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Abstract. Inference for the overall treatment effect resulted from a randomized clinical trial has the
best credibility. In a traditional paradigm, where a clinical trial is primarily designed to answer a
single question regarding the average (overall) treatment effect, randomization effectively prevents
systematic confounding and bias when we assess the overall treatment effect. In an increasingly
important new paradigm, inference of treatment heterogeneity is key to comparative effectiveness.
In this new paradigm, randomization does not prevent systematic bias when we assess treatment
by covariate interaction. Through a case study, this paper explains how this phenomenon occurs
and examines whether and how this problem could be solved.
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1 Introduction

Inference resulted from a randomized clinical trial has the best credibility when the trial is pri-
marily designed to answer a single question regarding the overall (average) treatment effect. An
increasingly important new paradigm emerges in clinical trials in which the inference of treatment
heterogeneity is key to comparative effectiveness. Please refer to Simon (2012a) and references
therein for further discussion of the importance of new paradigm in the era of personalized medica-
tion. However, a comprehensive definition of this new paradigm has yet to come. As acknowledged
in Simon (2012a), “there is uncertainty on what this new paradigm should be”. In this paper, we
are content to focus on the inference of treatment heterogeneity, a feature that will be included in
the new paradigm.

This paper illustrates one major limitation of the randomization when we make inference regarding
treatment by covariate interaction in the new paradigm. A limitation of randomization in estimat-
ing treatment effect was discussed in the traditional paradigm (see Gail et al. 1984, Neuhaus and
Jewell, 1993); but it is not a major limitation. See Section 2 for detailed discussion.

A major limitation of randomization, in the new paradigm, stems from its lack of ability to prevent
bias when we assess treatment by covariate interaction, which is the appropriate statistical method
for assessing the heterogeneity(Pocock et al., 2002, Wang et al., 2007). The paper illustrates that
the treatment by covariate interaction estimated in a model can be biased by interaction of treat-
ment by unknown or unmeasured predictive variables even though treatments are randomized. This
is a fundamental and intrinsic limitation of randomization: This limitation could be interpreted as
inability to make correct inference for treatment heterogeneity. In addition, as this limitation also
persists in linear models, it is more profound than the limitation described previously by Gail et
al. (1984) and Neuhaus and Jewell (1993). However, we note that, our discussion of this limitation
should not be considered as a criticism against randomization, as the limitation remains in nonran-
domized trials. In fact, because there are more layers of sources of bias or confounding, problems
are usually more serious in the nonrandomized trials.

This paper is organized as follows. In Section 2, we present a recent registrational trial of Brilinta,
indicated for treatment of acute coronary syndromes, to describe the background and motivation of
this research. The questions raised from this example were assessed in Sections 3 and 4 through a
parametric and a nonparametric approach. In the parametric approach, we focus on the generalized
linear model and assess the treatment effect expressed in odds ratio; in the nonparametric approach,
we focus on assessing treatment effect expressed in rate difference. The results provide clear answers
to the questions raised in clinical trial of Brilinta, which highlight that randomization does not
prevent bias when we assess treatment by covariate interaction in Section 5. In Section 6, we
discuss some limited strategies to solve the problem through trial designs and through statistical
analyses.

2 Motivation and examples

In a series of works, Gail et al. (1984), Neuhaus and Jewell (1993), among others, some questions
were raised about inferences of the treatment effect when some prognostic variables were omitted.
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Consider, for example, a generalized linear model with density function:

exp[{yθ − b(θ)}/a(φ) + c(u, φ)]

for some known functions a(·), b(·), c(·), and a scalar φ. The mean is

E(Y |T,X) = h(α+ βT + γX).

Here Y is a response variable, X is a vector of a set of covariates, and T is a treatment indicator
variable that takes values 1 or -1 with probabilities p and 1 -p respectively. The treatment assign-
ment is independent of the levels of the covariates. If the variable X is ignored from the model,
one would fit the following model

E(Y |T,X) = h(α∗ + β∗T ).

Following Gail et al. (1984), we have

β∗ =
1

2

(
h−1 [EX{h(α+ β + γX)}]− h−1 [EX{h(α− β + γX)}]

)
.

The difference between β∗ − β was considered as bias by Gail et al. (1984), Neuhaus and Jewell
(1993), while it was considered as a difference between two different metrics of the treatment effect
by others, such as Greenland et al. (1999).

