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Abstract. We provide a non-technical description and motivation for the edge
exchangeable framework of network modeling. The discussion here complements
our prior work, in which we introduced and developed the basic theory and
philosophy of edge exchangeability in detail, and is intended to provide further
details on our seminar presentations on the topic.

The need for edge exchangeability as a new foundation for network modeling
arises out of the observation that traditional exchangeable models for vertex labeled
graphs cannot replicate the large sample behaviors of sparsity and power law degree
distributions observed in many network datasets. Beyond addressing this basic
issue, the edge exchangeable framework promotes a mindset that better explains
key features of network analysis. It also clarifies why the conventional approach is
untenable for networks constructed from processes of interactions.

1. Introduction

We first introduced the concept of edge exchangeability in a series of articles [11,
Section 6.3] and [9, 12] and later expounded the details in [13, 14]. Edge exchange-
ability offers a new framework for modeling network data which accords with basic
logical and empirical considerations that mainstream approaches fail to acknowl-
edge. Here we emphasize the statistical motivation and practical implications of
the edge exchangeable framework and explain the need for a new foundation for
network modeling in the first place.

The following commentary complements many colloquium presentations we
have given on this material since 2015; see, e.g., [7]. The discussion below is intended
as an accessible companion to the more technical developments in [12, 13, 14].

1.1. Principles of network modeling. The need for a new foundation of network
modeling arises out of a well known discrepancy between the behavior exhibited
by real world network data and networks described by leading statistical network
models, such as graphon models [5, 20], exponential random graph models [15], and
the stochastic blockmodel [16]. On the one hand are the structural features of many
real world networks, which tend to be sparse and have power law degree distributions
[1, 2, 4, 21]. Debate lingers about the genesis of these properties, whether they are
caused by the dynamics of network formation, as in preferential attachment-type
models [4, 6], or bias inherent in network sampling, as argued in [19, 22]. Which of
these claims, if any, is correct varies among applications, and in many situations it
seems likely that both elements contribute to the observed structure. With this in
mind, we devised our general framework for network modeling [12] to address the
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Dataset vertices edges
Actor collaborations actors movies
Enron email corpus employees emails
Karate club dataset club members social interactions
Wikipedia voting Wikipedia admin. votes
US Airport airports flights
Scientific collaborations scientists articles
UC Irvine online community members online messages
Political blogs Websites hyperlinks
Table 1. List of common network datasets along with a description
of the entities comprising their vertices and edges. For example, the
actor collaboration dataset records the set of actors (vertices) in a
collection of movies (edges). The Enron email corpus is a collection
of email correspondences (edges) among employees in the Enron
Corporation (vertices).

effect of the data generating process and sampling mechanism at play in network
formation.

Still, many aspects of data analysis result from decisions that are external to
both the data generating process and sampling scheme. If not accounted for,
these decisions, such as choice of sample size, experimental design, and data
representation, can have a drastic effect on statistical inferences and, in the worst
case, lead to bogus conclusions. One immediate feature of so-called network data
that is universally overlooked is the step taken in representing the data by a graph
G with vertex set V and edge set E ⊆ V×V.

Importantly, the representation of network datasets as a graphical structure,
usually as a graph G = (V,E), is a modeling decision in its own right. Most network
datasets, such as those in Table 1 below, do not arrive in the form of Figures 1 and 2.
The effect of this choice in representing the data have gone overlooked in the vast
literature on networks.

Buried in this seemingly harmless step are several critical assumptions: the
representation by a graph captures the relevant information in the data; the inherent
labeling assigned to elements by V does not affect inference; and, most subtly, the
act of labeling vertices both implicitly identifies the vertices as sampling units and
asserts that vertices can be identified independently of their relationships (via the
network structure) to other vertices. Appreciating the implications of this latter
assumption is crucial to the mindset of edge exchangeability put forth below.

2. Network modeling

2.1. Common network datasets. Table 1 lists some common network datasets. The
actors collaboration network, for example, records interactions among actors based
on their collaboration in movies. Each edge represents a different movie, with
adjacent vertices corresponding to the set of actors who play a role in that movie. In
the Enron email corpus, edges correspond to emails exchanged between employees
in the Enron Corporation.

