1978) showed from their studies that return distributions are non-
normal. Bollerslev (1987) found leptokurtosis in monthly Standard & Poor’s 500 Index returns. Kariya, et 
al. (1995) and Nagahara (1996) revealed that the return distributions of Japanese stocks are fat-tailed and 
skewed. Kitagawa, Sato and Nagahara (1999) found that daily or weekly return distributions are not 
normal but fat-tailed and skewed according to observed financial data. Harvey and Siddique (2000), as 
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well as Premaratne and Bera (2000) confirmed the asymmetry of return distribution exists in real business 
data. Gerig, Vicente and Fuentes (2009) presented a model that explained the shape and scaling of the 
distribution of intraday stock price fluctuations and verified the model by using a large database made up 
of several stocks traded on the London Stock Exchange. Their findings showed that the return 
distributions for these stocks are non-Gaussian, similar in shape and appear to be stable over intraday time 
scales. 
Theodossiou (1998) advocated using a skewed generalized t distribution, which embraces the Student t 
and skewed Student t, to model return distributions. Furthermore, Theodossiou (2000) pointed out that a 
skewed GED fits the financial data well, while the asymmetry and excess kurtosis are observed in the 
financial data. 
 
In this paper, we extended our investigations by the introduction of a GBM model based upon the t-
distribution based particle filter to approximate the return distributions of assets and compare the 
distribution with normal distribution. In evaluating the proposed GBMion level of precision, the model 
parameters are estimated. A Sequential Monte Carlo or particle filter technique based on student-t 
distribution is developed to estimate the parameters for the extended model. The ensuing models are 
applied to modeling the closing stock price of 5 firms of the Nigerian Stock Exchange. 
 
 
3.0  Methodology 
3.1 The Geometric Brownian Motion (GBM) Model 
GBM is the stochastic process used in the Black-Scholes methodology to model the evolution of prices in 
time. As in a typical structural model, let us consider a firm with its value of the asset tV  following a 
geometric Brownian motion: 
 
                               ttvtt dBVdtVdV                                                                          (1) 
  and   are drift and volatility parameters to be estimated. The drift informs us on the average rate at 
which a value increases in a stochastic process while the volatility is the constant characteristic of the 
stock prices that tells us the measure of the fluctuations of the stock prices. Relatively high volatility 
means that the stock price varies continuously within relatively large interval. dt is an infinitely 
approaching 0 time difference between time points t  and  1t   and the last term involves random 

),0(~ dtNdBt increment to Brownian motion process. The right hand side term ttdV  controls the 
"trend" of this trajectory and the term tt dBV  controls the random noise in the trajectory. Nevertheless, 
one of the foremost challenges in applying this model to financial market data is the fact that the 
underlying asset value process is unobservable.  
 
Applying the Ito’s formula (see Lamberton and Lapeyre 1997) on equation (1) with SSF log)(  , we 
obtain: 

                                         tt BtS  







 2

2
1ln                                                       (2) 

 
The stochastic process, as characterized by equation (2), indicates that Sln  is normally distributed. 
Equivalently, S  is lognormally distributed.  
 
Taking the exponential of both side and inserting the initial condition 0S , we obtain the solution. The 
analytical solution of this GBM is given by: 
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                                       tt BtSS   )
2
1exp(( 2

0                                                           (3) 
This stochastic differential equation is principally significant in modeling of many asset classes. Equation 
(3) is the asset price model that is able to predict an asset price at specific time t. we can represent GBM 
solution in the form: 
                                           tX

t eSS 0                                                                               (4)  

where  tt BtX   )
2
1( 2  

 
3.2 GBM Model Maximal Likelihood Estimation 
The parameters    and   can be estimated using historical data for stock price, bearing in mind also 

that the time difference for data with monthly frequency is .
12
1

t  

As Damiano Brigo et al., (2007) noted, the parameters that need to be optimised are ),(   for the 
GBM.   
The likelihood function is denoted as: 
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The likelihood function is maximised to get the optimal estimators )ˆ,ˆ(ˆ   . The natural logarithm of 
the likelihood function is differentiated in terms of  and  then equated to zero to give equations : 
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Determining ŷ and ŝ ,  the corresponding MLE of   and    are:  
t

s



ˆˆ 2  and .

ˆˆ
2
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t
y


   

3.3 The GBM with t-distribution  
Asset return distributions are frequently presumed to follow a normal or lognormal distribution. It also 
can follow GBM based upon the Gaussian process. However, many empirical studies have shown that 
return distributions are usually not normal. They often find evidence of non-normality, such as heavy 
tails, excess kurtosis, finite moments, etc. One class of fat-tailed distributions with the potential to give a 
better approximation to the distribution of stock returns is the t-distribution. 
 