Below, we explain why the difference observed between β∗ and β is not a major problem for ran-
domized clinical trials.

First, the conclusion about the efficacy of a new treatment (T=1) vs. the control (T=-1) based
on β and β∗ is consistent when the sample size is large enough and when h(.) is a monotonic
function. It is easy to find that β∗ = 0 when β = 0. Furthermore, it is also easy to show that β∗

has the same sign as β. That is, β > 0(< 0) implies β∗ > 0(< 0). To see this, without of any
loss of generality, we assume β > 0 and h(.) is an increasing function. Under these assumptions,
h(α+ β + γX)− h(α− β + γX) > 0. Thus, EX{h(α+ β + γX)} > EX{h(α− β + γX)}. As h−1

is also an increasing function, thus h−1 [EX{h(α+ β + γX)}] > h−1 [EX{h(α− β + γX)}] .
The last inequality implies that β∗ > 0. Readers please also refer to Gail et al. (1984), Neuhaus
and Jewell (1993), for a more thorough discussion. The results highlight that, although β and β∗

can be different, they both make the same conclusion about the treatment effect in a randomized
clinical trial when the sample size is large. Second, the difference between β and β∗ is due to the
nonlinearity of metrics, therefore it may not be a fundamental difference in our opinion. To see
this, let h(t) = t. It is easy to see that β∗ = β. That is, the difference only occurs in some nonlinear
models due to nonlinearity, similar to difference between relative risk and odds ratio.

This traditional paradigm focuses more on the average treatment effect and less on potential hetero-
geneity in treatment effects, which does not necessarily provide a scientifically sound basis because
treatment heterogeneity is often present (Simon, 2012 a,b). It is known that treatment heterogene-
ity has been well documented in many disease areas. In oncology, as noted in Simon (2004) ,“a
large body of evidence indicates that cancers of most primary sites are heterogeneous with regard
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to molecular pathogenesis, genomic signatures, and phenotypic properties. Consequently, it is not
necessarily reasonable to expect such tumors to have equal sensitivities to a drug that inhibits a
particular protein target. The protein target may be driving tumor growth in only a subset of
the tumors”. Treatment heterogeneities are also present in many other areas, including respiratory
disease (such as The IMpact-RSV Study Group, 1998), Cardiovascular disease (such as Sacks et
al., 1996, Wallentin et al. 2009), and HIV (such as Cooper et al., 2008).

Unsurprisingly, assessing treatment heterogeneity has become a common practice for many trialists
and is often recommended, see such as Assmann et al. (2000), Pocock et al. (2002), Lagakos
(2006), Wang et al. (2007), and references therein. In this new paradigm, we usually need to an-
swer questions such as whether the treatment effect was different across different levels of a factor,
as exemplified below. When the goal is to make inference for treatment heterogeneity in the new
paradigm, we encounter a bigger problem in the randomized trials than the problem previously
discussed. Different from the setup in Gail et al. (1984) and Neuhaus and Jewell (1993), one of the
goals in the new paradigm is to make inference about the heterogeneity. The problem we discuss
here is possible false inference of treatment by covariate interaction as illustrated below in the case
study. Randomization does not necessarily prevent it from happening.

The clinical evidence for the effectiveness of Brilinta is derived from PLATO trial, a randomized
double-blind trial comparing Brilinta to Clopidogrel. Both treatments are given in combination
with Aspirin and other standard therapies, in patients with acute coronary syndromes (ACS), see
Wallentin et al. (2009). Patients were treated for at least 6 months and up to 12 months. The
study’s primary endpoint was the composite of first occurrence of cardiovascular death, non-fatal
Myocardial Infarction (MI) (excluding silent MI). The benefit of Brilinta to Clopidogrel was sta-
tistically significant overall. However, in the United States (US), Brilinta was numerically inferior
to Clopidogrel. The test for treatment by region (US vs. non-US) interaction is statistically sig-
nificant, and the same trend is seen in both CV death and non-fatal MI. As treatment by region
(US versus non-US) interaction receives special attention in recent years, experience from large
international trials suggests that regional difference may not occur simply due to chance, Lawrence
et al. (2012). What does the significant interaction in PLATO trial tell? Suppose a patient travels
between Europe and US frequently, shall we recommend that the patient take Brilinta in Europe
and take Clopidogrel in US? We doubt that anyone would consider the recommendation sensible.
But how do we interpret the observed heterogeneity?