In these and most other examples in Table 1, edges can involve more than two
vertices—for example, movies generally involve more than two actors and emails
within a company are often exchanged among several recipients—and the same
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collection of vertices can occur in multiple edges—that is, the same actors can,
and often do, appear together in multiple movies and the same individuals often
exchange multiple emails back and forth. Most network models, on the other hand,
are specifically tailored to a {0,1}-valued relation among pairs of vertices, a structure
satisfied in remarkably few real applications.

The practice of fitting these network models to the data, therefore, involves a
further step in which the above structural information is destroyed by compressing
hyperedges among multiple vertices, say the three-way interaction {a,b,c}, to a
collection of all possible pairwise interactions, {a,b}, {b,c}, {a,c}, and removing edge
multiplicities by thresholding to 0 (absent) or 1 (present). This action introduces a
further assumption that the thresholding operation preserves any relevant features
in the data. There seems an unreasonable expectation that whatever relevant
features of the data drive the formation of interactions will still be apparent in the
post-processed network, but such sensitivity analyses are rarely performed. We
highlight some consequences of this presumption in Section 3.4.

2.2. The edge exchangeable mindset. Most network datasets are constructed in
a way that depends on the network structure. In most applications, there is no a
priori way to identify the population of vertices from which the network is sampled
except by reference to the basic defining characteristics of the network itself. Think,
for example, of the network corresponding to collaborations among scientists.
The population of scientists comprising the vertices of this network corresponds
precisely to those scientists who are listed as authors on an article in the database of
publications. The population does not consist of all scientists, or even all physicists,
all chemists, etc. Rather, the population is defined by self-reference to the process
of interactions, in this case publications, that generates the network structure.

When studying the structure of such networks, it is the way in which the inter-
actions come together—that is, interactions between interactions—that is of main
interest. The identities of the vertices play no role and convey no additional in-
formation. It is appropriate to de-identify vertices by either removing their labels
or choosing not to label them in the first place. This decision reflects the fact
that the observed authors are generated by the process itself and, thus, have no
identity beyond their interactions with other authors, as encoded by the network
structure. On the flip side, the interactions comprising the edges can be identified
independently of the rest of the network, as when edges represent email exchanges
or movie collaborations, making the act of labeling edges natural for representing
these datasets.

In these and the other examples in Table 1, network growth is driven by new
interactions, that is, edges, among the vertices. These preliminary, yet crucial, obser-
vations motivate our development of edge exchangeability, which not only identifies
the edges as the statistical units but recognizes their precedence in determining the
identities of the vertices in the network.

2.3. Conventional approach. Before delving into the details of edge exchangeabil-
ity in Section 3, we first highlight the main issues with the conventional approach
to network modeling as it is mainly presented in the current literature.

The examples in Table 1 are commonly regarded as “network datasets”. We
stress that network data, in the sense we intend here, is a graphical representation
of relational or interaction data from a sample, as in Figure 1. Given the varied
applications from which network data arise, we leave this definition purposely
vague. It is assumed that the complex structure produced by these interactions
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Figure 1. Visual representation of the sufficient information con-
tained in network data. We assume no additional information is
carried by vertex or edge labels.

Figure 2. Assignment of vertex labels to the network data in Figure
1. The representation by a vertex labeled graph is common as it puts
network data in a familiar context of random graphs, which are easy
to store computationally and for which there is a well developed
technical apparatus.

contains critical information about the underlying process of interest. We assume
no further information is carried by covariates or labels on the vertices or edges.

Though the relevant information in the data is given by the structure in Figure 1, it
is common practice to represent the interaction data as a graph G = (V,E) with vertex
set V and edge set E ⊆ V×V as in Figure 2. The vertices correspond to elements
of the population with each edge (i, j) ∈ E representing a connection, interaction,
or relationship between elements corresponding to vertices i and j. In this setting,
a network model is a family of probability distributions on graphs with labeled
vertices.

We have already highlighted several drawbacks to this approach. Namely, the
graphical representation G = (V,E) tacitly assumes that each interaction is a binary
measurement, either (i, j) ∈ E or (i, j) < E, or that a binary measurement adequately
captures the information in the interactions via thresholding. This setup also
assumes that multiway interactions can be flattened to a collection of pairwise
interactions. For example, the interactions in the actors and Enron networks, and
several others, need not be restricted to a pairwise interaction involving exactly
two vertices. It is, in fact, rare for a movie cast to consist of exactly two actors, and
many emails exchanged within a company involve a list of several recipients. Few
existing models are flexible enough to directly handle this situation.

