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Estimating Design Effects in Small Areas/Domains through Aggregation*

Jerry J. Maples'

Abstract

Estimates of direct survey variances for areas with small sample sizes is problematic especially
when combined with complex survey designs. However, reasonable estimates of these variances
(or their associated design effects / effective sample sizes) are important when modeling data from
these surveys. One important application is area-level small area models such as Fay and Herriot
(1979). Other model-based uses include calibrating the likelihood to reflect the amount of uncer-
tainty relative to a simple random sample. An ad hoc practice to estimate design effects or effective
sample size for counts and rates in small areas and domains is to estimate the design effect for
a larger aggregate and assume that the component areas or domains have the same design effect.
This is valid only under restrictive conditions. Starting from the framework of a stratified sample,
we will explore how the design effect at the aggregated level compares to the design effects at the
lower level. We will study these design effects and propose a method to estimate them under several
scenarios: unequal probability selection, unequal area means, and clustering within area.

1. Introduction

Typically, surveys are designed to contain sufficient sample size to obtain precise esti-
mates of the quantities of interest and stable estimates of their design-based variance.
However, there are many reasons why this may not be the case in practice: unplanned
domains/subgroups, underestimation of nonresponse, limitations in budget to implement
desired sample size, etc. When the sample size is not large enough, the estimated design-
based variances can be unstable. This will impact design-based inference but can also
affect model-based uses of the survey data such as area- level models for Small Area Es-
timation (SAE). Two types of area-level small area models are the Fay-Herriot (1979) and
the Binomial Logit Normal (Franco and Bell, 2015).
In the Fay-Herriot model:

QZ = }/Z +€’i7 €; ~ N(Oa‘/z)
Y = X/B+w, u~N(00%)

where §j; the design-based estimate of the true quantity Y;, and V; is the design-based vari-
ance of ¢j;. Y; is modeled using a regression with covariates X; and model error u; which
has variance o2. The Binomial Logit Normal model is defined as:

y: ~ Bin(n],p;)
logit(p;) = XZ-Tﬂ + u;, w; ~ N(O,O’Z)

where n; is the effective sample size, y; = p;n; is the modified count scaled to the effective
sample size. The effective sample size is meant to reflect the amount of information in the
data after taking into account the complex sample design. The effective sample size is
usually solved from the estimated sampling variance V;, i.e. ny = pi(1—pi)/ V;. Rounding
rules may be used to keep n; and y; as integers. In these models, the V; and n are treated
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as known even though they are based on the estimated design-based variance. In SAE this
can have several impacts in both modeling and model assessment. In modeling, parameter
estimation and prediction can be adversely affected from an unstable estimate of V; or n] by
giving too much weight in the score equations to one area and too much weight toward the
survey estimate in the prediction estimator. In model assessment, we can have inaccurate
comparisons of model-based MSE to design-based variance estimate and distorted model
diagnostic plots.

Bell (2008) conducted a sensitivity analysis of the Fay-Herriot model when the sam-
pling variance was misspecified. The results indicated that the small area prediction es-
timates behaved well as long as the estimated sampling error variances were reasonably
accurate. This motivates to modeling the sampling variances which should smooth out any
extreme direct estimates.

2. Generalized Variance Functions (GVF)

Generalized Variance Functions (GVFs) have been used to approximate design-based vari-
ances in official surveys from the U.S. Census Bureau for many years. The most common
method for GVFs is the Two-Parameter Model (Tomlin, 1974) which fits the following
GVF to the design-based variance estimate of a total z;:

V(&) = ad? + bi; (1

Using linearization of the rate p = &/ N where # is a subset of N and assuming that both
& and N follow (1) with the same (a,b) GVF parameters, Tomlin (1974) showed that this
implies the following GVF for the rate estimate

~ pi(1 —pi)

Vip;) =bx o —F 2
(pi) = b x 7, (2)

where p; = &;/ ]\71', Nl is the estimated number of people, and ]\7z /b is the effective sample
size based on the survey design. Recent reports still use this formulation for the GVF, for
example see U.S. Census Bureau (2015).