An extension of the version of the GBM model, wherein it is assumed that the random noise process, tdB  
is a student-t distribution is considered. The proposed student-t distribution with degrees of freedom, v , 
for the last term, tdB  , effects a change in the equation: 
 

                           .,,1,~ nttdBdBVdtVdV vttttt                                        (7) 

The distribution of the error term for this specification according to Shimada and Tsukuda (2005) takes 
the form: 
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3.4 Sequential Monte Carlo (SMC) Algorithm Analysis 
The SMC, otherwise known as particle filter algorithm (Gordon, Salmond, and Smith 1993) in sequential 
estimation on hidden asset value and model parameters estimation are applied under the GBM model. 
This method applies the concept of sampling-important-resampling (SIR) (Rubin 1987). One of the key 
challenges in applying structural models to financial market data is the fact that the underlying asset value 
process is unobservable. Furthermore, at each time t, market values of stock are known only up to the 
time t, which means that the information needs to be updated sequentially. In this section, with known 
model parameters, we apply the particle filter algorithm to update the information about the underlying 
asset value process recursively from the observed times series. By running the filtering algorithm, the 
conditional distribution of the underlying asset value is approximated and recursively updated, given 
observed prices. 

3.4.1 Particle filter Algorithm 
Assuming that we have at time t  weighted particles },{ )()( i

t
i

t wf  drawn from )¦( tt yxf , )(i
tf  is a set of 

particle filter with associated weight )(i
tw  . This is seen as an empirical approximation for the density 

made up of point masses, 

                                         



M

i

i
tt

i
ttt fxwyxf

1

)()( )()¦(  .                                             (8) 

Kitagawa and Sato (2001) and Kitagawa (1996) offer an algorithm for filtering thus: 
 

1. For Ni ,,1  , generate a random number )(~ 0
)(

0 xpf i

 
2. Repeat the following steps for Tt ,,1  . 

a. For  Ni ,,1  , generate a random number )(~)( wqw i
t . 
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b. For  Ni ,,1  , Compute  ),( )()(
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3.5 Estimation Procedure 
In this section, with known model parameters, we apply the particle filter algorithm based on t-
distribution to update the information about the underlying asset value process recursively from the 
observed times series of stock prices.  
 
With known parameters },{  , we observe the time series of stock prices },1;{ TtSS t   and 
have the hidden asset process to be estimated },1;{ TtVV t   . The algorithm is as follows: 
 
The algorithm for the filtering shows an extension of Godsill et al. (2004) and Kim and Stoffer (2008). 
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As averred by Lawrence et al., (2009), we have three measurement of forecasting model which involve 
time period, t . The measurements are number of period forecast, n, actual value in time period at time, t , 

tY  and forecast value at time period t , tF . The mean absolute percentage error (MAPE) happens to be 
the most widely used to evaluate the forecasting method that considers the effect of the magnitude of the 
actual values. It can be calculated as follows: 
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4. Empirical Results and Discussion 
4.1 Data 
We apply the above-described methodology to model the stock prices of 5 firms of the NSE. Each from 
five different sectors;  namely the banking sector (GTB), from Oil & Gas sector (OANDO), from 

JSM 2016 - Section on Statistical Computing

766



Construction sector (Juius Berger), from Health care sector (Glaxo Smith) and from Industrial goods 
sector {Chemical & Apllied Product (CAP)} over the period January 2, 2010 to December 31, 2014.  
 
The data series is transformed into daily log returns series so that we obtain stationary series. Descriptive 
statistical summary is obtained to view the data for the daily stock prices and returns of all the indices.  
Table 1 reported the descriptive statistics for all the five selected indices. The value of the kurtosis for 
returns is high and greater than three. This shows that the distribution is leptokurtic, that is, it is fat tailed 
and that the returns display financial characteristics of volatility clustering and leptokurtosis. The 
skewness for both prices and returns is positive, showing that the distribution has a long right tail. The 
high values of kurtosis for the returns indicate that extreme price changes occurred frequently during the 
sampling period. The positive skewness and kurtosis indicated non-normal series. With reference to 
Jarque -Bera statistics, the stock index series is non-normal at the confidence interval of 99% since 
probability is 0.000000 which is less than 0.01.  
 
Figs. 1 - 5 shows the plot of each of the five firms stock prices 
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Table 1 Descriptive statistical summary for the daily stock prices 
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                      Prices                                     Returns 
Index Mean Std. 

Dev. 
Skewness Kurtosis Jarque-

Bera 
Mean Std. 