Aside from these apparent differences between the real data and the chosen
representation of the data, basic logical and empirical assumptions are crucial to
guard against spurious inferences, as we discuss in the coming section.
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Figure 3. Two different assignments of vertex labels to the same
network dataset. Under an exchangeable model, both of these obser-
vations are assigned equal probability.

2.4. Logical and empirical properties. We seek models that exhibit a bare minimum
of logical and empirical properties necessary to capture the observed features in the
data and permit sensible statistical inferences without falling prey to arbitrariness
introduced during data analysis. For our purposes here, the basic logical properties
are consistency of finite sample distributions and invariance of the model under
arbitrary relabeling of the vertices. In the context of models for vertex labeled
graphs, this latter invariance leads naturally to an exchangeable model, that is, one
which assigns the same probability to any two graphs that are equivalent up to
relabeling, as in Figure 3.

For empirical properties, we stick to the basic properties of sparsity and power
law that have driven much of the interest in network science since the late 1990s, e.g.,
[1, 2, 4, 21]. These properties assume a sequence of networks G1,G2, . . . of growing
sample size. In the present setting of vertex labeled graphs, we assume Gn = ([n],En)
has vertex set [n] obtained by sampling n individuals from the population and
observing the interactions among them. We, therefore, regard the number of
vertices v(Gn) = n as the sample size and define (Gn)n≥1 to be sparse if

(1) limsup
n→∞

e(Gn)
v(Gn)2 = 0,

where e(Gn) is the number of edges in Gn. As a technical point, we take the limit
superior in (1), instead of the limit, because the limit need not exist for a given
sequence of graphs.

An intuitive way to understand (1) is to assume we take a simple random sample S
of finitely many vertices and we look at the subgraph Gn|S induced on those vertices
as n→∞. A consequence of sparsity is that the sequence (Gn|S)n≥1 converges to the
empty graph with probability 1 as n→∞.

The power law is a more specific statement about the degree distribution. In
a graph G = (V,E), the degree of vertex i ∈ V is the number of edges ( j, j′) ∈ E for
which i ∈ { j, j′}; it is the number of edges incident to i. Writing pk,n to denote the
proportion of vertices in Gn with degree k ≥ 1, we say (Gn)n≥1 exhibits power law
degree distribution with exponent γ > 1 if

(2) pk,n ∼ k−γ for all large k ≥ 1 as n→∞.

The relationship in (2) is often demonstrated empirically by a negative linear rela-
tionship on the log-log scale, as in Figure 4.

We stress here that both sparsity and power law degree distribution are asymptotic
properties and, therefore, cannot be regarded as truly empirical features of the data.
Nevertheless, it is common practice in the literature to use the heuristic that a
network is sparse if it has few edges relative to the number of vertices. This heuristic
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Figure 4. Degree distribution on the log-log scale for actors, Enron,
Wikipedia, and Facebook networks. The dashed line is the power
law exponent estimated by eye and may not agree with estimates
given by formal calculations.

is incorrect and ought to be avoided. Instead, we take the assertions of sparsity
and power law themselves as assumptions about the way in which the network
structure varies with sample size. Such properties can never be confirmed from
any finite amount of data, but they can nevertheless be verified, at least informally,
from empirical observation. This latter aspect distinguishes these properties from
the assumptions of exchangeability and consistency of finite sample distributions,
which are basic assumptions of the chosen model, rather than properties of the data,
and therefore cannot be validated empirically.

2.5. Fundamental problem. Neither sparsity nor power law can hold for a sequence
(Gn)n≥1 drawn by sampling from an infinite, exchangeable population graph G,
unless the population graph is itself empty, that is, has no edges or sampling is
performed in a biased way. This observation follows immediately by the Aldous–
Hoover theorem for exchangeable random arrays [3, 17], which is closely tied to the
now popular class of graphon models [20].

The observation presents a fundamental problem in statistical network modeling:
the basic considerations noted above—exchangeability and consistency of finite
sample distributions on the logical side and sparsity and power law on the empirical
side—cannot be accommodated by any exchangeable model for network data when
the data are represented as a graph with labeled vertices as in Figure 2.

