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Abstract 
Maximum Likelihood and Least Squares estimation of the 2-parameter Weibull 
distribution is straightforward; however, there are concerns for the estimation of the 3-
parameter Weibull. The third parameter for the 3-parameter Weibull distribution shifts 
the origin from 0 to some generally positive value sometimes called the location, 
threshold, or minimum life. The different methods used by the packages sometimes result 
in fairly major differences in the estimated parameters between the statistical packages. 
This has been covered previously using modern statistical software separately for 
maximum likelihood (Harper, Eschenbach, James, 2011) and least squares (Harper, 
James, 2015). This publication directly compares maximum likelihood and least squares 
results.  The findings may have implications for those needing to estimate or apply the 
results of a 3-parameter Weibull distribution that is used frequently in practice. The 
results are analyzed based on an experimental design using pseudo-random Weibull data 
sets. 
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1. Introduction 

 
When performing a statistical test or building a statistical model the analyst generally 
expects the key statistical results to be the same from different software packages. For 
example, in linear regression one anticipates obtaining the same equation independent of 
the software package. Options may vary from one package to another, such as for 
regression diagnostics and graphics. Similarly, when doing estimation of a distribution’s 
parameters, one might find different goodness of fit tests (e.g., chi-square, Kolmorgov-
Smirnoff, Cramer von-Mises, Anderson-Darling), and graphical output (e.g., probability 
plots, empirical distribution functions, P-P plots, Q-Q plots). But one expects the same 
parameter estimates within rounding. 
 
This expectation is not met for estimation of the 3-parameter Weibull. The 3-parameter 
Weibull has been documented in the past as a challenge when finding maximum likelihood 
estimates (MLEs) though such studies were not based on modern statistical software 
packages until recently. Harper, Eschenbach, and James (2011) highlight fairly major 
differences in estimated parameters between the statistical packages when maximum 
likelihood is used in ten different program/methods. Harper and James (2015) examined 
the use of least squares (LS) approaches in three statistical packages. Such differences are 
important as the 3-parameter Weibull distribution is widely used in practice. 
 
This research began with the use of Minitab for distribution fitting related to oil spill data 
in the Gulf of Mexico as documented in Eschenbach, Harper (2006) and Eschenbach, 
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Harper, Anderson, Prentki (2010). In using additional statistical software packages, it was 
noted that the MLEs varied more than anticipated. This led to a literature search as well as 
the use of multiple software packages.  The results of the investigation are documented in 
Harper et al (2011).  Harper and James (2015) partially follows their MLE work but with 
LS methods.  The MLE article (Harper et al, 2011) compared 10 MLE methods; whereas, 
only 3 LS alternatives are compared in Harper et al (2015).  This new paper compares MLE 
to LS using the same experimental design used in the two just mentioned publications. 
 

2.   3-Parameter Weibull Distribution 

 
This section briefly summarizes the 3-parameter Weibull literature found to be germane to 
the Weibull differences encountered across statistical packages.  One of the challenges of 
a literature search is keeping track of both the Weibull parameter notation and the 
terminology.  Below are the pdf and cdf used in this article. 
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In this notation γ, the 3rd Weibull parameter goes by a variety of names such as location, 
minimum life, threshold, origin, guaranteed minimum life, guaranteed life, and shift.  α is 
generally called the scale and β is either shape or slope (typically in probability paper or 
rank regression based approaches).  Estimation of the standard 2-parameter Weibull where 
γ = 0 is straightforward and comparable results are found across statistical packages.  
However, the 3-parameter Weibull estimates are problematic. 
 
The American Statistician has published articles over the last 20 years involving the 
Weibull distribution including Haughton (1997), Perry (1998), Owen, Sinha, and 
Capozzoli (2000), and Hilbe (2007).  The American Statistician has also documented other 
estimation problems in articles including Haughton (1997), Altman (2002), Hilbe (2002), 
Langohr and Gomez (2005), and Oster and Hilbe (2008).  Yalta (2007) also documents 
other statistical distribution estimation problems in one software package. 
 
