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Abstract

Although there is an extensive statistical literature showing the disadvantages of discretizing con-

tinuous variables starting with Cox [1], categorization is a common practice in clinical research

which results in substantial loss of information. A large collection of methods in cancer phase I

clinical trial design defines dose of a new agent as a discrete variable. A noteworthy exception is the

Escalation With Overdose Control (EWOC) design [2] where doses can be defined either as con-

tinuous or as a grid of discrete doses. A Monte Carlo simulation study was performed to compare

the operating characteristics of continuous and discrete dose EWOC designs. Four equally spaced

grids with different interval lengths were considered. The loss of information was measured by

several operating characteristics more interpretable for clinicians in addition to the usual statistical

measures of bias and mean squared error.
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1. Introduction

Measurements of continuous variables are made in all fields of medicine. In medical re-

search such continuous variables are often converted into categorical variables by grouping

values into two or more categories.

Cox [1] derived an optimization criteria for discretizing a continuous covariable and

showed that if a variable is normally distributed then categorizing it into six groups implies

a minimum loss of 5.8% of information, 7.99% for five groups, 11.75% for four groups

and 19.02% for three groups considering a quadratic loss function. Following the sugges-

tion of Cox, Connor [3] found other criteria and reached similar conclusions based on the

asymptotic relative efficiency of Cochran-Armitage trend test [4] when a continuous co-

variable, that is linearly related to a binary response variable, is discretized. In this way,

several authors have pursued methodologies to provide optimal criteria of discretization for

continuous covariables based on other test statistics. See [5], [6], [7], [8], [9].

On the another hand, an extensive statistical literature (see [10], [11], [12], [13], [14],

[15] and [16]) have advised against categorization due the loss of power and precision of

the estimated quantities. In particular, Lagakos [11] studied extensively the effects of mis-

measuring covariables considering a likelihood test for a logistic model when a continuous

covariable, which follows either a Normal or Exponential or Uniform distribution, is cate-

gorized and also evaluated the loss of information when the levels of an ordered categorical

covariable is selected incorrectly considering the Cochran-Armitage trend test.

This debate is not different for cancer phase I clinical trials, although with its peculiar-

ities. Phase I trials represent the first testing of an investigational agent in humans and act

as a point of translation of years of laboratory research into the clinic. The major objective

in phase I trials is to identify a maximum tolerable dose (MTD) for subsequent studies,

whereas the primary end point in phase II and III trials is treatment efficacy. While phase

I trials in other areas of medicine enroll healthy participants, phase I oncology trials typi-

cally enroll patients who have cancer and who have exhausted standard treatment options.
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Ideally, from a therapeutic perspective, clinical trials should be designed to maximize the

number of patients receiving an optimal dose.

The fundamental conflict underlying the design of cancer phase I clinical trials is that

increasing the dose slowly to avoid unacceptable toxic events must be balanced against

treating many patients at suboptimal or nontherapeutic doses. [17]

Traditionally, dose finding has been conducted according to the 3 + 3 principle and its

variants which require a pre-specified set of discrete doses. Although the use of rule-based

designs is still prevailing, model-based designs such as the continual reassessment method

(CRM) introduced by O‘Quigley [18] and Escalation With Overdose Control (EWOC) by

Babb et al. [2] gain popularity in clinical practice. [19]

In these model-based designs, a parametric model is considered to describe the rela-

tionship between the probability of a dose limiting-toxicity (DLT) and the dose level of the

new agent which can be considered as a continuous or a discrete covariable. Among these

designs, a large collection of methods usually defines dose of a new agent as a discrete

variable. A noteworthy exception is the EWOC design where doses can be defined either

as continuous or as a grid of discrete doses. For discrete doses, EWOC still will consider

the same continuous dose algorithm, but a final rounding step is added to the algorithm.

EWOC was the first dose-finding procedure to directly incorporate the ethical constraint

of minimizing the chance of treating patients at unacceptably high doses. Its defining prop-

erty is that the expected proportion of patients treated at dose s above the MTD is equal to

a specified value α, the feasibility bound. [20]

The feasibility bound could varying along the trial as discussed by Tighouart and Ro-

gatko [21]. The rationale behind this approach is that uncertainty about the MTD is high

at the onset of the trial and a small value of α offers protection against the possibility of

administering dose levels much greater than the MTD. As the trial progresses, uncertainty

about the MTD declines and the likelihood of selecting a dose level significantly above the

MTD become significantly smaller. Chu, Lin and Shih [22] compared the performance of

different versions of CRM with EWOC both constant and varying α.

In this work, a Monte Carlo simulation study to compare the operating characteristics

of continuous and discrete dose EWOC designs is presented. Four equally spaced grids

with different interval lengths will be considered. The loss of information will be evaluated

using the statistical measures bias and mean square error as well as specific measures to

phase I clinical trials to quantify safety and efficacy of the trial. Several scenarios will

be constructed based on four true values for the MTD such that the comparisons among

continuous and discrete dose designs will be performed under three different sample sizes,

five feasibility strategies, rounding choices and misspecified scenarios.