With this observation, it is curious that graphons have caught on as they have
in the theoretical statistics literature on networks as these basic observations call
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into question, and seem to negate, their practical value. We have not heard a cogent
argument in favor of using graphon models for real network data.

It is widely agreed that the Erdős–Rényi model, which assumes each edge is
present independently with a fixed probability p ∈ (0,1), is untenable as a practi-
cal model for network data. But, in a sense made precise by the Aldous–Hoover
theorem, the class of graphon models refines the Erdős–Rényi construction while
preserving its distinguishing features. Instead of modeling each edge as indepen-
dent, identically distributed draws, the Aldous–Hoover theorem models each edge
as a conditionally independent draw given random vertex effects. The net effect is
a class of models which is unable to replicate the most basic features observed in
network data, in much the same way and for the same reasons as the Erdős–Rényi
model.

Observation 2.1. The conventional approach to network modeling cannot simultaneously
account for basic logical and empirical considerations.

The current situation, therefore, is not hospitable to principled statistical modeling.
This series of observations, at first glance, is rather vexing, as there appears nothing
fallacious in labeling vertices of the network and then removing the effect of this
labeling by choosing an exchangeable model. However, as we discover below, the
effect of labeling vertices is not fully eliminated by assuming an exchangeable model.
Assigning labels has a lasting effect that, once introduced, cannot be undone. Our
main observation is that the majority of network datasets mentioned at the outset
ought not be represented as a vertex labeled graph in the first place.

3. Edge exchangeable models

To realize the consequences of our observation in Section 2.2 that edges comprise
the statistical units in many common network datasets, take the concrete example
of the actors collaboration network. Sampling this network does not proceed by
taking a simple random sample of people and asking in which movies they have
acted. Such an approach would, with high probability, result in an empty graph. A
more reasonable approach is to sample movies from a database, such as the Internet
Movie Database (IMDB), and observe the corresponding sets of actors in the chosen
movies. Sampling movies uniformly without replacement from the IMDB results in
a network with edges labeled according to the order in which they were sampled.

There are two important aspects of this mode of sampling. First is that the
sample is driven by a process on the movies, which correspond to the edges in the
corresponding network representation. The sampled actors are incidental to the
edge sampling scheme and cannot be identified without reference to the interactions
(movies) in which they have acted. Indeed it is impossible to identify someone as an
actor without also identifying a movie in which he/she has acted. The labels can be
assigned only after movies have been sampled; we cannot label unsampled vertices
prior to sampling them. The act of labeling the vertices in the graph in Figure 1 is, at
best, misleading and, at worst, incorrect since it suggests that unobserved vertices
can be identified independently of their interactions. In fact, unobserved vertices
cannot be identified without being sampled.

These observations lead to a simple formalism for interaction data, which we
define as a process (Ei)i∈N of subsets of a population P. In the following example,
each Ei ⊂ P need not be of size 2, but we restrict to this case for simplicity.

Example 3.1. Suppose a population P = {1, . . . ,10} and a sequence of interactions
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(a) (b)

Figure 5. (a) Vertex and edge labeled graph obtained by sequence
of interactions E1 = {2,4}, E2 = {1,2}, E3 = {1,5}, E4 = {6,9}, E5 = {2,6},
E6 = {2,6}. (b) Edge labeled graph obtained by removing vertex labels
from graph in Panel (a).

Figure 6. Relabeling of two edge labeled graphs. An edge exchange-
able models assigns equal probability to both outcomes.

• E1 = {2,4}, E2 = {1,2}, E3 = {1,5}, E4 = {6,9}, E5 = {2,6}, E6 = {2,6}
We can record these interactions, without any loss of generality, as in the vertex and edge
labeled graph of Figure 5(a). However, as we mentioned above for the actors and Enron
networks, the vertex labels serve only to keep track of vertices during the course of network
formation. Vertex labels should not be construed as equipping sampled individuals with an
identity beyond their interactions with other vertices in the network. We, therefore, remove
vertex labels to arrive at the representation of the relevant structure in the network by an
edge labeled graph as in Figure 5(b).