We found comments in Oster and Hilbe (2008) and Hilbe (2008) to be very meaningful.  
Oster and Hilbe (2008) identify that “... maximum likelihood inference (unconditional or 
conditional) may provide incorrect results, or may fail to provide any results at all, ...”.  
While their comment deals with maximum likelihood it is not limited to just that estimation 
technique as Harper and James (2015) illustrated with least squares estimation.  Hilbe 
(2008) nicely states the following two items which we have come to appreciate much more 
as a result of our investigation: 

 “But not all statistical applications have the same capabilities, nor the same 
reliability.” 

 “At other times, of course, we discover a host of difficulties, or major 
inadequacies.” 

 

3.  Software Packages Analysed 

 
Some statistical packages offer only maximum likelihood estimates for Weibull 
distribution fitting.  Maximum likelihood generally has much to offer (consistency, 
asymptotic normality, and asymptotic efficiency) but such properties are based on large 
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samples.  In practice large samples may not be available and thus the often stated 
advantages of maximum likelihood estimation may not applicable to moderate sized 
samples.  In some engineering oriented reliability packages and associated documentation 
the recommended procedure is to use a least squares approach in numerous circumstances 
to estimate the Weibull distribution for both the two and three parameter Weibull 
distribution fitting.  This paper briefly shows overall results of ten MLE results and three 
LS packages for the 3-parameter Weibull.  Then a slightly more in-depth analysis is 
presented comparing MLE and LS for the 3 packages for which both methods were used.   
 
The three packages with a slightly more in-depth MLE versus LS analysis are listed in the 
paragraph.  Minitab 17 is a general purpose statistical package.  Weibull++9 is developed 
by ReliaSoft and has a book (ReliaSoft, 2005) available for either purchase in hard copy 
or downloadable free from the web.  Weibull++9 is part of a suite of reliability based 
software.  SuperSMITH Weibull (version 5.0CH) is a statistical reliability package (Fulton 
Findings, LLC) featured in The New Weibull Handbook (Abernethy, 2006).   
 
Prior to delving into the comparison of the three packages a more cursory showing of MLE 
versus LS results includes the MLE packages/methods JMP Basic, JMP Reliability, SAS, 
Palisade’s Best-Fit, Statistica, Systat, Stata/IC, Weibull++7 defaults, Weibull++7 True 3 
parameter, SuperSmith large bias, SuperSmith small bias; and Minitab.  However, it must 
be stated that their algorithms may have evolved over time.  More specifics on the version 
numbers along with some other packages considered but dropped for various reasons (e.g., 
SPSS) are found in Harper et al (2011). 

4. Least squares estimates versus maximum likelihood estimates in general 

Least squares estimates are calculated by fitting a regression line to the points in a 
probability plot. The line is formed by regressing time to failure X on the transformed 
median rank Y.  Maximum likelihood estimates are calculated by maximizing the 
likelihood function.   Some of the claimed advantages of each method follow. 

3.5.1 Least squares 

 Better graphical display to the probability plot because the line is fitted to the 
points on a probability plot. 

 For samples with little censoring, least squares may be more accurate than MLE, 
especially for small samples. 

3.5.2 Maximum likelihood 

 Distribution parameter estimates are more precise than least squares especially 
for large samples. 

 For samples with heavy censoring, maximum likelihood is more accurate than 
least squares. 

 Maximum likelihood will work when there are no failures. 
 The maximum likelihood estimation method has attractive mathematical 

qualities. 
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When possible, both methods might be tried; if the results are consistent, then there is 
more support for the conclusions. Otherwise, one should consider the advantages of both 
approaches and make a choice for the particular problem.  Minitab does not take a public 
stance.  Below are 5/1/2015 email quotes from Wes Fulton (SuperSMITH) and David 
Groebel (Weibull++9) both providing good advice.  Regression as used is least squares. 

