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Abstract
Numerical approximations are important research areas for dealing with complicated func-
tional forms. Techniques for developing accurate and e¢ cient calculation of combined like-
lihood functions in meta-analysis are studied. A multivariate numerical integration method
for developing a better approximation of the likelihood for correlation matrices is studied.
Analyses for inter-correlations among Cognitive Anxiety, Somatic Anxiety and Self Con�-
dence from Competitive State Anxiety Inventory (CSAI-2) are explored. Evaluation and
Visualization of the likelihood and the MLE is conducted. Comparison with two conven-
tional methods (joint asymptotic weighted average method & marginal asymptotic weighted
average method) is shown.

Key Words: likelihood, correlation matrix, combining information, MLE, meta-analysis

1. Introduction

How to combine information about population correlation matrices from many dif-
ferent independent studies is one of the hot questions in meta-analysis. Convention-
ally, asymptotic methods are used to tackle this problem. There are many ways to
combine information from the studies. Using weighted averages are probably the
most common choices. But these approaches are naïve and have some evident �aws.
One of the most serious of these �aws is that we have to assume that the sample
size from each study is su¢ ciently large to justify Central Limit approximations, an
assumption which is violated in many situations.

Approximation methods are suggested for computing the combined likelihoods
of correlation matrices from di¤erent studies in this paper.

As a good starting point for the general multivariate case, it is quite natural to
deal with the trivariate case �rst. The author derived a very complicated in�nite
series form of the trivariate likelihood function in his Ph.D. dissertation (Song, 2010)

It turns out that representing the likelihood in terms of in�nite series has serious
drawbacks, both because of the mathematical complexity of the representation and
also due to increasing di¢ culty in calculation of the likelihood as the dimensionality
of the parameter space increases. In general, p(p�1)2 combined in�nite series are re-
quired for a p�p correlation matrix. Even in relatively low dimensions, computation
can be di¢ cult. For example, if you have 5 variables you need to use 5(5�1)

2 = 10
combined in�nite series for the likelihood. Consequently, it was chosen to follow
Fisher�s (1962) approach and represents the likelihood function as a multiple inte-
gral to which numerical integration can be applied in this paper. It is proved that
just p�1 multiple integrals need to be computed for the general p variable case. For
example, 5� 1 = 4 multiple integrals are needed for the 5 dimensional case. When
Fisher (1962) suggested a multiple integral representation of the likelihood for the
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p-dimensional case, calculation was not easy, but we can now calculate a revised
multiple integral form of the likelihood easily with advanced computing methods.
(Song and Gleser, 2012)

As an application of inference, intercorrelation among cognitive anxiety, somatic
anxiety, and self-con�dence from the area of sports psychology.

2. Approach - Likelihood as a Form of Multiple Integral

It is shown in Song and Gleser (2012) that the likelihood function of the population
correlation matrix P when in a sample of size N we observe the sample correlation
matrix R is

L(P ) = f(Rjn; P ) = C
Z 1
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vp = 1� bp�1; n = N � 1;

(2)

and where Pij , Rij and (P�1)ii are the elements from the ith row and jth column in
P;R and P�1(the inverse matrix of P), respectively.

You can check Song(2010) to see how to derive (1).
Fisher (1962) uses a representation of the likelihood in terms of p multiple in-

tegrals in the p variable case. Its integration domain is (0;1) for each coordinate.
But this paper suggests a representation of the likelihood with p� 1 multiple inte-
grals in the p variable case with integration domain (0; 1) for each coordinate. This
representation has obvious calculational advantage over Fisher�s representation.

In the next section, three main numerical integration methods, which are Gauss-
Legendre quadrature, adaptive integration and Monte Carlo method used for calcu-
lation, are introduced and compared.

3. Approach - Numerical Integration

The content of this section is from the author�s previous publication.(Song and
Gleser, 2012) If you know the content you can skip this section.

Numerical integration is the study of how the numerical value of an integral can
be obtained by using approximate computational methods. It is sometimes called
quadrature. Basically, all numerical integration methods are based on adding up
the value of the integrand at a sequence of points in the range of integration.
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We can formulize the situation in which we have main interest:Z
� � �
Z

Sm

f(x1; � � � ; xm) dx1 � � � dxm �
MX
i=1

Wi f(yi;1; � � � ; yi;m) (3)

where Rm is a m-dimensional Euclidean space, Sm is a speci�ed region in Rm, f :
Rm ! R is a common function. The vector (yi;1; � � � ; yi;m) is called the point of the
formula: The Wi is called the coe¢ cient of the formula. We say that formula (3)
has degree r(or degree of exactness r) if it is exact for all polynomials in x1; � � � ; xm
of degree r and there is at least one polynomial of degree r + 1 for which it is not
exact.(Evans, 1993)

At this point, we need to mention a very important aspect of the numerical inte-
gration - the assessment of error in an approximation. The only absolutely certain
method is to compare the approximation with the correct answer, which is not pos-
sible in practice. Various integration methods have their special characteristics with
respect to error assessment. With iterative methods, we have the natural method
of examining the approximations at successive stages and stopping the iteration
when the changes become small for a number of iterations. Perhaps the best way
to be con�dent that we have accurately approximated a particular integral is to
use very di¤erent methods and see if the results agree.(Evans and Swartz, 1995) In
the following sections, three main methods will be used, which are Gauss-Legendre
quadrature, adaptive integration and Monte Carlo method.