As presented in Example 3.1, the edge labels in Figure 5(b) correspond to a
temporal ordering in which the interactions occurred. In practice, however, this
temporal ordering may often be ignored for a few possible reasons. Most commonly,
as in the actors collaboration dataset, the temporal order of movies is known to
exist but is not recorded in the data. In this case, the observation is an unlabeled
structure as in Figure 1, so that modeling the data as an edge labeled graph entails
appending edge labels arbitrarily to the observed structure. But even if the ordering
is observed, as it would be if we sampled movies ourselves from the IMDB, it is
sometimes reasonable to treat the data symmetrically with respect to the observed
ordering, as it would be if we sampled movies without replacement from the IMDB.

In either case, the principle of exchangeability from Section 2.3 leads naturally to
the concept of edge exchangeability, by which any two graphs which are equivalent
up to relabeling of edges are assigned equal probability. Figure 6 demonstrates
two such graphs, which is sufficient as a definition of edge exchangeability for
the purposes of this discussion. See [13] for a complete definition and further
discussion.

As a logical principle, edge exchangeability is more natural than the conventional
approach to network modeling with random graph models. Edge exchangeability,
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it turns out, also resolves the main empirical issues of incorporating sparsity and
power law degree distribution into a principled statistical model. We discuss these
below.

Given these observations, it is perhaps surprising that we first introduced edge
exchangeability only recently in the context of a broader discussion on statistical
network modeling; see [11, Section 6.3]. An explanation of this, we believe, is that
the consequences of representing network data as a graph with labeled vertices are
not understood and have never been pointed out before. In fact, in most outlets
network data is treated as interchangeable with graphical data.

3.1. Vertices arrive in size-biased order. One immediate consequence of the edge-
centric view taken by the interaction process of Example 3.1 is that the sample size
is defined as the number of interactions (or edges) in the observed network. The
number of vertices is a random variable depending on the data generating process
and the sample size of edges.

In [14], we proved a general representation theorem for edge exchangeable
networks, and more general relationally exchangeable structures, which sheds light
on the process by which vertices arrive. Avoiding technicalities here, we consider
as a special case an array ( f{i, j}) j≥i≥1 for which each f{i, j} ≥ 0 and

∑
j≥i≥1 f{i, j} = 1; see

[14] for the general case.
Let F denote the space of all such arrays. We construct an edge exchangeable

graph by first specifying a probability measure φ on F and selecting f = ( f{i, j}) j≥i≥1
randomly according to φ. Given f , we sample interactions X1,X2, . . . conditionally
independently and identically distributed (i.i.d.) according to

P(Xn = {i, j} | f ) = f{i, j}, j ≥ i ≥ 1.

From X1,X2, . . ., we construct first the vertex-edge labeled graph induced by these
sets, as in Figure 5(a), and then remove vertex labels to obtain a random edge labeled
graph as in Figure 5(b). The resulting graph is edge exchangeable. By Theorem 3.4
of [14], every edge exchangeable network admits such a construction for some φ.1

While this representation may, on its own, be of use for modeling edge exchange-
able networks using techniques from completely random measures and Bayesian
nonparametrics, it offers an immediate practical insight. Notice the effect of the
construction of X1,X2, . . . as i.i.d. from f on the arrival of vertices. For each i ≥ 1,
let fi• =

∑
j≥1 f{i, j} be the sum of the weights over all edges incident to i. Then fi• is

the probability that vertex i is contained in any given edge X1,X2, . . ., leading to the
following observation.

Observation 3.2. Vertices arrive in an edge exchangeable graph in size-biased order
according to their expected relative degrees fi•.

Though not usually phrased or regarded in this way, the more common as-
sumption of vertex exchangeability implicitly assumes that new vertices arrive in
exchangeable random order. Observation 3.2 establishes that the behavior of edge
exchangeable networks is inconsistent with this assumption, explaining why the
usual assumption of vertex exchangeability, which at first glance appears reasonable
and innocuous, is expressly violated by the assumptions of most network models.

1In fact, Theorem 3.4 of [14] states the stronger result that every edge exchangeable random
graph has a unique representation in terms of some canonical measure φ, but we do not discuss that
generality here.
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We note that size-biased arrival of vertices is critical to other models for sparse,
power law network structures, notably the preferential attachment-type models
[4, 6]. We observe the same empirical behavior for certain edge exchangeable
models.

3.2. Sparsity and power law in the Hollywood model. Let ν = {νk}k≥1 be a proba-
bility distribution on the positive integers and let (α,θ) satisfy either 0 < α < 1 and
θ > −α or α < 0 and θ = −kα for some k = 1,2, . . .. We generate a sequence (Yn)n≥0 of
edge labeled networks, with each Yn having n ≥ 1 edges, as follows.

