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Abstract. 

Multidimensional Time Model for Probability Cumulative Function can be reduced to finite-dimensional 
time model, which can be characterized by Boolean algebra for operations over events and their 
probabilities and index set  for reduction of infinite dimensional time model to finite number of 
dimensions of time model considering the fractal-dimensional time that is  arising from alike 
supersymmetrical properties of probability,  This can lead to various applications for parameter evaluation 
and risk reduction in such big complex data structures as complex dependence structures, images, 
networks, and graphs, missing and sparse data, such as various DNA analyses. 
Keywords: finite-dimensional time model, normally distributed, Chebyshev-Hermite polynomials 
“Let Tp denote a nonparametric multivariate test in p dimensions. Let      denote a method of reducing  
the dimensionality to q ,such as by using the first q principal components, or by multidimensional     
scaling, or by “lining” or “planning”. The q-dimensional form of the multivariate test might stil be 
applicable to the resulting q-dimensional data… test Tq(    )…conjecture that, when p-dimensional data 
is sparse, Tq(    ) will often be in some sense a better test than  Tp… this simple suggestion should not 
be confused with the method of “projecting” down to one dimension (lining), and then using a 
univariate test… it is best to think of q as at least 2. The suggestion is so simple that it has probably 
been suggested several times, but I’d like to know of a reference.(”The Good Book” v.2 C356. 
Multivariate Tests after dimensionality reduction p. 277) 

1.Introduction.  
It seems that the brief introduction of the historical sketch of the development of the Theory of Brownian 
Motion and some historical problems that very often overlooked of would be very helpful to make 
understanding of this work more clear: 
 
1  One such problem as to decide if a number is a special value of a well known function was solved by 
Gauss, when he made an observation, that 1.85407 457 is a rational value of an elliptic integral, and this 
certainly was a great contribution to the development of analysis.  
 
2  Probability theory is the quantitative framework for scientific inference. It codifies how observations 
(data) combine with modeling assumptions (prior distributions and likelihood functions) to give evidence 
for or against a hypothesis    and values of unknown quantities. There is continuing debate about how 
prior assumptions can be chosen and validated, but the role of probability as the language of uncertainty is 
rarely questioned. That is, as long as the subject of inference is a physical variable. What if the quantity in 
question is a mathematical 
statement, the solution to a computational task? Does it make sense to assign a probability measure p(x) 
over the solution of a linear system of equations Ax = b if A and b are known? If so, what is the meaning 
of p(x), and can it be identified with a notion of ‘uncertainty’?  
If one sees the use of probability in statistics as a way to remove “noise” from “signal”, it seems 
misguided to apply it to a deterministic mathematical problem. But noise and stochasticity are themselves 
difficult to define precisely. Probability theory does not rest on the notion of randomness (aleatory 
uncertainty), but extends to quantifying epistemic uncertainty, arising solely from missing information.  
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3  Connections between deterministic computations and probabilities have a long history.                                                                                                                                     
Erdös and Kac showed that the number of distinct prime factors in an integer follows a normal 
distribution. Their statement is precise, and useful for the analysis of factorization algorithms, even 
though it is difficult to “sample” from the integers. It is meaningful without appealing to the concept of 
epistemic uncertainty.  
 