We know that randomization prevent systematic confounding and bias in the traditional paradigm
when we make inference about the overall treatment effect. Note that, randomization is typically
applied to treatment allocation but not to other variables. Consequently, bias could occur when we
make inference on treatment by covariate interaction. In this paper, we use examples and theoretical
results to show how the bias occurs. Before doing that, we provide more details of the PLATO trial.

The PLATO protocol left the choice of Aspirin maintenance dose up to investigators. The pattern
of Aspirin maintenance dose usage is very different in the US compared to elsewhere: about 10%
of patients outside US received Aspirin doses above 100 mg, while more than 50% of patients in
US received doses above 100 mg.. Consequently, the usage of Aspirin maintenance dose is highly
imbalanced between US and other countries.
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Table 1 provides details of the usage of Aspirin maintenance dose. In the US and non-US groups,
the difference of event rates between Brilinta and Clopidogrel are 1.4%, respectively and -2.0%.The
treatment by region interaction in terms of event rate is 3.4% with a 95% confidence interval of
(0.04%, 6.7%). The odds ratio of Brilinta to Clopidogrel in US and Non-US patients are 1.2 and
0.78, respectively. The treatment by region interaction in odds ratio is significant with a p-value of
0.04.

However, when we look into the analysis stratified by Aspirin dose, the regional heterogeneity disap-
pears. Let us consider subjects who had high Aspirin dose. The difference of event rate of Brilinta
over Clopidogrel in the US and non-US groups are 4.7% and 3.6%. The treatment by region inter-
action in terms of event rate is 1.1% with a 95% confidence interval of (-9.0%, 11.2%). Now consider
subjects who had low Aspirin dose. The difference of event rate of Brilinta over Clopidogrel in the
US and non-US groups are -2.4% and -2.1%.The treatment by region interaction in terms of event
rate is -0.4% with a 95% confidence interval of (-5.0%, 4.2%). Neither the interaction measured by
difference in the event rate nor the interaction measured by odds ratio are significant after taking
Aspirin into account.

The analysis seems to support that Aspirin dose is the covariate that cause the treatment by region
interaction. But it remains possible that there are other factors and Aspirin dose is a surrogate
of these factors. The fact is that we are not able to answer the question even in a randomized
controlled trial.

3 Bias in the treatment by covariate interaction in generalized
linear model

In this section we assume that the response variable Y follows a generalized linear model, McCullagh
and Nelder (1983), with density function:

exp[{yθ − b(θ)}/a(φ) + c(u, φ)]

for some known functions a(·), b(·), c(·), and a scalar φ. The mean of Y is µ = h(η)

η = α+ Tβ +Xβx + Zβz + TXγ + TZγtz +XZγxz + TXZγtxz + C ′ξ. (1)

Here h−1(·) is the link function and φ is the dispersion parameter. X is a set of covariates that
are independent from T . Z is a different set of covariates: some components are dependent on X
and therefore could interact with treatment; some interact with treatment but do not necessarily
depend on X. C is a vector of covariates that do not interact with treatment and are independent
of T and X. The variance, b′′(θ)a(φ), can be defined as a function of the mean

var(Y ) = Vφ(µ).

The above generalized linear model (1) examines the treatment effect and treatment-by-covariate
interaction with covariate adjustment. When γ = 0 (i.e. there is no treatment by covariate
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interaction), this model reduces to the model considered by Gail et al (1984), among others. This
model can be more accurately defined as a conditional model for the given covariates

η|X,Z,C = α+ Tβ +Xβx + Zβz + TXγ + TZγtz +XZγxz + TXZγtxz + C ′ξ. (2)

Typically, when assessing the overall treatment effect, the following alternative model may also be
used to assess the overall treatment effect,

µ = h(η∗), η∗ = α∗ + Tβ∗. (3)

This model is often called the covariate-unadjusted generalized linear model for treatment effect.
The resulting marginal treatment effect β may be restricted to the trial population.

Let

ζ1 = E(Y |T = 1) = EZ,C,X

{
h
(
α+ β +Xβx + Zβz +Xγ + Zγtz +XZγxz +XZγtxz + C ′ξ

)}
,

ζ0 = E(Y |T = −1) = EZ,C,X

{
h
(
α− β +Xβx + Zβz −Xγ − Zγtz +XZγxz −XZγtxz + C ′ξ

)}
.