Another method to create GVFs for rate estimates is to fit a function based on the form
of the variance for the binomial distribution.

log (Wﬁi)) = bo + by log(pi(1 — p;)) + bz log(n;) (3)

where n; is the unweighted sample size for area 7 and p; be the design-based rate. Variants
of this model were fitted in Hawala and Lahiri (2010). Their method assumes a constant
design effect across all areas. We propose a more direct approach to estimating the effective
sample size or equivalently the design effect, using known information about the survey de-
sign (survey weights, clustering) within each area when possible and using an aggregation
of areas to estimate any remaining design effects.

3. Design Effects

Leti = 1,..., I denote the area and j = 1, ..., n; denote the respondent within area 7. The
basic weighted survey estimator for the population rate p; = 3 | ; Yij /N is

L Zj WijYij

= =L - 4
p 5w 4)
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where y;; is the binary indicator of some characteristic for respondent j in area ¢ and w;; is
the corresponding survey weight. Our goal is to partition the sampling variance of p; into
the usual binomial variance p;(1 — p;)/n; and multiplicative design effects which account
for unequal sampling weights, clustering within the area and a shared residual design effect
that is constant across all of the areas.

3.1 Unequal Weighting

Suppose the sample within an area was a random sample with varying probabilities of
selection 7, i.e. the y;s were drawn independently. The survey weights are w;; = 1/m;
and the variance of the rate is

g 2 2
2 ww?ﬁy) _ Wi o ind;ﬂ )

Var(p;)) = Var (ZJ wy (Zj wz‘j)20yi =

v o= =1 Y —(14+CV2) (6)
' (22, wij)? b
where agi = pi(1 — p;), CV.2 is the squared coefficient of variation for the survey weights

and d’ is the design effect due to unequal weighting. When all of the weights within an
area are equal, i.e. sample design is simple random sampling, d;’ = 1.

3.2 Clustering

Suppose area i is composed of a group of clusters ¢ = 1, .., C; with each cluster contain-
ing n;. sampled units. Suppose the design is a two-stage design: clusters are sampled
(independently) and units within clusters are sampled independently, perhaps with unequal
weighting (as in Section 3.1). Let y;.; and w;.; denote the observed response and associated
survey weight for the j** unit in cluster ¢ for area i. From Kish (1987)

Lo Webei | _ Ty g |y e Wied)® — Xy iy
Var = xd;” |1+ p; 3
ch We Uz ch Wicj
2
_ u d¥ d¢ 7
n; X 7 7 ( )
(2

where p; is the intraclass correlation within clusters for area ¢ and d is the design effect
due to clustering. If there is sufficient sample size in each area then it could be possible to
estimate a separate p; for each area. In the presence of small sample sizes, there may be
need to assumed that p is constant across a group (or all) of areas. The product d;’df is the
entire design effect under clustering with unequal weights.

To estimate the the intraclass correlation p, we use an ANOVA-like method. This is
motivated by a model where the data y has a cluster-level random effect. Several estimation
methods of the intraclass correlation for unbalanced binary data are given in Wu et. al.
(2012) and Ridout et. al. (1999), however, all of these methods must be modified for
unequally weighted data. The ANOVA-like method estimates the intraclass correlation
by relating the observed sum of squares for within and between cluster means to their
expected mean sums of squares. Let a 4+ in an index denote summation over that index,
e.g Wiy = >, ¢j Wicj and let a dot in an index denote the weighted average, e.g. Yic. =
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> ; WicjYicj /> ; Wicj.- The pooled estimate for p is
Within ~ WSSW = > wiej(Yicj — Fie.)?
icy

MSSW = WSSW/(wiry— Y

W
ic ++

Vic

®)

Between WSSB = Zwich(gjic. — 7))
ic

Wict  Wit+

MSSB = WSSB/ (Zvic( Lol )) 9)

MSSB — MSSW

p = 10
P MSSB + (n — 1)MSSW (10
where
P doi(Wir — >, wzzc+/wi++) a1
- 1 1
e ”"C(m B wz‘++)
and v;e = ) j w?cj. If there is sufficient data in an area, i.e. large number of clusters and

enough observations, one can drop the summation over areas 7 in (8) and (9) to estimate p;.
Note that even if the intraclass correlation p is the same across all areas, the design effect
d can be different for each area due to also being a function of the survey weights within
area 1.

