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Abstract 
A great deal of statistical research on Dynamic Treatment Regimes focuses on Q-
learning. However, the mathematical coherence and statistical fundamentation of Q-
learning are still very poor. In fact, in Q-learning, it is impossible to distinguish between 
the model explaining or describing the illness phenomenon and the clinical algorithm for 
treatment individualization. In addition to this epistemological conundrum, Q-learning is 
mathematically intractable using standard asymptotic or decision theories. Standard 
theory cannot be used to test the null hypothesis that a treatment has no effect, or to 
construct confidence intervals. Incoherent definition of covariates is also common. 
Researchers have attempted to remedy some of these issues, but questions arise about 
how should we build models in personalized medicine (PM). We discuss here about these 
issues. As an alternative, Generalized Linear Mixed Effects Models and Empirical 
Bayesian Feedback can be used to establish a solid paradigm for the construction of the 
mathematics and statistics of PM research and practice. In fact, there is a long tradition of 
mixed modeling for treatment individualization in pharmacological literature. 
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1. The Epistemological Conundrum of Q-learning 
 
A great deal of statistical research concerning dynamic treatment regimes (DTRs) has 
focused on the implementation of Q-learning and related machine learning ‘methods’ 
(Chakraborty et al. 2011, 2013, 2014; Murphy 2003; Robins 2004). The main goal of Q-
learning is to build clinical algorithms for treatment individualization in clinical settings. 
However, the great ebullience with which these ‘methods’ have been embraced by some 
research groups in recent years does not commensurate with their mathematical 
coherence and statistical fundamentation, which are very poor. 
 
Next we describe the problems of Q-learning, although our critiques also apply verbatim 
to the related proposals by Murphy (2003) and Robins (2004). The most serious problem 
is that, in Q-learning, it is impossible to distinguish between the model explaining or 
describing the illness phenomenon and the clinical algorithm for treatment 
individualization.  That is, Q-learning approaches confuse the decision-making process 
with the mathematical or statistical model of the clinical reality that will be modified 
because of the decision. This epistemological conundrum, which was also noted by 
Zajonc (2012), has two undesirable consequences: Q-learning is mathematically 
intractable using standard decision theory or using standard asymptotic theory.  
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In particular, standard asymptotic theory cannot be used in Q-learning to test the null 
hypothesis that a treatment has no effect, or to construct confidence intervals.  This issue 
has been acknowledged by the DTR research community, which labels the issue with the 
name "nonregularity" (Robins 2004; Chakraborty et al. 2013). Inevitable practical 
consequences of these problems have been reported. For instance, Rosthøj et al. (2006) 
report the impossibility of programming some of the formulas from the related method of 
Murphy (2003), lack of numerical convergence, and instability of the estimates with 
respect to initial values. Although efforts have been made to solve the problem of 
nonregularity (see the review of Chakraborty et al. 2014), a convincing solution has not 
been found yet, if there is such solution. 
 

2. Incoherent Definitions of Covariates 
 

But the inseparability of the decision rule from the model of reality or data is not the only 
issue of Q-learning. Incoherent definitions of covariates are also common in applications 
of Q-learning to personalized medicine. Specifically, it is not unusual to combine Q-
learning with regression models that have second-stage covariates whose unique values 
represent non-unique things depending on the patient's history. Besides violating basic 
properties of mathematical expectations, this clearly prevents making useful 
interpretations of regression parameters. 
 
Two examples of this issue from the Q-learning literature follow. In a hypothetical 
example of treatment of alcohol addiction, Chakraborty (2011) describes a covariate A2 
that both symbolizes a second stage treatment and takes on only the values 1 and -1. For 
responders to the initial treatment, A2=1 represented telephone monitoring. However, for 
nonresponders, A2=1 represented cognitive behavioral therapy if the initial treatment was 
naltroxene, but A2=1 represented using naltroxene if the initial treatment was cognitive 
behavioral therapy.  
 
An analogous inconsistency in the definition of a covariate is also manifest in Murphy et 
al. (2007). In an explanation of how Q-learning can be used for the dynamic treatment of 
depression, these authors built a dichotomous covariate T2 representing the switch to a 
new treatment regardless of which the initial or the new treatment was. Thus, it is unclear 
what aspect of the clinical phenomenon is being measured by the regression coefficient 
of T2.  
 

3. How to build the mathematics of personalized medicine? 
 

Given the apparent epistemological and mathematical problems of Q-learning, we would 
like to point at a research direction we believe is more promising. The author believes 
regression models with random effects will revolutionize the mathematical theory and 
practical applications of pharmacology and personalized medicine (Diaz 2016). In fact, 
considerable research suggests these models can be used to establish a solid paradigm for 
the construction of the mathematics and statistics of PM research and practice, especially 
in the treatment of chronic diseases (Sheiner et al. 1972; Whiting 1986; Diaz et al. 2007; 
2012a,b; 2013a,b; 2014; 2016; Zhu and Qu 2016; Cho et al. 2016). The key idea is that 
regression models with random effects have concepts that allow describing patient 
populations as a whole (the fixed effects) and, simultaneously, concepts that allow 
describing patients as individuals (the random effects). Thus, models with random effects 
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are useful because the variability of a random coefficient is not just a mathematical 
artifact to control for patients’ heterogeneity: it is the result of real variation in the 
biological and environmental factors that have made humans develop as individuals 
[Diaz 2016; Diaz et al. 2012, 2013a,b, 2016; Senn 2001, 2016]. 
 
There are numerous examples suggesting regression models with random effects have a 
great potential for DTR development. For instance, the Sheiner School of Pharmacology 
has advocated for decades the use of drug dosage individualization based on random-
effects nonlinear models and empirical Bayesian feedback (EBF) (Sheiner 1972; 
Whiting et al. 1986; Pillai et al. 2005). Drug dosage individualization based on random-
effects linear models has also been investigated, using EBF (Diaz et al. 2007, 2012b) or 
using conditional inference functions (Zhu and Qu 2016; Wang et al. 2012). Importantly, 
EBF is firmly anchored to standard decision theory (Diaz et al. 2007, 2012b). In addition, 
using a combination of random forests and random-effects linear models, Cho et al. 
(2016) built clinical algorithms to assign patients to the best treatment. As another 
example, Diaz (2016) has proposed an approach to measuring the individual benefit of a 
medical or behavioral treatment using generalized linear mixed models. 
 

4. Conclusion 
 
In conclusion, the epistemological and mathematical validities of Q-learning are 
uncertain. In contrast, both biological and mathematical arguments suggest the potential 
of regression models with random effects and empirical Bayesian feedback for the 
development of personalized medicine research and practice, including the development 
of DTRs. When the normality assumption of random effects is not valid, robust 
approaches such as those based on conditional inference functions have also a great 
potential in this area.  
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