This article is organized as follows. In Section 2, the EWOC design is introduced. The

simulation study is described in Section 3 and its results are presented in Section 4 with

discussion in Section 5.

2. Escalation with Overdose Control

In this section, the EWOC design is described as Babb et al. [2]. Let Xmin and Xmax

denote the minimum and maximum dose levels available for use in the trial. Note that the

dose given to the first cohort of patients is not necessarily equal to Xmin but there must be

strong evidence that it is a safe dose. While the maximum dose is not a dose that one would

ever use to treat a patient, it is a boundary that would never be exceeded.

In this way, the minimum and maximum doses are respectively the lower and upper

bound of the support of the MTD γ which is defined by

P (DLT |dose = γ) = θ, (2.1)
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such that θ is defined as the proportion of expected patients to experience a medically un-

acceptable, dose-limiting toxicity if the MTD γ is administered. The relationship between

toxicity and dose level could be defined as

P (DLT |dose = x) = F (β0 + β1x), (2.2)

where F is a specified distribution function and β0, β1 are unknown parameters. Following

(2.1) and (2.2), the MTD will be given by

γ =
F−1(θ)− β0

β1

= Xmin +
F−1(θ)− ρ0

β1
,

where ρ0 denotes the probability of a DLT at the initial dose often established as x1 =
Xmin. Using the definition of the MTD and probability of toxicity at initial dose, one can

show that

β0 =
γF−1(ρ0)−XminF

−1(θ)

γ −Xmin

,

β1 =
F−1(θ)− F−1(ρ0)

γ −Xmin

. (2.3)

Denote by yi the toxicity response (1 for DLT and 0 for no DLT) of the ith patient. The

likelihood of the data Dk = {(xi, yi), u = 1, . . . , k} after observation of k patients is

L(ρ0, γ|Dk) =
k∏

i=1

F (β0 + β1xi)
yi [1− F (β0 + β1xi)]

1−yi . (2.4)

for (β0, β1) defined as funtions of (ρ0, γ) given in (2.3).

Prior information is incorporated for (ρ0, γ) such that priors distributions could be cho-

sen under the restrictions of γ ∈ [Xmin, Xmax] and ρ0 ∈ (0, 1). The obvious choice

is a Beta(aρ, bρ) distribution for ρ0 and a re-escaled Beta(aγ , bγ) distribution for γ, but

Tighouart et al. [23] examine a large class of prior distributions which could be considered.

Finally, the calculation of the posterior distribution for (ρ0, γ) is available [24] and

implemented using numerical integration and Markov chain Monte Carlo sampler

π(ρ0, γ|Dk) = c(Dk)L(ρ0, γ|Dk)π(ρ0, γ), (2.5)

where c(Dk) is a normalizing constant.

Hence, the k + 1 patient receives the dose given by the α-quantile of the γ posterior

distribution

xk = Π−1(α|Dk), (2.6)

for α being the probability that the dose selected by EWOC is higher than the MTD.

For a discrete dose design, EWOC could either round down xk to the closest dose

prioritizing safety or just round to the nearest dose preferring ability to explore the available

grid of doses.
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3. Simulation study

Escalation with Overdose Control was applied for continuous dose and discrete dose which

were denoted by dose designs. The minimum and maximum dose were established as

Xmin = 0 and Xmax = 1. Considering the discrete dose design, four equally spaced grids

with different interval lengths between two doses given by 0.05, 0.10, 0.2 and 0.25 such

that each grid will be indicated by its interval length. In this way, the grid 0.05 has 21

doses, the grid 0.10 has 11 doses, the grid 0.20 has 6 doses and the grid 0.25 has 5 doses.

The DLT proportion threshold is established equal to 0.33 such that four true values

of MTD = {0.2, 0.4, 0.6, 0.8} were considered. In this way, the dose design 0.25 does

not contain any true MTD as an element of its grid making this dose design the worst

possible situation while the dose design 0.20 contains the smallest number of doses such

that all elements are possible true MTD making the most desirable situation. Three different

sample sizes n = 20, 40, 60 and five strategies were considered for the feasibility bound

and the rounding down and nearest choices are applied.

For the feasibility strategy F(0.25), α was fixed equal to 0.25; in strategy I(0.25), α

started equal to 0.25 and increased by 0.05 for each new patient up to 0.5; in strategy

C(0.25), α started equal to 0.25 and increased by 0.05 for each new patient up to 0.5 only if

the previous patients has no DLT; in strategy I(0.05), α started equal to 0.05 and increased

by 0.05 for each new patient up to 0.5; in strategy C(0.05), α started equal to 0.05 and

increased by 0.05 for each new patient up to 0.5 only if the previous patients has no DLT.

A Monte Carlo study is performed considering 1000 replicates for each study design.