4. Pseudo-Stratified Framework

Most survey designs, such as the American Community Survey (ACS), Current Population
Survey (CPS) and the Survey of Income and Program Participation (SIPP), have complex
survey features beyond just unequal weighting and clustering. Design effects that we can
explicitly account from the survey design should be directly estimated. In additional to tra-
ditional design effects, there are also adjustments to the survey weights for nonreponse and
calibration. These adjustment procedures cause the survey weights to lose their interpre-
tation of being the inverse probability of selection and these modification of weights also
affect the estimated sampling variances. We will call this multiplicative adjustment to the
design based variance from these additional unaccounted design effects and effects due to
weight adjustments as the residual design effect.

Due to the small sample sizes, the residual design effect can not be reliably estimated
for each area. Instead, we propose grouping areas together and estimating an average resid-
ual design effect treating the individual areas as if they were strata. By grouping similar
areas together, the estimates of the rate and design-based variance of the rate of the aggre-
gate will be stable.

In a stratified design, the samples from each strata are assumed to independent from
each other. In some surveys, this assumption may hold when treating areas as strata.
For example, counties in the ACS which are large enough to form their own group for
weight adjustment are design independent. However, some counties are grouped together
for weight adjustment and this would violate the independence assumption if more than
one of these counties were aggregated together.

In the pseudo-stratified framework, we treat the areas as equivalent to strata. The ad-
vantage to this approach is that we can relate the variance of the individual areas explicitly
to the variance of the aggregate, which can be stably estimated. Let A denote the set of
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areas that will be aggregated, IV; is the population size of area s and N = ., N;. The
aggregate rate estimate and its variance under a stratified design is:

b= 3 N =y Nt (12)

N N Wi
icA i€cA ZJ t

2
Var(p) = Y. <N> Pl =Pi) g geg. (13)
4 N n; T
i€A

where d; is the residual design effect. The term d; represents the correction factor needed
for the sampling variance to fully account for all of the design features of the survey (in-
cluding all of the weight adjustment procedures such as nonresponse and calibration) that
are not explicitly represented. Two big additional assumptions will be made here. First is
that > j Wij N N; and second is that the d;’s are all equal, i.e. d; = d. The first assumption
only holds if that subpopulation matches a calibration cell for the survey (or approximately
true for a very large sample in a design consistent survey). The second assumption can also
be viewed as estimating an average design effect given that we don’t have the data to esti-
mating each individual d;. While these assumptions may seem overly strong, results from
Bell (2008) showed that the estimated sampling variances do not need to be highly accurate
(say only within a factor of 2) for shrinkage style estimates of the means to maintain good
properties. One of the largest concerns in using unstable sampling variance estimates is
when an estimated variance is much smaller than its true value which makes the estimate
appear to be very precise. This affects both parameter estimation and prediction.

Putting these assumptions together we can rewrite the estimated rate and variance of
the estimated rate for the aggregate of areas as

5 — DoicA 2j WijYij (14)
ZieAijij
N\ pi(1—pi
Var(p) = Z<N> Wd;”dfdi (15)
icA v

_ Yiwh pi(l—pi)
=2 i (16)
A (X ica Zj wij) n;

Note that if the p;s and dfs are all constant within the aggregate then (16) reduces to es-
timating the residual design effect for the aggregate after taking unequal weighting into
account. The ad hoc method of using the design effect of the aggregate is only valid when
the true rate and design effects (after unequal weighting is taken into consideration) are
equal across all of the areas. The solution for d in (16) is

-1

d = Var(p) s (17)

2
Z > Wi pi(1 —pi)
e (Pica2jwis)®

In order to use (17), we need to provide the area level rates, p;. The survey estimates of p;
are usually too unstable to use. Some areas may have a large enough sample to provide good
estimates of p; but we expect that many areas will not. If the rates between the areas do not

vary much, then substituting the aggregate rate p for p; will approximate (17) reasonably
well. Two additional methods for estimating p; for the GVF in (17) are proposed.

4.1 Model-Based Estimator for p;

The first method is to fit a separate model for the p;’s. This is plausible in the context
of small area estimation when there is already a model for the rate and a set of covari-

674



JSM 2016 - Survey Research Methods Section

ates in mind. Instead of using the full small area model to estimate p;, a simpler version
is suggested. A preliminary model-based estimate of p;, say p;*, can be obtained by fit-
ting a weighted least squares to the mean function of the small area model. Suppose the
mean function is (X 3), where p(-) is the inverse logistic function. Then the parame-
ters 3 can be estimated by minimizing the objective function Y, 4 ni(p; — u(X; 3))* and
Pt = p(X }FB ). This approach was used in Carolina and Bell (2015). Under this modeling
framework, using the aggregate estimated rate p is the same as having an intercept only
model for the mean. After the model-based p;" are obtained, the residual design effect is
estimated using (17).