4  However, besides their approach we can also emphasize  an example by A.Y. Khinchin, that the direct 
consequence of the Theorem of Lagrange, which says, that every natural number can be expressed as the 
sum of at most four squares, is that, if four sequences 
0, 12, 22, 32,... , k2, ….. 
are added together, the resulting sequence contain all natural numbers,  it was his main introductory point 
for Waring's Conjecture.Probabilistic and deterministic methods for inference on physical quantities have 
shared dualities from very early on: Legendre introduced the method of least squares in 1805 as a 
deterministic best fit for data without a probabilistic interpretation. Gauss’ 1809 probabilistic formulation 
of the exact same method added a generative stochastic model for how the data might be assumed to have 
arisen. Legendre’s least-squares is a useful method without the generative interpretation, but the Gaussian 
formulation adds the important notion of uncertainty (also interpretable as model capacity) that would 
later become crucial in areas like the study of dynamical systems. 
 "It has been customary certainly to regard as an axiom the hypothesis that if any quantity has been 
determined by several direct observations, made under the same circumstances and with equal care, the 
arithmetical mean of the observed values affords the most probable value, if not rigorously, yet very 
nearly at least, so that it is always most safe to adhere to it." — Gauss (1809, section 177)  Theoria motvs 
corporvm coelestivm in sectionibvs conicis Solem ambientivm [Theory of the Motion of the Heavenly 
Bodies Moving about the Sun in Conic Sections]  
5   Another open problem is a question of normality, if the decimal expansions of π   ℯ,         and 
many other mathematical constants such as γ, or log2 all have the property that the limiting frequency of 
any digit is one tenth, and the limiting frequency of any n-long string of decimal digits is 10-n ( and 
similarly for binary expansions). 
 
There are  following examples for decimal expansion of π: 

The sequence 0123456789 occurs beginning at digits , , , 
, , and  

The sequence 9876543210 occurs beginning at digits , , , 
, and  

The sequence 27182818284 (the first few digits of e) occurs beginning at digit .  

J. Havil in his book ``The Irrationals’’ gives this impressive example, that sequence 0123456789 appears 
for the first time starting at the 17,387,594,880th digit; whereas 0691143420 continues to prove elusive. 
``His book has ISBN 978-069114342-2 and was published 2 years ago by Princeton University Press. The 
website gives the record for this year as 10 trillion, with current of 13.3 trillion.  

 This problem is very much related to such open problems in the Theory of Brownian Motion as if all 
Brownian paths are possible, and the like problems of transience and recurrence of Random walk in 2 or 
more dimensions. 
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It clearly seen from the above examples, that the decimal expansion of π does not follow strictly Gaussian 
distribution, but instead is supposed to follow some kind of slightly non-Gaussian distribution.  

2. Insights into near-Gaussian distributions.  

Before considering any discussion about the above phenomenon or any possible approach to analyze or 
investigate it, it seems appropriate to quote Karl Pearson, who wrote 110 years ago on p. 189 “My 
custom of terming the curve the Gauss–Laplacian or normal curve saves us from proportioning the merit 
of discovery between the two great astronomer mathematicians." One of the definitions of Peirce of 
"normal" as of what would, in the long run, occur under certain circumstances, clearly implies Principle 
of prediction and LLN. 

“It is undeniable that, in a large number of important applications, we meet distributions which are at least 
approximately normal. Such is the case, e.g., with the distributions of errors of physical and astronomical 
measurements, a great number of demographical and biological distributions, etc.” Cramer. 

The first investigation of slightly non-Gaussian distributions was undertaken by Chebyshev around a 
century and a half ago, who studied in detail a family of orthogonal polynomials which form a natural 
basis for the expansions of these distributions. A few years later the same polynomials were also 
investigated by Hermite and they are called Chebyshev-Hermite or simply Hermite polynomials, their 
definition was first given by Laplace.  
 
These methods use Edgeworth’s form that is equivalent to the Gram-Charlier Type A series with use 
cumulant analysis for the representation of the distribution function in terms of different types of sums of 
functions of Gaussian processes. 
 
A standard method of exploring high-dimensional datasets is to examine various low-dimensional 
projections thereof. In fact, many statistical procedures are based explicitly or implicitly on a projection 
pursuit. Under weak regularity conditions on a distribution P = P(n) on Rn, most d-dimensional 
orthonormal projections of P are similar (in the weak topology) to a mixture of centered, spherically 
symmetric Gaussian distributions on Rd if n tends to infinity while d is fixed. 
 

PROPOSITION1. Theorem1The use of supremum of a function over an interval, or maximum, or 
minimum instead of sum of the numbers completely loses the notion of multidimensionality and reduces 
it possibly to 1 dimension instead of multidimensional. 
 