James W. (Wes) Fulton of Fulton Findings LLC (SuperSMITH): Generally, not for the 
specific 3parameter solution, I would say that we recommend to start with the graphical 
method AND then if there is any question about the solution you should compare it to the 
likelihood result. For small samples, Dr. Abernethy's reduced bias adjustment "RBA" 
removes most of the small sample bias in the likelihood solution for the slope. If those 
two different techniques reasonably agree, then you have a solid solution, otherwise you 
have useful information. If the graphical slope is significantly higher than the likelihood 
slope, you probably have a subpopulation that will not fail by the failure mechanism 
under analysis (we informally call that a "batch" issue). Now for the 3parameter solution, 
we recommend larger samples only as it is very difficult to find the correct third 
parameter shift for small samples anyway as you know. So we know there are benefits to 
using both graphical and likelihood methods, and that is easy to do now in modern 
software. 

David Groebel from ReliaSoft (Weibull++9): In general, we do say that with complete 
data, particularly with small sample sizes, that we recommend regression. Assuming Beta 
is greater than one, for complete data with sample sizes of 25, 50 and 100 using the 3p‐
Weibull distribution, I would actually recommend MLE. As you know there will 
probably not be much of a difference between rank regression and MLE given these 
sample sizes. Given that, I would recommend MLE since it would probably help out with 
other statistics, such as confidence bounds, as these are based on MLE theory (Fisher 
Matrix and Likelihood Ratio). With these samples sizes, there most likely would not be 
much of a difference. However, as the sample size decreases then yes, I would 
recommend regression in that case. Bottom line, I do not think there really is a wrong 
answer in this case. 
 
4.1 Approaches to 3-Parameter Weibull Estimates 

 

For LS two basic approaches were encountered in the software reviewed to develop the 
least squares estimates for a 3-parameter Weibull.  Minitab and SuperSmith both use an 
iterative trial and error approach to find an optimal threshold γ that maximizes the 
correlation of the γ adjusted x, y values.  In this iterative process a search is made using 
proprietary approaches that assess both the search direction and when to terminate the 
search.  For a given iteration the current γ value is subtracted from the x values and these 
(x – γ) values are regressed on the y values.  Weibull++ uses a nonlinear technique based 
on a Nelder-Mead optimization approach to estimate γ.  For MLE estimation there are a 
variety of approaches employed.  These are detailed in Harper et al (2011). 
 

5. Experimental Design for Study of 3-Parameter Weibull 

 
Results for initial real-world data (Harper et al, 2011) illustrated the diversity of results that 
statistical packages might provide, but it is hard to generalize from such results.  This 
section describes the choices for a 3 by 3 experimental design focused on the Weibull shape 
parameter (β = 0.5, 1.5, and 3.5) and the sample size (n = 25, 50, and 100) of the generated 
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data sets.  Each statistics package is tested on a total of 270 pseudo-random data sets (9 
settings with 30 simulated data sets).  For each generated pseudo-random data set, the 
location was set to 10 and the scale to 1.  A scale value of 1 is common in the literature 
simulations.  We wanted a location value different than zero to more fully distinguish the 
data from a 2-parameter Weibull. 
 
The first decision was to focus on the shape parameter β.  This is consistent with a broad 
array of previous work.  For example Goode and Kao (1961, 1962) developed reliability 
sampling plans for the Department of Defense that are independent of the scale parameter 
and that describe the location factor as, “However, if γ has some known value other than 
zero the procedure and tables can be easily and simply modified to allow for this.”  
Similarly, Rinne (2009, p. 33) (where c is the shape parameter labelled β in this paper) 
states “As each WEIBULL density can be derived …, it will be sufficient to study the 
behavior of this one-parameter case depending on c only.”  Some simulation studies (Antle 
and Bain,1969; Thoman, Bain, and Antle, 1969 & 1970; Johnson and Haskell, 1983) 
explicitly address why only the shape parameter must be studied, while others (Cohen and 
Whitten, 1982) fix the location and scale parameter without stating the reason. 
 