4.2 Shrinkage-Based Estimator for p;

An alternative method when there is no assumed model for p; or covariates to predict is to
create a shrinkage estimator. This second method creates a composite estimator for p; from
p and p; which minimizes the mean squared prediction error based on moment assumptions.
We use a simple underlying superpopulation model: p; = pg, + u; where Var(u;) = ag
and ps), is the superpopulation mean of the area rates. Assume the summation over areas
(subscript ¢) are for those in aggregate A. Let df = d{"dfd and +; = N;/N, then p =
>;vibi and p = ). v;p;. From the superpopulation model framework:

Var(lp) = PPy (18)
1 i) .

Var(p) = L 2 s 1 2 (19)

Var(p) = Z 2 p) d*+022% (20)

Using method of moments, for known d; and p;’s, the estimator for ag is:

2
Z%’(ﬁz‘ — 15)2] — Z% ( — Dsp) nyk(pk — psp)>
: k
= Z% —i)pi(1 — pi)d; /ni + (1 — Z’y?)o'g 1)

-~ Zi Yi(Pi — D)2 — D2 i1 — yi)pi(1 — pi)dy [,
- ISR -

It is possible for the solution of ag to be negative in (22). In this case, one can set a]% =0
which indicates that the variability in the p;s is not enough to overcome the uncertainty
from the sampling design. The composite estimator for p; has the form of «;p; + (1 — a;)p.

Areas with lots of data, i.e. large effective sample size, should have an estimate closer to
their p; and areas only few sample data should have an estimate closer to p. To solve for

bR N
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a;, we minimized the expected mean squared prediction error

o7 (67

minE[aiﬁi +(1—ay)p —pi]Z = minE{ai(ﬁi —pi) +(1— ai)(z ViPk — pz’)r
k

= min B (o + (1 - i)) (5 — po) + (L~ 00) 3 (e — )|

%)

vy
= nélln {(a? + 20;(1 — ai)'yi)pi(l —pi)d; /n;
+ (1= ai)® Y viepe(1 = pr)di /i,
k
+(1— oz@-)Qoi(l — 27+ Z’Y}%)} (23)
K
=0 = (ai(1=2%) +7)pi(1 = p)df /mi = (1 — i) Y 7wl — pr)di/m
k
—(1—a)op(1=2v+ Y ) (24)
K

>k epk(1 = pr)dy /e — vipi(1 — pi)df /ni + 02 (1 — 29 + > 7)
(1= 2%)pi(1 — pa)d /ni + >, veok(1 — pr)dj /ne + 02(1 — 29 + >, 72)
(25)

= o =

p(L =) > pvidi/ne — vip(1 — p)df /ni + o2(1 — 29 + > 72)
(1 —2v)p(1 — p)d/n; +p(1 —p) >_p vads/ne + 02(1 — 27 + >, 77)
(26)

&Q

= Oy

Since the estimation of d, ag and p; all depend on each other, one can start off with initial
guess of p; as the aggregate rate p and then iterate between the equations. However, in
some data examples, several of the a;s were converging to 1 when p; = 0 and this is
not a desirable solution since most of the areas that have p; = 0 also have a very small
sample size. For the solution of «;, it may be better to use the approximation in (26) which
smooths over all of the individual p;’s using p. Given the solution to «; we can construct
our composite estimate of p;

Di = a;pi + (1 — o;)p (27)

4.3 GVF and Effected Sample Size Estimator

With the estimated of the design effect cf:‘ = d;”dfcf and an estimate for p;, we can construct
a GVF based sampling variance estimator by

V(pi) = pi(1 — pi)d; /g (28)

Note that if there is no clustering design effect (or if it was not estimated) then d§ = 1. The
effect sample size is n = n;/d}. This GVF can be used as an estimate of the design-based
variance for p; and the GVF and effective sample size can be used as inputs into small area
models.