With some regularity assumptions similar to what have been assumed in Gail et al. (1984), the
marginal (crude) treatment effect is obtained from model (3) as

β∗ =
1

2
{h−1(ζ1)− h−1(ζ0)}.

When h(.) is the identical link, such as in linear regression,

β∗ = β + E(X)γ + E(Z)γtz + EX,Z(XZ)γtxz.

If we further assume that there is no three way interaction and centralize X and Z so that E(X) = 0
and E(Z) = 0, then β∗ = β.

Model (3) allows us to estimate the treatment effect. However, without an interaction term in
the model, it does not allow an estiamtion of the treatment by X interaction. Similar to model
(3), the following model could be used to assess the overall treatment effect and treatment by X
interaction.

µ = h(η∗), η∗ = α∗ + Tβ∗ +Xβ∗x + TXγ∗. (4)

The notations α∗ and β∗ used here are similar to notations used in model (3). We do not (or
marginal) treatment by X interaction estimated from the covariate-adjusted model (1) with γ∗,
obtained from the covariate-unadjusted model (4).
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Following Gail et al.(1984), we let

ζ11 = E(Y |T = 1, X = 1) = EZ,C|X

{
h
(
α+ β + βx + Zβz + γ + Zγtz + Zγxz + Zγtxz + C ′ξ

)}
,

ζ10 = E(Y |T = 1, X = −1) = EZ,C|X

{
h
(
α+ β − βx + Zβz − γ + Zγtz − Zγxz − Zγtxz + C ′ξ

)}
,

ζ01 = E(Y |T = −1, X = 1) = EZ,C|X

{
h
(
α− β + βx + Zβz − γ − Zγtz + Zγxz − Zγtxz + C ′ξ

)}
,

ζ00 = E(Y |T = −1, X = −1) = EZ,C|X

{
h
(
α− β − βx + Zβz + γ − Zγtz − Zγxz + Zγtxz + C ′ξ

)}
.

Here EZ,C is the expectation with respect to Z and C. Let κ(η) = ∂µ
∂η ·

1
Vφ(µ)

Similar to Gail et al.

(1984), the maximum likelihood equations divided by the sample size converge to

E
[
κ(η) ·

{
Y − h(η)

}]
= 0,

E
[
κ(η) · T ·

{
Y − h(η)

}]
= 0,

E
[
κ(η) ·X ′ · T ·

{
Y − h(η)

}]
= 0,

E
[
κ(η) ·X ′ ·

{
Y − h(η)

}]
= 0,

Throughout this paper, we use ḣ(·) and ḧ(·) to denote the first and second derivatives, respec-
tively, of a function h(·). The relationship between the parameters in model (4) and the parameters
in model (1) is given in the following result.

Under the following assumptions:
(a) T is independent of all covariate variables;
(b) E

[
κ(η)×

{
Y − h(η)

}]
, E
[
κ(η)× T ×

{
Y − h(η)

}]
, E
[
κ(η)×X ′ × T ·

{
Y − h(η)

}]
, E
[
κ(η)×

X ′ ×
{
Y − h(η)

}]
, ζ11, ζ10, ζ01, and ζ00 exist;

(c) h(·) has a unique inverse h−1(·) which is well defined at ζ1 and ζ2; ḣ and ḧ exist;
(d) h−1(·) is nonsingular at h

(
ζkl
)
, k, l = 0, 1;

(e) κ(ζkl), k, l = 0, 1 do not vanish;
we have the following result:

γ∗ =
1

4
{h−1(ζ11)− h−1(ζ10)− h−1(ζ01) + h−1(ζ00)}

Under the same conditions described above, if h(η) = η (e.g. the linear model and the Poisson
model with identity link),

γ∗ = γ +
E(Z|X = 1)− E(Z|X = −1)

2
γtz +

E(Z|X = 1) + E(Z|X = −1)

2
γtxz.

Note that, the difference between γ and γ∗ has multiple sources: 1) the bias noted in Gail et al.
(1984); 2) the effect of γtz; 3) the interaction γtxz. If h(η) = η, γ∗ = γ when γtz = 0 and γtxz = 0.
However, if h(η) 6= η, γ∗ is generally different from γ. In this circumstance, when γtz = 0 and
γtxz = 0, the difference between γ∗ and γ is the same as the bias characterized in Gail et al. (1984).
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4 Bias in the nonparametric treatment by covariate interaction
in additive scale

In this section, we generally do not make any parametric assumption about the random variable
Y . However, we do have a similar interest in estimating the overall treatment effect and treatment
by X interaction in additive scale, i.e.