Dev. 
Skewness Kurtosis Jarque-

Bera 
GTB 40.3754 18.4573 0.6718 3.3487 194.387 

(0.0000) 
0.0030950 0.0278 -2.4739 29.4686 684.195 

(0.0000) 

OANDO 70.9741 47.4833 1.0297 4.8445 202.394 
(0.0000) 

-0.00062810 0.0352 -1.3034 54.4961 312.573 
(0.0000) 

JBERGER 46.8880 25.5413 0.9931 4.2569 207.281 
(0.0000) 

0.0041886 0.0458 -1.5541 42.6513 497.263 
(0.0000) 

GLAXOSMITH 76.9873 48.2532 1.1542 4.2342 213.237 
(0.0000) 

0.0070399 0.0300 -0.1911 30.2326 513.240 
(0.0000) 

 CAP 49.3441         27.3775 
 

0.2783 
 

3.6845 195.142 
(0.0000) 

0.000875734 0.0367 -3.6781 20.7944 795.142 
(0.0000) 

 

The stock prices of each of the five firms of the NSE of the year 2010 to 2014 were used to derive the 
drift and volatility.  Table 2 shows the observed values: 
 
                                        Table 2: Drift and Volatility values of stock prices 

Index Drift ( ) Volatility ( ) 
GTB 0.072 0.2816 
OANDO 0.0485 0.2794 
JBERGER 0.0514 0.2723 
GLAXOSMITH 0.0354 0.2837 
 CAP 0.0624 

 
0.2808 
 

 
These two parameters were then used to create the Geometric Brownian path for both the GBM normal 
and student t distribution of each of the five firms of the NSE. We compute the MLEs and the 
corresponding log-likelihood for each stock. The results presented on Table 3 summarize the estimated 
parameters for both the GBM normal and student t distribution.   
  
Table 3: Estimated parameters of the GBM normal and student t distribution 

                 GBM’s-normal                               GBM’student t 
Index     Log-lik. AIC     Log-lik. AIC 
GTB 0.45 0.37 -2797 4359 0.34 1.09 -2740 4248 
OANDO 0.12 0.33 -2341 4686 0.30 1.27 -2331 4568 
JBERGER 0.10 0.40 -2149 4302 0.37 1.03 -2135 4176 
GLAXOSMITH 0.23 0.36 -2344 4255 0.41 1.04 -1234 4234 
 CAP 0.34 

 
0.44 
 

-2783 
 

4684 0.32 1.23 -1345 4221 

 
The log-likelihood for the GBM student-t distribution model is higher than the model for the GBM 
normal for each of the five stock series. Appraising the two models based on the Akaike Information 
Criterion (AIC), the GBM t distribution model outperforms the GBM normal model for each of these five 
stocks.  
The GBM normal and student t based particle filter method are then run on the simulated prices process, 
and the average mean absolute percentage error (MAPE) is calculated. Both models estimate the volatility 
process of each of the five firms’ stock prices using known parameters.   Table 4 shows the observed 
values. 
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Table 4. Evaluation Statistic-Distribution comparison on technique based on the Normal and 
Student’s-t 

Models Mean Absolute Percentage 
Deviation 

GBM’S Normal 0.0967 = 9.67% 
GBM’Student t 0.0652 = 6.52% 

 
Graphically, for a single run, the estimation results obtained from running these two models are shown 
below: Each of the figures presented below contains a GBM’s normal paths (in blue), GBM’s student-t 
paths (in red) and the actual volatility price curve of  each of the five firms stock prices (in black). 
 
Figure 6 – 10 shows the plot of volatility estimation for each of the five firms stock prices 
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Figure 6-10 shows the volatility estimation. The plots show that the GBM student-t based particle filter 
estimate (red line) and the actual volatility (black line) lie close together in comparison to the GBM 
normal estimate (blue line).  
 
5. Conclusion  
This work presented an extension of the random noise process, tdB  in the GBM model from normal to 
student-t distribution. The goal is to compare and contrast the two models in five different stock market 
periods in terms of their predictability of such exceptional movements in the NSE market. We have 
revealed that the GBM Student’s-t distribution performed expressively better at estimating both the 
volatility and the parameters of the model than the GBM normal. A particle filter technique based on 
student-t distribution is developed to estimate the random effects and parameters for the extended model.  
The functions provided by MATLAB enabled us to develop the techniques based on the student-t GBM 
model and a strategy for fitting the model. This change to the proposed model allows for a more robust 
fit, giving us a new tool to explore the tail fit. The student-t GBM model was compared and evaluated 
with the normal GBM model. The experimental outcome of the simulation and real data analyses 
confirms the viability of the proposed method. The evaluation statistics are calculated to compare the fit 
of distributions. Student-t Geometric Brownian motion is highly accurate than the normal GBM as proved 
by the MAPE value which is lower than 10%.The results, based on daily stock prices reveal that the 
student-t GBM is comparable to the normal GBM model but empirically more successful. 
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