3. Analysis of Axioms of Probability of Von Mises. 

Theory of von Mises was based on 2 axioms: 

1.     (element appering in the sequence)             ,     has limiting frequency depending on    
2. For              ..) ( possibly infinite subseq of).               ), with other  selection method than 

prior knowledge of the values  of elements selected, the limiting frequencies should be the same.  

Property 1. is known as the LLN which in measure-theoretic probability theory is a theorem, holding for 
almost all sequences x.  

Property 2. stands for the rules for selection method that called “selection rules”, and selection rules that 
are different from “prior knowledge” are called “proper selection rules” in contrast to “improper”.   
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After 18 years of debates, the logician Alonzo de Church proposed additional relation to the von Mises 
system of axioms that only “effectively calculable “ selections should be admitted and thus the set of 
admissible place selections should consist of the “computable” or “partial recursive functions”. With this  
addition of  central notion of “recurrence” to the system of axioms of von Mises was introduced the 
Theory of Algorithms (or Recursive Function Theory or Computability Theory).  “Kolmogorov-Loveland 
stochasticity” selection rule that was introduced some 25 years later was very valuable addition. 

Richard von Mises mentions “the four fundamental operations” on pages 38-58 of his book “Probability, 
Statistics and Truth”: 

1. Selection; 

 2. Mixing; 

 3. Partition; and  

4. Combination, 

 the last 3 defined so as to correspond to usual addition, division, and multiplication rules, and the 1st one 
is defined as the attributes unchanged and the sequence of elements reduced by place selection, which 
correspond to the unchanging of distribution, and can be viewed as identity element and related to the 
previous operations. 

Proposition2. Analysis, of how the integration over the events would work in the system of axioms of 
probability of von Mises, is leading to the decision, that it would definitely be an algebra with operations 
summation and multiplication. So we can assign ordinal number 4 to the general model. 

Proposition3.  Theorem2Let k and l be arbitrary natural numbers. Then there exists a natural number 
n(k,l) such that, if an arbitrary segment, of length n(k,l) , of the sequence of natural numbers is divided in 
any manner into k classes (some of which may be empty), then an arithmetic progression of length l 
appears in at least one of these classes.(Khinchin ”Three pearls of Number theory”) 
 
 Consider Stone representation of Boolean algebra, which is represented by an algebra with known 
axioms for Boolean algebra and can be characterized by quadruplets B = <X, 0, *, ~>, where 0 is an 
element from a set X, and * is a binary operation and ~ is an unary operation, which would be a Boolean 
algebra with 1 as a unit on the operations       , and ~. Besides that it has four unary operations, two of 
which are constant operations, another is the identity, and negation and besides the number of  n-ary 
operations, the number of the dimensions that infinite-dimensional model can be reduced to through 
application of Boolean prime ideal theorem and Stone duality, can be indexed by an index set. 
 
Proposition4.  Multidimensional Time Model for Probability Cumulative Function can be reduced to 
finite-dimensional time model, which can be characterized by Boolean algebra for operations over events 
and their probabilities and index set  for reduction of infinite dimensional time model to finite number of 
dimensions of time model considering the fractal-dimensional time that is  arising from alike 
supersymmetrical properties of probability,   
 
It is interesting to consider such point that multidimensional pattern could be related to time dimensions 
through the introduction in the  theory of Brownian motion by E i n s t e i n the consideration of a range 
of time intervals  , the possibility of a term proportional to   in the expression for Moments of Brownian 
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motion   
 (n> 1) is  related  to the fact that the values of X  at moments t1, t2 . . . . tn which lie sufficiently 

close together are no longer independent; and Moments of Brownian motion   
 (n> 1)  in fact are 

represented by a volume integral 
 
          (t1)X( t2 ) . . X( tn ) d t1d t2 . . . .d tn 
 
over an n-dimensional cube; the contribution to this integral due to a narrow cylinder extending along the 
diagonal  t1= t2 = . . .= tn may give a term proportional to  , as it was mentioned in Kramers’ work on 
chemical reactions rate about particle escape through potantial barrier. 
This is closely related to the following questions and phenomena in the theory of multidimensional 
Brownian motion. 
 