Among many rules in quadrature, the most commonly used rule is the Gauss-
Legendre rule with cubic interval [0; 1]� � � � � [0; 1]: For the multi-dimensional case
(3) can be changed into:

Z 1

0
dx1

Z 1

0
dx2 � � �

Z 1

0
f(x1; � � � ; xm) dxm �

MX
i1=1

� � �
MX
im=1

Wi1 � � � Wimf(yi;1; � � � ; yi;m)

(4)
Even if an optimal extension giving a degree of exactness of 3M+1 can be found for
Gauss-Legendre quadrature, you still do not know the accuracy in terms of correct
decimal places. To get a prescribed accuracy you need adaptive integration, which
keeps reducing the step size until a speci�ed error has been achieved.

Adaptive algorithms developed by Genz and Malik (1980) operate by repeated
subdivision of the hyper-rectangular region into smaller hyper-rectangles. In each
subregion, the integral is estimated using a rule of degree seven, and an error esti-
mate is obtained by comparison with a rule of degree �ve which uses a subset of the
same points. These subdivisions are designed to dynamically concentrate the com-
putational work in the subregions where the integrand is most irregular, and thus
adapt to the behavior of the integrand. But one of the disadvantages of adaptive
algorithms is their slow speed, which can be considerably overcome by using Monte
Carlo methods.

Monte Carlo (MC) methods can be loosely described as statistical simulation
methods. We can refer to Robert and Casella (1999) for a comprehensive introduc-
tion. The classical MC method for approximating a multiple integral such as given
in the left-hand side of (3), denoted by I(f), is as follows. We choose M sets of
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points fyi;1; � � � ; yi;mg ; i = 1; � � � ;M at random, uniformly distributed in Sm. The
integral is then estimated using Wi = V=M in the right-hand side of (3),

I(f) � bI(f) = V

M

MX
i=1

f(yi;1; � � � ; yi;m) (5)

where V = I(1) is the m-dimensional volume of Sm. The basic MC method it-
eratively approximates a de�nite integral by uniformly sampling from the domain
of integration,and averaging the function values at the samples. The integrand is
treated as a random variable, and the sampling scheme yields a parameter estimate
of the mean of the random variable. Since bI(f) in (5) estimates I(f); the absolute
error in this mean can be evaluated by considering the corresponding standard error
of the mean,

� =
���I(f)� bI(f)��� � �

M1=2
(6)

where �2 = V � I(f2) � I2(f). If fyi;1; � � � ; yi;mg ; i = 1; � � � ;M are regarded as
independent random variables then bI(f) is a random variable with mean I(f) and
variance �2=M , which can also be estimated from the random sample through

V

M2

MX
i=1

n
f(yi;1; � � � ; yi;m)� bI(f)o2 : (7)

The absolute error (6) has an average magnitude of O(M�1=2):(Kuonen, 2003)
In the following sections, all of three methods are used to ensure the same results

for calculation.

4. Data - Anxiety

4.1 Background

An inherent aspect of competitive athletics is the need for athletes to meet the
demands of competition and to perform well under pressure. Depending on how
the athlete perceives the demands of competition, he or she may interpret pressure
situations in a variety of ways. For example, they may be perceived as a natural
part of athletic competition, or they may invoke heightened levels of stress. When
in stressful and anxiety-provoking circumstances, some athletes have been observed
to experience de�cits in performance, even to the point of �choking.� Thus, the
relationship between anxiety and athletic performance has received considerable
attention from researchers in the �eld of sport psychology.(Craft et al., 2003)

The multidimensional approach to the study of sports anxiety (Martens et al.,
1990) considers subcomponents of anxiety, speci�cally cognitive anxiety, somatic
anxiety, and self-con�dence. Cognitive anxiety is the mental component of anxiety
and is caused by negative expectations about success or by negative self-evaluation.
Somatic anxiety refers to the physiological and a¤ective elements of the anxiety
experience that develop directly from autonomic arousal. Self-con�dence is the
athlete�s global perceptions of con�dence.