The classical statistical measures of bias and mean square error (mse) were evaluated as

well as operating characteristics more interpretable for clinicians: average DLT rate, per-

centage of trials which DLT rate is greater than θ + 0.10, percentage of trials which DLT

proportion is outside the interval θ ± 0.10 (refereed as target rate interval), the percentage

of trials with estimated MTD within the optimal interval defined as True MTD ± 0.15 ×
True MTD (refereed as optimal interval), and the percentage of patients receiving optimal

doses.

It is important to highlight that, from the perspective of a patient participating in a dose

finding trial, the best design is the one with the highest proportion of patients receiving

optimal doses. All the simulations were performed using the R-package EWOC in devel-

opment available at GitHub.

JSM 2016 - Biopharmaceutical Section

740



4. Results

In this section, the true model and the working model are both the Logistic model. There

are 20 (4 true MTD × 5 feasibility strategies) simulations for each sample size and dose

design which can be interpreted concomitantly analyzing the median and the quartiles of

the operating characteristics.

Figures 1 and 2 show results of the bias and the mean square error (MSE) of the five

EWOC designs considering different sample sizes. The bias decreases as the sample size

increases as can be seen by the inter-quartile distance such that the median bias of the

continuous dose design is always slightly positive while is negative for the discrete dose

designs.

The bias is a decreasing function of the number of pre-selected doses among the discrete

dose designs. The MSE follows the same pattern.

Sample size: 20 Sample size: 40 Sample size: 60
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Figure 1: Bias as a function of sample size and dose design
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Figure 2: MSE as a function of sample size and dose design

Figures 3 and 4 present results of the DLT proportion average and the percentage of

trials such that DLT proportion is greater than θ+0.1. The continuous dose design and the

discrete dose designs 0.05 and 0.10 present simulations exceeding the DLT threshold, al-

though the medians as well as the quartiles become closer to θ as the sample size increases.
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Figure 3: DLT Average as a function of sample size and dose design
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Figure 4: Percentage of trials such that DLT proportion is greater than θ+0.1 as a function

of sample size and dose design
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Figure 5: Percentage of trials such that the observed DLT proportion is outside the interval

[θ − 0.1; θ + 0.1] as a function of feasibility strategy and design

Figure 5 quantifies the percentage of trials such that the observed DLT proportion is

outside the interval [θ − 0.1; θ + 0.1] which is a trade-off between safety and ability to

explore the range of doses adequately. The continuous dose design presents the lowest

percentages closely followed by the discrete dose design 0.05 and 0.10 while the dose

designs 0.20 and 0.25 are significantly far.

Although the discrete dose design 0.20 and 0.25 are equally the safest designs, they also

have high percentages of trials outside the DLT proportion interval which represents missed

opportunities to explore the range of doses to estimate accurately the MTD as showed in

Figure 1. This pattern is strongly related to the rounding choice as will be seen in next

sections.

Figures 6 and 7 present the percentage of trials such the MTD estimate is inside the op-

timal interval and average percentage of doses inside the optimal interval. The continuous

dose design is somewhat better than the all discrete dose designs such that the difference

are emphasized when the sample size increases.

Nonetheless, the differences are not so significant for the average percentage of dose

inside the optimal interval, except for the discrete dose design 0.25.
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Figure 6: Percentage of trials such the MTD estimate is inside the MTD optimal interval

as a function of sample size and dose design
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Figure 7: Average percentage of doses inside the optimal interval as a function of sample

size and dose design
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5. Discussion

Dose designs could be defined as the essential part of a clinical trial in which the researchers

have to define the set of possible doses to be evaluated such that one dose will be established

as the MTD. The two possible dose designs are continuous dose and discrete dose. The

former defines a infinite dose set defined by the minimum and the maximum doses while

the latter defines a pre-specified finite set of doses.

Discrete dose designs are much more often applied than continuous dose for several

reasons which are commonly presented: use of 3 + 3 principle and its variants, small sample

sizes allow only a few doses to be evaluated, anticancer drugs are only available as an oral

formulation and discrete dose designs are robust against misspecification.

The up-and-down approach was first described by Dixon and Mood [25] with the great-

est advantage of simplicity and ease of implementation. Moreover, such designs are easily

understood by clinicians although its several drawbacks have been discussed.

Rogatko et al. [26] discussed the knowledge transfer from more effective statistical

designs to clinical practice. Discrete dose design is a feature incorporated into model based

designs from rule based designs by historic reasons trying to increase the acceptability of

more sophisticated designs which contrasts to the last estimated percent of available oral

anticancer drugs of 10% in 2010. [27]

Furthermore, the definition of a pre-selected set of doses usually corresponds to an

arbitrary decision. If the rounding down choice is applied, the continuous dose design

presents better statistical and efficiency measures, although the discrete dose designs are

safer than the continuous dose. Notice that the assumption that the true MTD is a element of

the pre-selected set of doses is essential for the efficiency measures which is hard to evaluate

in practical trials. In addition, the good operating characteristics are directed related to the

number of pre-selected doses for the discrete dose designs.

The next steps is the comparison between discrete and continuous dose designs under

different feasibility strategies, rounding systems and misspecification models.
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