The GVF in (28) will be consistent with the sampling variance of the aggregate pro-
vided that the assumptions of the pseudo-stratified framework hold. The method outlined
in this section are to create reasonable estimates of the sampling variance when the data
does not support using more traditional GVF modeling approaches.
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5. Applications

5.1 Tract Level Child Poverty Rates

The American Community Survey (ACS) is a large scale general survey designed to make
estimates at various geographic levels, e.g. states and counties. The ACS is a cross sectional
survey drawing a new sample each year. The ACS releases 1-year estimates for all states
and counties that contain more than 65000 in total population and 5-year estimates for
all areas (states, counties and tracts). We are interested in poverty rates for school-aged
children (age 5-17) in tracts. For demonstration of the method, we will focus on the 5-
year ACS (2015) data from Charles County, Maryland which contains 30 tracts and 1983
school-aged children in sample. The sample sizes ranging from 30-111 children per tract
with 1983 school-aged children in total.

The overall school-age child poverty rate for the county was 9.6%, with 3 of the 30
tracts having a direct estimate of 0%. Poverty data is also clustered by definition because
the poverty indicator is a household level variable and all persons in the same household
have the same poverty status. We will consider census blocks as the sub-tract unit for
clustering, which will incorporate the local area effect and within household effect. There
were 534 census blocks distributed across the 30 tracts. Many of the census blocks only
had a single household with school-aged children in sample. Due to the small sample sizes
in most tracts, we used the pooled estimate of intraclass correlation across all tracts and
estimated p to be .41. There were no covariates to estimate the tract level child poverty
rate, therefore the shrinkage estimate for p; was used.

Two GVF models were fitted. The first model, GVF(w), only took the unequal weight-
ing directly into account. Therefore the clustering effect has to be absorbed into the estimate
of d. The second model, GVF(wc), included both the design effect for unequal weighting
and the estimated cluster effect for each area, using the pooled intraclass correlation.

GVEw):  V(p:) = pi(l—pi)dPd/n, (29)
GVF(we): V(p) = pi(l—p)dPd' /n; (30)

Table 1 shows the range of the design effects due to unequal weighting and clustering
and the product of two design effects. In addition, it shows the estimated residual design
effect, d which was estimated by the method given in Section 4. When clustering is not
taken into account, a residual design effect of 2.84 was needed so that the tracts sampling
variance matched the direct survey variance of the county assuming a stratified design.
We expected a significant residual design effect due to the large estimate of intraclass cor-
relation and knowing that poverty is perfectly correlated within a household. When the
clustering at the census block level was explicitly taken into account, the residual design
effect d! was estimated at .82. Thus, adding in the clustering effect overcompensated so
the residual design effect had to raise the effective sample size to keep consistency with
the county direct variance estimate. The tracts within the same county are all part of the
same adjustment group for calibration to known population totals. This calibration can add
dependency by making the areas positively correlated due to common adjustment factor,
thereby violating the stratified framework assumption.

Figure 1 shows the comparison of the square root of the direct sampling variance at the
tract level compared to the square root of the GVF estimate for the sampling variance under
the GVF model with and without the explicit clustering design effect. The GVFs greatly
reduces the range of the sampling variance across the tract, perhaps over smoothing. The
three tracts that had direct estimates of O (and corresponding sampling variances of 0) have
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Design Effect | Min Median Max | Residual Design Effect OjQp

v 116 141  1.83 d=2.84 00606
ds 163 262 531
dv xd¢ | 231 375 876 dt =82 00636

Table 1: Range of design effects for unequal weights di’, clustering di and the product
di’ x df for tract-level poverty rates of school-aged children from the ACS
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Figure 1: Comparison of Direct Sampling Variance (y-axis) and GVFs (x-axis). GVF(w)
[left plot] uses unequal weighting design effect and GVF(wc) [right plot] uses unequal
weighting and clustering design effects.

GVF estimates well away from 0, allowing for a better estimate of uncertainty about the
estimated rate.

5.2 State Level Disability Rates

The Survey of Income and Program Participation (SIPP) is a nationally representative sam-
ple to estimate the sources and amounts of income, labor force information, program par-
ticipation and eligibility data, and general demographic characteristics. The SIPP survey is
a longitudinal survey which interviews the sampled respondents every 4 months, called a
wave. The survey contains a set of core questions (asked at every wave) and sets of topical
modules which are only asked during specific waves, e.g. child care, wealth, disability,
and school enrollment. The disability module has detailed questions (the same questions
as in the standard Activities of Daily Living and Instrumented Activities of Daily Living
Battery) about many different aspects of disability. We are interested in estimating the rate
of people aged 15 and above that have any disability for each state.