4. Various properties of multidimensional Brownian motion. 
 

1. A fixed two-dimensional projection of a three-dimensional Brownian 
motion is almost surely neighborhood recurrent. 

2. Three-dimensional Brownian motion can hit infinite cylinder with probability 1, but it does not hit all 
cylinders. There almost surely exists avoided infinite cylinder. 

3. The problem of finding lower bounds for the Hausdorff dimension of the intersection sets is best 
approached using the technique of stochastic co-dimension, which is to take a suitable random test set, 
and check whether it is zero or positive. This approach is based on using the family of percolation limit 
sets as test sets. 

4. Brownian motion according to R. von Mises in “Probability, Statistics and Truth” page 186:  
“About a hundred years ago, the English botanist Brown observed under the microscope that certain 
organic liquids contain small particles moving to and fro in an incessantly agitated manner. It was 
discovered later that this so-called ‘Brownian motion’ is common to all sufficiently small particles 
suspended in a gas or in a liquid, and that it represents a mass phenomenon following the laws of 
probability calculus. Since we are only interested in the fundamental logical structure of this problem, we 
can simplify our conception by considering a two-dimensional scheme. We assume that the particles 
move in a zigzag course in the horizontal plane, excluding any up or downward motion, or else, we may 
say that we consider only the projection of the three-dimensional motion onto a horizontal plane.”  
 

5. Proposition5 Theorem 3(Levy 1940). Almost surely, L2(B[0; 1]) = 0. 

The range of planar Brownian motion has zero area 

Suppose {B(t) : t   0} is planar Brownian motion.  
 Denote the Lebesgue measure on Rd by Ld.  
 Proposition5 Theorem 1(Levy 1940). Almost surely, L2(B[0; 1]) = 0. 
 
Theorem 4. 

(a) For d   4, almost surely, two independent Brownian paths in Rd have an empty intersection, except 
for a possible common starting point. 
(b) For d   3, almost surely, the intersection of two independent Brownian 
paths in Rd is nontrivial, i.e. contains points other than a possible common 
starting point. 
 
Theorem 5 

(a) For d > 3, almost surely, three independent Brownian paths in Rd have 
an empty intersection, except for a possible common starting point. 
(b) For d = 2, almost surely, the intersection of any finite number p of in- 
dependent Brownian paths in Rd is nontrivial, i.e. contains points other 
than a possible common starting point. 
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5. Computer vision, biology, medicine, and DNA analyses. 

In computer vision, the target probability p(x) is often defined on a graph representation G=<V, E>. , thus 
can be divided in two types of graph structures, and thus the Markov chains are designed accordingly. 
1. Descriptive models on a plat graph where all vertices are semantically at the same level, e.g. various 
Markov random fields image segmentation, graph partition/coloring, shaping 
2. Generative models on a hierarchic And-Or graph with multiple levels of vertices 
where a high level vertex is divided into various components at the low level, e.g. Markov trees, sparse 
coding, object recognition, image parsing, etc 
In advanced models, these two structures are integrated because the vertices at each level of a generative 
model are connected by contextual horizontal links which represent various relations among the vertices.  
These computer vision simulations are considered very important for DNA structures representation, as 
could be clearly seen from the following examples. The biomedical applications of fractal concepts have 
led to a wealth of new insights in biology and physiology, including a new formulation of the concept of 
health. The complexity inherent in physiological structures and processes has been described by random 
fractals. Fractal scaling in various physiological contexts contributed to the analysis of the DNA 
sequencing, the dendritic branching of neurons and blood vessels, the mammalian lung, the beating of the 
heart, the dynamics of proteins, ion channel gating and radioactive clearance curves from the body in 
order to reveal an underlying unity to physiological processes. 
DNA is made up of two polymeric strands composed of monomers that include a nitrogenous base (A-
adenine, C-cytosine, G-guanine, and T-thymine), deoxyribose sugar, and a phosphate group. The sugar 
and phosphate groups, which form the backbone of each strand, are located on the surface of DNA while 
the bases are on the inside of the structure.    
 