Hirose (1991) states “the shape parameter β lies in an interval 0.5 ≤ β ≤ 3.5 in almost all 
cases.”  This is partially based on Cohen (1973) which says the values of β are usually 
“ranging from around 0.5 to perhaps 3.0 or 3.5”.  Cohen and Whitten (1982) state “values 
of δ in excess of 3.22 seldom occur” where δ is the shape in their paper.  We conclude 
based on multiple publications including Rinne (2009), for our purposes the shape 
parameter space may be collapsed into the following 3 groups (with our chosen values 
shown): 
 

1. 0 < shape ≤ 1    (0.5) 
2. 1 < shape ≤ 2    (1.5) 
3. Shape > 2          (3.5). 

 
Our choices of 25, 50, and 100 for the sample sizes are consistent with numerous other 
studies.  Thoman, Bain, and Antle (1970) varied n with a max of 100.  Johns and Lieberman 
(1966) varied n with a max of 100.  Archer (1980) varies n from 25 to 200 states on page 
61 “However, as n increases, the approximations approach the estimated variances until 
there is very little difference at n = 100.  Johnson and Haskell (1983) used samples sizes n 
of 70, 100 and 200.  Zanakis (1977) used n = 50, 100, 200.  Abernethy (2006) suggests n 
≥ 21 in general for any 3-parm Weibull and Meeker and Escobar (1998) suggested wanting 
n ≥ 100.   
 
The next choice was for 30 replications at each sample size.  Zanakis (1979) used 3 
replications.  Qiao, Tsokos (1995) used 50 random samples examining just one specific 
case.  Meeker and Escobar (1998) use 30 simulations for a censored two-parameter Weibull 
MLE.  Zanakis (1977) used a total of 225 test problems with replacement of ones that did 
not pass a Kolmogorov-Smirnov goodness of fit test for the 3-parameter Weibull (α = 0.1).  
We did a similar screening (discarding and replacing about 10% of the initial 270 generated 
sets) with the Anderson-Darling goodness of fit test (α = 0.10) to ensure that the pseudo-
random data sets are reasonable 3-parameter Weibull distributions. 
 
Numerous metrics were computed; however, this paper will focus on analysis of variance 
comparisons of the shape parameter β between the software packages. 
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6. Least Squares versus Maximum Likelihood Simulation Results 

 
For each of the nine design conditions a blocking Analysis of Variance (ANOVA) was 
run using Minitab’s General Linear Model procedure including Tukey’s post-hoc 
multiple comparison.  The blocking factor in the ANOVA is the replication number 
representing the particular replication of the 30 random data sets for each design point.  
The main effect of interest is the program/method (e.g., Minitab LS).  By using a 
blocking ANOVA the variability due to the 30 different random replications is 
partitioned out and allows a more sensitive assessment of the main effect program. 
 
For all nine design points Tukey’s multiple comparison grouping output is given for a 
summary overview of the three packages that are the major focus of this article.  For each 
design point there are 8 program/method comparisons in each since there are 5 MLE and 
3 LS options. The output metric of interest is the estimated shape parameter.  Other 
metrics may be reported in subsequent papers on this same design matrix. In the Tukey 
output means not sharing a common grouping letter are significantly different from each 
other at the specified confidence level (95% in this paper).   
 

Table 1: Tukey Multiple Comparison Procedure: (DOE n = 25, DOE Shape = 0.50) 
Program, Method             N      Mean   Grouping 

Weibull++7 True 3P MLE     30  0.594733  A 

Minitab 16 MLE             30  0.562369  A  B 

Weibull++7 Default MLE     30  0.526463     B  C 

SuperSmith Large Bias MLE  30  0.517892     B  C 

SuperSMITH LS              30  0.503456        C  D 

SuperSmith small bias MLE  30  0.499356        C  D 

Minitab 17 LS              30  0.495514        C  D 

Weibull++9 LS              30  0.450659           D 

 