γ∗ =
ET=1,X=1(Y )− ET=1,X=−1(Y )− ET=−1,X=1(Y ) + ET=−1,X=−1(Y )

4
.

This happens in e.g. a HIV trial, where estimating treatment by subgroup interaction in terms
of success rate is one of the most important goals because physicians need to choose appropriate
treatments from more than 25 approved treatments for their patients.
Let EC|ZEY |T,X,Z,C(Y ) = µ(T,X,Z) and ν(t, x) = EZ|X=xµ(t, x, Z). As C is independent of X,T ,
we have

EY |T,X(Y ) = EZ|X,TEC|X,T,ZEY |T,X,Z,C(Y )

= EZ|XEC|ZEY |T,X,Z,C(Y )

= EZ|X{µ(T,X,Z)}
= ν(T,X).

Thus

4γ∗ = ET=1,X=1(Y )− ET=1,X=−1(Y )− ET=−1,X=1(Y ) + ET=−1,X=−1(Y )

= ν(1, 1)− ν(1,−1)− ν(−1, 1) + ν(−1,−1).

Here γ∗ measures the overall (marginal) effect modification byX. Considering a prognostic/predictive
variable Z and other variables C, we also take the average treatment by X interaction into account:

4γ = EZ,C{ET=1,X=1,Z,C(Y )− ET=1,X=−1,Z,C(Y )− ET=−1,X=1,Z,C(Y ) + ET=−1,X=−1,Z,C(Y )}
= EZ{µ(1, 1, Z)− µ(−1, 1, Z)− µ(1,−1, Z) + µ(−1,−1, Z)}.

Here γ is the averaged conditional interaction effect.
Using the relationship

EZ,CET,X,Z,C(Y ) = EZ{EC|ZET,X,Z,C(Y )} = EZµ(T,X,Z),

we obtain

4(γ∗ − γ)

= EZ|X=1{µ(1, 1, Z)} − EZ|X=1{µ(−1, 1, Z)} − EZ|X=−1{µ(1,−1, Z)}+ EZ|X=−1{µ(−1,−1, Z)}
− EZ{µ(1, 1, Z)− µ(−1, 1, Z)− µ(1,−1, Z) + µ(−1,−1, Z)}.

When Z is a binary variable with values 1 and −1, we let r = P (X = 1), q1|x = P (Z = 1|X = x)
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and q = P (Z = 1) and obtain

4(γ∗ − γ)

= µ(1, 1, 1)q1|1 + µ(1, 1,−1)(1− q1|1)− µ(−1, 1, 1)q1|1 − µ(−1, 1,−1)(1− q1|1)
− µ(1,−1, 1)q1|−1 − µ(1,−1,−1)(1− q1|−1) + µ(−1,−1, 1)q1|−1 + µ(−1,−1,−1)(1− q1|−1)
− µ(1, 1, 1)q − µ(1, 1,−1)(1− q) + µ(−1, 1, 1)q + µ(−1, 1,−1)(1− q)
+ µ(1,−1, 1)q + µ(1,−1,−1)(1− q)− µ(−1,−1, 1)q − µ(−1,−1,−1)(1− q)
= µ(1, 1, 1)(q1|1 − q1|−1)(1− r)− µ(1, 1,−1)(q1|1 − q1|−1)(1− r)
− µ(−1, 1, 1)(q1|1 − q1|−1)(1− r) + µ(−1, 1,−1)(q1|1 − q1|−1)(1− r)
+ µ(1,−1, 1)(q1|1 − q1|−1)r − µ(1,−1,−1)(q1|1 − q1|−1)r
− µ(−1,−1, 1)(q1|1 − q1|−1)r + µ(−1, 1,−1)(q1|1 − q1|−1)r

=
∑

T,Z=1,−1
{µ(T, 1, Z} × T × Z}(q1|1 − q1|−1)(1− r)

+
∑

T,Z=1,−1
{µ(T,−1, Z} × T × Z}(q1|1 − q1|−1)r.