Write v(Yn) to denote the number of vertices in Yn and e(Yn) to denote the number
of edges in Yn. We start with Y0 having v(Y0) = e(Y0) = 0. In the intended semantic
interpretation as a process of movie formation, every edge in Yn corresponds to a
movie, with the vertices incident to the edge labeled i in Yn corresponding to the
actors who play a role in movie i = 1, . . . ,n. We stress, however, that the application
to movie formation is not central to the Hollywood model.

Given Yn−1, for n ≥ 1, we choose the number of available roles in the next movie
independently according to Kn ∼ ν. Given Kn = k, we choose the k actors in order
of their prominence, first filling the lead role, then the second lead role, and so on
until all k roles are filled. Let Nn( j) be the number of unique actors seen in all the
movies through the ( j− 1)st actor cast in movie n. (Thus, Nn(1) is the number of
unique actors appearing in movies 1, . . . ,n−1.) For j = 1, . . . ,k, we label the actors
arbitrarily 1, . . . ,Nn( j) and write Dn(i, j) to denote the number of roles for which the
actor labeled i has been cast up to and including the ( j−1)st role of movie n. (Note
that an actor may play more than one role in a given movie.) The actor vn( j) cast in
the jth lead role of movie n is chosen randomly among the actors labeled 1, . . . ,Nn( j)
and a previously unseen actor, labeled Nn( j) + 1, according to

(3) pr(vn( j) = i) ∝
{

Dn(i, j)−α, i = 1, . . . ,Nn( j),
θ+αNn( j), i = Nn( j) + 1.

We continue to update according to (3) until all k roles of movie n have been filled.

Example 3.3. Let ν be a probability distribution on the positive integers. Suppose K1,K2, . . .
are i.i.d. from ν = {νk}k≥1, 0 < α < 1, and θ > −α.

Then for (K1,K2, . . .) = (3,2,4, . . .):
• E1 = (1,2,1) with probability

θ
θ
×
θ+α
θ+ 1

×
1−α
θ+ 2

• E2 = (3,2) with probabilty

θ+ 2α
θ+ 3

×
1−α
θ+ 4

• E3 = (1,4,3,5) with probability

2−α
θ+ 5

×
θ+ 3α
θ+ 6

×
1−α
θ+ 7

×
θ+ 4α
θ+ 8

The probability of (E1,E2,E3) here is given by

ν3×ν2×ν4×α
5 (θ/α)(θ/α+ 1) · · · (θ/α+ 4)

θ(θ+ 1) · · · (θ+ 8)
(1−α)3(1−α+ 1).

We give a general expression in (4).
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We call the sequence (Yn)n≥1 of networks constructed this way the Hollywood pro-
cess with parameter (α,θ,ν). By its sequential construction, the process determines
a family of distributions, called the Hollywood model, for network data with edges
labeled inN. We express the distribution of Yn, for each n ≥ 1, in closed form by

(4) pr(Yn = E;α,θ,ν) =

∏
k≥1

νMk(E)
k

αv(E) (θ/α)↑v(E)

θ↑mn(E)

∞∏
k=2

exp{Nk(E) log((1−α)↑(k−1))},

where E is any edge labeled network with n oriented edges, v(E) is the number of
nonisolated vertices in E, (Nk(E))k≥0 gives the number of vertices with degree k for
each k ≥ 0, Mk(E) is the number of k-ary edges in E, mn(E) =

∑
k≥1 kMk(E) is the total

degree of E, and x↑ j = x(x + 1) · · · (x + j−1) is the ascending factorial function.
Though presented in the context of the actors network, the Hollywood model is

suited to any conceivable network dataset that arises from a process of interactions.
The special case of network data with binary edges is easily handled by setting
ν2 = 1. We discuss further practical aspects of the Hollywood model in [13].

3.3. Vertex components models. The above Hollywood model was first introduced
under the heading Poisson–Dirichlet model in [11, Section 6.3]. This previous repre-
sentation is a special case of the vertex components processes we now describe.