 References: 
 

1.  Gauss (1809, section 177)  Theoria motvs corporvm coelestivm in sectionibvs conicis Solem ambientivm 
[Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections] 

2. Peirce, Charles S. (c. 1909 MS), Collected Papers v. 6, paragraph 327 
3. Richard von Mises  “Probability, Statistics, and Truth” Dover/81 ISBN: 978-0-486-24214-9 
4. Karl Pearson,"'Das Fehlergesetz und seine Verallgemeinerungen durch Fechner und Pearson'. A 

rejoinder". Biometrika 4 (1): 169–212 
5. Khinchin ”Three pearls of Number theory” 
6. Alonso de Church “On the concept of a random sequence” 
7. W. Feller “Introduction to Probability Theory” v-1, 2,  Wiley/99 ISBN: 978-81-265-1805- 
8. P. Erdos “On the strong Law of Large Numbers” 
9. Adelman, Burdzy and Pemantle (1998): Sets avoided by Brownian motion.Ann. Probab. 26, 429-464. 
10. Wolfram MathWorld Pi didits 

11. H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. 

Physica, 7,4, 284-304 (1940) 

12.  P. Morters Lecture notes. 

13. Lutz Dumbgen, P. D. Conte-Zerial On low-dimensional projections of high-dimensional distributions. 
14. Hilbert D. “Uber die DarstellungdefiniterFormenalsSumme von Formenquadraten” Math Ann. 32, 342-

350 (88). 
15. I. Schur, Bemerkungungenzur Theorie der beschranktenBilinearformenmitendlichvielenVer• andlichen, 

J. reineangew. Math., 140 (11) 
16. D. V. Widder, An inequality related to one of Hilbert’s, J. London Math. Soc.           4 ,194-198. 

JSM 2016 - Health Policy Statistics Section

438

https://en.wikipedia.org/wiki/Normal_distribution#CITEREFGauss1809
https://en.wikipedia.org/wiki/Charles_Sanders_Peirce_bibliography#CP


17. Frazer C. Note on Hilber’s inequality, J. London Math. Soc.  21/46 pp..7-9          
18. G. H. Hardy, J. E. Littlewood and G. P´olya, Inequalities, 2nd ed., CUP, Cambridge, 1988 

19. Mitrinovic, Dragoslav S. Analytic Inequalities.  
20. H.S. Wilf, Finite sections of some classical inequalities, Ergebnisse der Mathematik, Band 52, Springer 
21. Minkowski, Hermann (1896). Geometrie der Zahlen. Leipzig: Teubner. 
22.  Milman, Vitali D. (1986). "Inégalité de Brunn-Minkowski inverse et applications à la théorie locale des 

espacesnormés. [An inverse form of the Brunn-Minkowski inequality, with applications to the local 
theory of normed spaces]". C. R. Acad. Sci. Paris Sér. I Math. 302 (1): 25–28 

23. Landau, E. (1913). "UngleichungenfürzweimaldifferenzierbareFunktionen". Proc. London Math. Soc. 13: 
43–49. doi:10.1112/plms/s2-13.1.43 

24. N. G. de BruijnCarleman’s Inequality for finite series. Koninkl. Nederl. Akademie. Proceedings Series 
A,66,4 

25. Philipp Hennig, Michael A Osborne, and Mark Girolami Probabilistic Numerics and Uncertainty in 
Computations rspa.royalsocietypublishing.org 

26. S.Blinnikov , R.Moessner Expansions for nearly Gaussian distributions Astrophysics 

27. Halmos, Paul Lectures on Boolean Algebras. van Nostrand. 

JSM 2016 - Health Policy Statistics Section

439

https://en.wikipedia.org/wiki/Hermann_Minkowski
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1112%2Fplms%2Fs2-13.1.43
http://arxiv.org/find/astro-ph/1/au:+Blinnikov_S/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Moessner_R/0/1/0/all/0/1


 

JSM 2016 - Health Policy Statistics Section

440



 

 

 

 

 

 

 

 

 

 

 

 

 

 

JSM 2016 - Health Policy Statistics Section

441