As a1b1 + a2b2 = {ra1 + (1− r)a2}{b1/r + b2/(1− r)}/2 + {ra1 − (1− r)a2}{b1/r − b2/(1− r)}/2,
we have,

4(γ − γ∗)

=
∑

T,Z=1,−1
[{rµ(T, 1, Z) + (1− r)µ(T,−1, Z)} × T × Z]

c0 + c1
2

+
∑

T,Z=1,−1
[{rµ(T, 1, Z)− (1− r)µ(T,−1, Z)} × T × Z]

c0 − c1
2

,

where c0 = (q1|1 − q1|−1)(1− r)/r and c1 = (q1|1 − q1|−1)r(1− r). Note that,∑
T,Z=1,−1

{rµ(T, 1, Z) + (1− r)µ(T,−1, Z)} × T × Z

can be viewed as a weighted interaction between treatment T and covariate Z. On the other hand,
the term ∑

T,Z=1,−1
{rµ(T, 1, Z)− (1− r)µ(T,−1, Z)} × T × Z

can be viewed as a weighted three way interaction among treatment T , X, and covariate Z. Thus,
the differences between γ and γ∗ in the second approach has two sources: 1) the effect of a related
treatment by covariate interaction; 2) the three way interaction.
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5 Understanding the problem through the Brilinta example

In PLATO, Brilinta is superior to Clopidogrel in overall population. However, heterogeneous treat-
ment effects were observed across different regions. The PLATO protocol left the choice of Aspirin
maintenance dose up to the investigator and patterns were very different in US and elsewhere.

Below we compare estimations of treatment by region interaction obtained from models that in-
clude Aspirin maintenance dose and models that does not. The comparison illustrates the potential
problems in making inference of treatment by region interaction.

We first fit a logistic regression model to p, the rate of first occurrence of cardiovascular death and
non-fatal MI. The model includes treatment indicator T , region indicator X, the indicator of high
(≥ 300 mg) Aspirin maintenance dose Z, and all interaction terms. That is,

logit(p) = α+ Tβ +Xβx + Zβz + TXγ + TZγtz +XZγxz + TXZγtxz. (5)

The statistical test for the treatment by region interaction is not statistically significant (p=0.67).
The point estimate of the treatment by region interaction is γ̂ = −0.03 with a standard error of
0.07. See the Appendix for details.

We now theoretically calculate the treatment by region interaction through the following model,

logit(p) = α∗ + Tβ∗ +Xβ∗x + TXγ∗, (6)

in which Aspirin maintenance dose is omitted.

Using the results stated in previous section and replacing the parameters in model (5) by their
point estimations, we derive the treatment by region interaction of γ∗ = −0.108 without conduct-
ing actual data analysis using model (6).

Now, let’s compare this prediction with results obtained from actual data analysis. The statistical
test for treatment by region interaction is statistically significant (p=0.04). The point estimation
of the treatment by region interaction is γ̂∗ = −0.106 with a standard error of 0.05. That is,
the theoretically predicted treatment by region interaction of -0.108 is very similar to the actual
observed treatment by region interaction of -0.106.

Using the theoretical results we can further explore the relationship between γ∗ and γ. In the
Appendix, we described a scenario in which there is no treatment by covariate X interaction. How-
ever, because the presence of treatment by covariate Z interaction, we may mistakenly conclude the
presence of treatment by covariate X interaction through model (6). That is γ∗ 6= 0 even γ = 0.
Please refer to Appendix to details. This is different from the result we discussed in Section 2, in
which β = 0 implies β∗ = 0.

Next, we also discuss the treatment effect measured in risk difference through a nonparametric
approach, VanderWeele, Mukherjeec, and Chen (2012). Let Y be the indicator of first occurrence
of cardiovascular death and non-fatal MI and µ(T,X,Z) = E(Y |T,X,Z). The overall proportions of
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subjects taking high dose and low dose of Aspirin are 5.8% and 94.2%, respectively. The treatment
by region interaction in event rate difference is 1.1% in the high dose of Aspirin subjects and -0.4%
in the low dose Aspirin subjects. So the averaged conditional treatment by region interaction in
the trial population is

4γ = EZ{µ(1, 1, Z)− µ(−1, 1, Z)− µ(1,−1, Z) + µ(−1,−1, Z)} = −0.0031

A 95% C.I. for this estimate is (-4.7%, 4.1%), suggesting a non significant treatment by region
interaction. Note that, the average is obtained for trial population.