Crane [8] previously noted a connection between the Hollywood model and
the two parameter Poisson–Dirichlet distribution as follows. Given (α,θ) in the
parameter space of the Hollywood model, we let W = (W1,W2, . . .) be a random draw
from the Poisson–Dirichlet distribution with parameter (α,θ) and define f{i, j} = WiW j
for each j ≥ i ≥ 1. This construction determines a probability measure φα,θ on F as
described in Section 3.1 above.

More generally, this construction of f = ( f{i, j}) j≥i≥1 by f{i, j} ∝WiW j for some se-
quence of random variables (W1,W2, . . .) with

∑
i≥1 Wi <∞ is a special case of the

vertex components process first introduced in [11, Section 6.3]. The vertex compo-
nents models are a tractable class of nonparametric models for edge exchangeable
networks which may have additional practical benefits beyond the Hollywood
model.

From this connection between the Hollywood model and the vertex components
model driven by the Poisson–Dirichlet distribution, we can deduce, see [13, Section
5.3], that the Hollywood process (Yn)n≥1 exhibits power law degree distribution
with exponent γ = α+ 1 when 0 < α < 1 and θ > −α. Furthermore, (Yn)n≥1 is sparse
provided 1/µ < α < 1, where µ =

∑
k≥1 kνk is the mean interaction size in the general

Hollywood model with parameter (α,θ,ν).

3.4. Unintended consequences of thresholding. We previously alluded to the
consequences of thresholding multiple edges to obtain an ordinary graph. Though
unnecessary and detrimental to inference, the act of thresholding is very common in
practice as alluded above. The practical reason for projecting multiple edges seems
to be closely tied to the fact that most network models are unable to accommodate
the natural occurrence of multiple edges. The Hollywood model does not suffer
from these issues as it directly models networks with multiple edges and with
interactions involving more than two vertices, as is common in all of the examples
of Table 1.

Theorem 5.4 of [13] demonstrates an immediate consequence of removing multi-
ple edges from a multigraph constructed from the Hollywood model: the projection
of (Yn)n≥1 to a sequence of simple graphs by removing multiple edges is sparse for
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(a) (b)

Figure 7. (Left) Interaction network of Zachary karate club. (Right)
Projection by removing edge multiplicities. In both pictures, the
dashed line separates vertices into the true communities, as dictated
by Zachary [23]. The color of the vertices, as black or white, shows
the classification given by either a simple method that accounts for
multiple edges (in (a)) or more complicated approaches, such as
degree-corrected stochastic blockmodels, which ignore multiplicities
(in (b)). The classification in (a) coincides with Zachary’s analysis
while the classification in (b) does not.

all 0 < α < 1. Therefore, thresholding not only throws away data unnecessarily but
also fundamentally changes the asymptotic behavior of the data.

One place where thresholding is pronounced is in community detection applica-
tions, as in Figure 7. Figure 7(a) shows the complete karate club dataset as originally
recorded in [23]. That dataset records the number of social interactions between
each pair of the 34 members of a university karate club. The karate club dataset
is a canonical example in network community detection because of the known
separation of club members according to their allegiance to one of the club’s two
leaders. However, most community detection techniques we know of have been
illustrated on the karate club network after projecting the multiple interactions to a
single edge, as shown in Figure 7(b).

It is common, e.g., in [18], for the most successful methods to properly classify all
but one of the karate club members, as shown in Figure 7. However, the community
structure imposed by social interactions among members of the club is related
directly to the multigraph in Figure 7(a). There is no logical reason to expect the
same community structure to persist after arbitrarily projecting multiple edges. In
fact the leading community detection methods, e.g., [5, 18], consistently misclassify
one of the members.

From a logical point of view, this ought to be expected, since the act of removing
multiple edges offers no guarantee to preserve the fundamental structure of the
data. In fact, we have shown in other work [10] that all vertices can be correctly
classified with a very simple approach if only the complete dataset with multiple
edges is analyzed.

4. Concluding remarks

The mindset of edge exchangeability described here is the result of a logical
flow from data arising by an interaction process, to its representation by an edge
labeled graph, to the notion of edge exchangeability. From the discussion, edge
exchangeability offers an alternative to the current suite of network models, such as
graphons, exponential random graph models, and stochastic blockmodels, which
are unable to explain the most basic properties of network data. The fact that edge
exchangeable networks replicate these basic features of network data is merely
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empirical justification that the framework may be viable for the many intended
applications in network science.
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