Starting with the 2008 sample, the ACS added six general questions on disability, cov-
ering: hearing, vision, cognitive, ambulatory, self-care and independent living difficulties.
Many of the national and state level estimates of disability are higher from the SIPP due to
the more comprehensive set of questions about disability that are asked than from the ACS.
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Design Effect | Min Median Max | Residual Design Effect

dv 1.08 1.18  1.28 d=1.55
ds 1.50 348  17.68
d¥ x dS 175  3.88  20.12 df = .24

Table 2: Range of design effects for unequal weights di’, clustering d; and the product
di’ x df for state-level disability rates of people aged 15+ from SIPP

However, the ACS estimates of disability are based on a large sample size and thus very
stable at the state level and could be used as a predictor for the SIPP disability rate. We cre-
ate a preliminary model for the SIPP disability rate and solve for § = (fp, £1) minimizing
the following weighted least squares function:

> ni(ps,srpp — logit™" (B + Bilogit(X; acs)))? (31)

7

where logit™! is the inverse logit transformation and X i,Acs 1s the state level disability rate
estimated by the ACS. The fitted values for p; were p"* = logit™*(.353+.942logit(X; acs)).

The two GVF models, GVF(w) and GVF(wc), are the same as given in (29) and (30).
Table 2 shows the range of design effects and the estimated residual design effect for the
state level disability estimates. Since counties were randomly selected within state in the
survey design, we used the counties for the clustering group within state. The intraclass
correlation was small, p = .024. However, the design effects due to clustering had some
large values. The cluster design effect can get very large when the cluster sizes are large
and the number of clusters is small. The residual design effect for the GVF(wc) had to
compensate for the large cluster design effects. The model GVF(w) only needed a moderate
adjustment with the residual design effect of 1.55.

Figure 2 shows the comparisons of the direct sampling variances from the SIPP state
level disability estimates to the two GVF model estimates. Since the sample sizes in this
SIPP example are larger than the previous ACS example (average sample size per area is
20 times larger), the comparison of the GVFs to the direct sampling variance estimate gives
insight into whether we should include the clustering design effect. The plot without the
clustering effect (on left) shows a more even spread of the direct sampling variance around
the GVE. The plot with the clustering effect (on right) is underestimating the sampling
variance when the SIPP sampling variance is large (states with smaller sample size). For
this dataset, given the large cluster design effects with the small intraclass correlation and
visual evidence from the plots, we would not recommend using the cluster design effect in
the construction of the GVF.

6. Discussion

A generalized variance function (GVF) was developed for rate estimates from complex
survey data for area with small sample sizes by using layers of design effects. Some of
the design effects explicitly take into account features of the survey design such as unequal
weighting and clustering. A residual design effect which captures the unaccounted part of
the overall design effect for an area was estimated by the average of the residual design
effect over multiple similar areas. The areas were linked together by using a stratified de-
sign where the areas were treated as strata, which was called a pseudo-stratified framework.
Unlike estimating traditional GVFs, the area sampling variances were never directly used
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Figure 2: Comparison of Direct Sampling Variance (y-axis) and GVFs (x-axis). GVF(w)
[left plot] uses unequal weighting design effect and GVF(wc) [right plot] uses unequal
weighting and clustering design effects.

to fit any of the parameters. If many areas have sufficient sample size and only a few were
too small then the traditional GVF methods would be valid. This procedure was developed
for cases where a large portion of the areas had sampling variance estimates that were too
noisy to even fit GVFs, e.g. where many areas had direct rate estimates of O or 1.

Two methods were given for what to use for the estimated area rate p; instead of the
direct survey estimate p; which may be poorly estimated due to small sample size. The
first method depended on a mean model and auxiliary covariates. If the goal is small area
modeling, then these will already be available. A second method was developed when there
was no model or covariate to use to estimate p; which was based on a shrinkage estimator
between the aggregate rate and the area rate which minimized the expected mean squared
prediction error.

How well this pseudo-stratified framework approach works depends on the underlying
design independence assumption of the areas that compose the aggregate. It also depends
on the similarity of the residual design effects across the areas. Care should be taken on how
to chose the aggregates. They don’t always need to be within existing nested geographies
but if the areas are similar in both their true rates and residual design effects then the
approximations that average over the areas should work well.
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