If we ignore the Aspirin maintainable dose, we would obtain the following estimate of treatment
by region interaction,

4γ∗ = ET=1,X=1(Y )− ET=1,X=−1(Y )− ET=−1,X=1(Y ) + ET=−1,X=−1(Y ) = 0.034

with a 95% C.I. of (0.04%, 6.7%), suggesting a significant treatment by region interaction. The
difference between 4γ∗ and 4γ is 0.037.

The difference between 4γ and 4γ∗ is shown to be∑
T,Z=1,−1

[{rµ(T, 1, Z) + (1− r)µ(T,−1, Z)} × T × Z]
c0 + c1

2
(7)

+
∑

T,Z=1,−1
[{rµ(T, 1, Z)− (1− r)µ(T,−1, Z)} × T × Z]

c0 − c1
2

,

Please refer to the Appendix for the derivation and definitions of r, c0, and c1. Note that, the
first term can be viewed as weighted treatment by variable Z interaction and the second term can
be viewed as the weighted three way interaction among treatment T , X, and covariate Z. Thus,
the differences between γ and γ∗ in the second approach has two sources: 1) effect of a related
treatment by covariate interaction; 2) three way interaction.

Using the theoretical results in materials, the differences between γ and γ∗, two typically used
metrics of interaction, can be clearly explained. The results also highlight that conclusion based
on γ∗ could be misleading because of the bias, even in randomized trials.

6 Closing remarks

In this paper, we demonstrated that inference for treatment by subgroup (covariate) interaction
has major limitations even in randomized clinical trials: Some factors, perhaps related to un-
known/unmeasured predictive variables, can be systematically biased by the treatment by covariate
interaction. Unlike inference for the overall treatment effect interaction, precisely in the setup of
this work, the bias factors may lead to red herring finding.

If the factors that led to the bias are known measured covariates, many existing methods could be
used to make valid inferences. If, however, the factors are unknown or unmeasured, the inference
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for the treatment heterogeneity may end up with a misleading conclusion. For example, in the
Brilinta example, if the Aspirin dose was not measured, one may conclude the treatment by region
interaction. Furthermore, even though the Aspirin dose measurement explains the regional hetero-
geneity from a statistical point of view, we still cannot conclude that Aspirin changed (modified)
the treatment effect as there is no persuasive biological explanation so far, and we cannot rule out
the possibility there might be some unmeasured factors that bias the results.

In the Brilinta example, there is one way to confirm whether treatment by Aspirin interaction is
a cause of treatment by region interaction. An additional confirmatory trial can be conducted
through a factorial design, in which units are randomized by levels of treatment (factor A) and
Aspirin dose (factor B). Through this design, randomization can prevent bias when we assess
treatment by Aspirin dose interaction. In such design, we learned that both c0 and c1 in equation
(7) are 0. Therefore

4(γ∗ − γ) = 0

Unfortunately, such factorial design is not always feasible. For example, we would like to study
the interaction of treatment and baseline disease status (such as baseline HIV viral loads > or ≤
100,0000 copies/ml) in a HIV trial. The baseline disease status is highly correlated with many other
baseline characteristics such as baseline CD4 counts and HIV symptotics; therefore randomization
on treatment and baseline viral load is not feasible to separate factors such as baseline CD4 counts
and HIV symptotics. In the Brilinta example, treatment and Aspirin dose can be considered as two
add-on treatments and the interaction can be considered as treatment by treatment interaction,
Senn (2004). However, in the example of the treatment of HIV, the interaction of treatment by
baseline viral load is interaction of treatment by block, thus a factorial design is not possible.
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Table 1: Events rate by region and by Aspirin dose (# of events/sample size)

US Aspirin dose Brilinta Clopidogrel diff (95% C.I.)

≥ 300 mg 12.4% (40/324) 7.7% (27/352) 4.7% (0.1%, 9.2%)
≤ 100 mg 6.7% (19/284) 9.1% (24/263) -2.4% (-7.0%, 2.1%)

overall 9.7% 8.3% 1.4% (-1.8%, 4.6%)

non US Aspirin dose Brilinta Clopidogrel diff (95% C.I.)

≥ 300 mg 20.0% (28/140) 16.4% (23/140) 3.6% (-5.5%, 12.6%)
≤ 100 mg 7.3% (546/7449) 9.4% (699/7443) -2.1% (-3.0%, 1.2%)

overall 7.6% 9.5% -2.0% (-2.9%, 1.1%)
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