Table 2: Tukey Multiple Comparison Procedure: (DOE n = 50, DOE Shape = 0.50) 
Program, Method             N      Mean  Grouping 

Weibull++7 True 3P MLE     30  0.623669  A 

Minitab 16 MLE             30  0.530605      B 

SuperSMITH LS              30  0.518371      B 

SuperSmith Large Bias MLE  30  0.516421      B 

Weibull++7 Default MLE     30  0.509207      B 

Minitab 17 LS              30  0.509093      B 

SuperSmith small bias MLE  30  0.507281      B 

Weibull++9 LS              30  0.452381         C 

 

Table 3: Tukey Multiple Comparison Procedure (DOE n = 100, DOE Shape = 0.50) 
Program, Method             N      Mean  Grouping 

Weibull++7 True 3P MLE     30  0.652652  A 

Minitab 16 MLE             30  0.533323      B 

SuperSMITH LS              30  0.532352      B 

SuperSmith Large Bias MLE  30  0.526287      B 

SuperSmith small bias MLE  30  0.521656      B 

Weibull++7 Default MLE     30  0.513106      B 

Minitab 17 LS              30  0.511819      B 

Weibull++9 LS              30  0.458617         C 

 
  

JSM 2016 - Section on Physical and Engineering Sciences

592



Table 4: Tukey Multiple Comparison Procedure (DOE n = 25, DOE Shape = 1.50) 
Program, Method             N     Mean  Grouping 

Weibull++7 Default MLE     30  2.45812  A 

Weibull++9 LS              30  2.29712  A 

Minitab 16 MLE             28  1.87972  A 

Minitab 17 LS              30  1.86524  A 

SuperSMITH LS              30  1.86524  A 

Weibull++7 True 3P MLE     29  1.80092  A 

SuperSmith Large Bias MLE  30  1.60191  A 

SuperSmith small bias MLE  30  1.54457  A 

 
Table 5: Tukey Multiple Comparison Procedure (DOE n = 50, DOE Shape = 1.50) 
Program, Method             N     Mean  Grouping 

Weibull++7 Default MLE     30  1.55783  A 

Weibull++7 True 3P MLE     29  1.55522  A 

Minitab 17 LS              30  1.51084  A 

SuperSMITH LS              30  1.51079  A 

Weibull++9 LS              30  1.50894  A 

Minitab 16 MLE             30  1.42490         B 

SuperSmith Large Bias MLE  30  1.42238         B 

SuperSmith small bias MLE  30  1.39721         B 

 

Table 6: Tukey Multiple Comparison Procedure (DOE n = 100, DOE Shape = 1.50) 
Program, Method             N     Mean  Grouping 

Weibull++7 Default MLE     30  1.62822  A 

Weibull++9 LS              30  1.60263  A   B 

Weibull++7 True 3P MLE     29  1.59859  A   B 

SuperSMITH LS              30  1.57784      B 

Minitab 17 LS              30  1.57781      B 

Minitab 16 MLE             30  1.52840         C 

SuperSmith Large Bias MLE  30  1.52832         C 

SuperSmith small bias MLE  30  1.51487         C 

 
Table 7: Tukey Multiple Comparison Procedure (DOE n = 50, DOE Shape = 3.50) 
Program, Method             N     Mean  Grouping 

Weibull++7 Default MLE     30  5.60211  A 

Weibull++9 LS              30  5.32974  A      B 

SuperSMITH LS              30  4.32932  A      B 

Minitab 17 LS              30  4.32927  A      B 

Weibull++7 True 3P MLE     30  3.55496  A      B 

Minitab 16 MLE             29  3.53729  A      B 

SuperSmith Large Bias MLE  30  3.48390  A      B 

SuperSmith small bias MLE  30  3.35920         B 

 
Table 8: Tukey Multiple Comparison Procedure (DOE n = 25, DOE Shape = 3.50) 
Program, Method             N     Mean  Grouping 

Weibull++7 Default MLE     30  4.16101  A 

Weibull++9 LS              30  4.07236  A 

Minitab 17 LS              30  4.06933  A 

SuperSMITH LS              30  4.06929  A 

Weibull++7 True 3P MLE     30  3.51552         B 

Minitab 16 MLE             30  3.49931         B 

SuperSmith Large Bias MLE  30  3.48958         B 

SuperSmith small bias MLE  30  3.42782         B 
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Table 9: Tukey Multiple Comparison Procedure (DOE n = 100, DOE Shape = 3.50) 
Program, Method             N     Mean  Grouping 

Weibull++7 Default MLE     30  3.88401  A 

Weibull++9 LS              30  3.80930  A 

SuperSMITH LS              30  3.76023  A   B 

Minitab 17 LS              30  3.76013  A   B 

Weibull++7 True 3P MLE     30  3.60633      B  C 

SuperSmith Large Bias MLE  30  3.60585      B  C 

Minitab 16 MLE             30  3.59929      B  C 

SuperSmith small bias MLE  30  3.57412         C 

 
In an endeavor to have a reasonable coverage of the 9 design points given the proceedings 
15 page limit the following 3 design points were selected representing in some sense the 
extremes of and the middle.  On the plots the design value β is shown as a red dotted 
horizontal line that visually aids bias detection. 
 

 β = 0.50, n = 30 - smallest β, n 
 β = 1.50, n = 50 – middle β, n 
 β = 3.50, n = 100 – largest β, n 

 
Figures 1-3 show the results of all the MLE and LS results from both Harper et al (2011) 
and Harper et al (2015).  Figures 4-9 focus just on the three packages that are the main 
focus of this paper.  For each of the selected 3 design points selected an overall box plot 
(similar to Figures 1-3) is given followed by a box plot that summarizes LS versus MLE. 
 

 
Figure 1.  All MLE, LS program/methods for β = 0.50, n = 30 
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Figure 2.  All MLE, LS program/methods for β = 1.50, n = 50 

 
 

 
Figure 3.  All MLE, LS program/methods for β = 3.50, n = 100 

 
Figures 1-3 showed all LS and MLE comparisons for all packages/methods studied.  
Software algorithms may have change over time; therefore, one cannot be sure that the 
same exact results would be found in the most current versions of each package/method.  
See the earlier Harper et al (2011, 2015) for more detailed results.  The main message is 
that there may be considerable variation of the three-parameter Weibull results across 
different packages/methods.  Figure 4-9 that follow focus just the three software packages 
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Minitab, SuperSMITH, and Weibull++, but even here the MLE results are older than the 
LS results.  Nonetheless, the comparisons illustrate that both the LS and MLE methods 
result in differing results depending on the package/method used.  The estimation of the 
three-parameter Weibull is a challenge. 

 
Figure 4.  Minitab, SuperSMITH, Weibull++9 MLE, LS results for β = 0.50, n = 30 

 
 

 
Figure 5.  Minitab, SuperSMITH, Weibull++9 MLE, LS summary for β = 0.50, n = 30 
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Figure 6.  Minitab, SuperSMITH, Weibull++9 MLE, LS results for β = 1.50, n = 50 

 
 

 
Figure 7.  Minitab, SuperSMITH, Weibull++9 MLE, LS summary for β = 1.50, n = 50 
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Figure 8.  Minitab, SuperSMITH, Weibull++9 MLE, LS results for β = 3.50, n = 100 

 
Figure 9.  Minitab, SuperSMITH, Weibull++9 MLE, LS summary for β = 3.50, n = 100 

 
7. Summary 

 
This paper documents (primarily through plots) modern software issues in the LS and MLE 
estimation of the 3-parameter Weibull distribution shape parameter β. It shows more than 
expected variability exists in results reported by different statistical packages. These 
differences may be critical for those who would use the 3-parameter Weibull. In practice 
it may be advantageous, where possible, to compute both least squares and maximum 
likelihood estimates using multiple packages and compare the results.  
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