In order to assess the multidimensional aspects of anxiety, Martens et al.(1990)
develop the Competitive State Anxiety Inventory-2 (CSAI-2). This 27-item measure
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Study ID Study Size
1 Caruso et al. (1990) n1 = 24
2 Edwards and Hardy(1996) n2 = 45
3 Maynard et al. (1995) n3 = 24

Table 1: Three Studies used for the Anxiety example

has three subscales: cognitive anxiety, somatic anxiety, and self-con�dence. Athletes
are asked to indicate �how you feel right now�for each item on a 4-point Likert scale
ranging from �not at all� to �very much so.� Examples of the cognitive anxiety
items include �I am concerned about this competition.�and �I am concerned about
choking under pressure.� These items di¤er from the somatic anxiety statements
such as �I feel nervous.�or �I feel tense in my stomach.�The self-con�dence subscale
includes items such as �I feel at ease.�and �I�m con�dent I can meet the challenge.�
Each of the three subscales has 9 items, which are summed to get a score representing
the level of intensity the athlete is feeling for each component of anxiety, and for
self-con�dence about performing.(Craft et al., 2003)

In this section, I used the data from three studies which are Caruso et al.(1990),
Edwards and Hardy(1996) and Maynard et al.(1995). These studies use the CSAI-2
to calculate correlations among cognitive anxiety, somatic anxiety, and self-con�dence.

When I checked Craft et al.(2003), there are 29 studies which can be used for
meta-analysis, but I decided to use just three studies partly because there is a
limitation for access to the speci�c data and partly because my goal is not to conduct
rigorous meta-analysis but to show that my likelihood approach is applicable to
meta-analytic application.

The correlations matrices among the three variables in the ith study for i =
1; 2;and 3 are represented as:

CA
SA
SC

CA SA SC24 1 r(i)12 r(i)13
r(i)12 1 r(i)23
r(i)13 r(i)23 1

35
where CA: Cognitive Anxiety, SA: Somatic Anxiety, and SC: Self-Con�dence

Also, these correlation matrices can be written as a vector r(i); the relationships
represented are

r(i) =

24r(i)12r(i)13
r(i)23

35 CA-SA
CA-SC
SA-SC

(8)

Basic information about three studies are given in Table 1.
The r(i) vectors for the three studies are:

r(1) =

24 0:42�0:42
�0:48

35 ; r(2) =
24 0:47�0:37
�0:50

35 ; r(3) =
24 0:67�0:36
�0:72

35 : (9)
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4.2 Test of Homogeneous Correlation Matrices

Summarizing the data from several studies by a single estimated correlation matrix
is conceptually sensible only if the studies have the same population correlation
matrix. To determine whether the data obtained from several studies are reasonably
consistent with the hypothesis of a common correlation matrix, it is useful to have
a formal hypothesis test.(Becker, 1992)

This test can be formalized as testing the hypotheses:�
H0 : P1 = � � � = Pk
Ha : At least two Pi�s are di¤erent

(10)

where Pi is a p� p population correlation matrix from the ith study, i = 1; � � � ; k.
This test uses the statistic

Q = �2 log
�
supH0 L(P jR)

supH0[Ha L(P jR)

�
(11)

where L(P jR) is the combined likelihood from the k studies.
Because Q has approximately a �2 distribution with 1

2p(p � 1)(k � 1) degrees
of freedom if H0 is true, a test of H0 at the 100� % level of signi�cance is given
by rejecting H0 if Q is greater than the 100(1� �) percentile of the �2 distribution
with 1

2p(p� 1)(k � 1) degrees of freedom.
In the Anxiety example, we have Q = 6:38 which is less than 7:23, the 30%

critical value of the �2 distribution with 1
23(3� 1)(3� 1) = 6 degrees of freedom, so

we conclude that the hypothesis of homogeneity of correlation matrices cannot be
rejected even at the 30% level of signi�cance.

4.3 Comparison of Estimators

Assuming that all of the four studies share a common population correlation matrix,
i.e. P1 = � � � = P4; pooling estimates from the studies to estimate the common
correlation matrix is quite natural as a next step in the meta-analysis. Becker
(1992) suggests two conventional methods to get a pooled estimate of a correlation
matrix. One is to separately calculate a simple weighted average of corresponding
sample correlations across studies for each population correlation whereas the other
is a generalized least squares approach. In this paper these estimators will be referred
to as the Marginal Asymptotic Weighted Average(MAWA) and the Joint Asymptotic
Weighted Average(JAWA), respectively. In this section, the MLE is compared with
these conventional pooled estimates.

If we have k studies in which each study uses the same p variables, the MAWA
has the form:

e�M =
�e�M12 ; e�M13 ; � � � ; e�M1p ; e�M23 ; � � � , e�M(1�p)p

�0
(12)

where

e�Mij =

kP
m=1

nm�
1� r2(m)ij

�2 r(m)ij
kP

m=1

nm�
1� r2(m)ij

�2 ; i < j (13)
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MAWA JAWA MLE

e�M =

0@ 0:544 (0:035)
�0:381 (0:007)
�0:598 (0:046)

1A e�J =
0@ 0:605 (0:111)
�0:378 (0:004)
�0:653 (0:115)

1A b� =
0@ 0:511
�0:374
�0:555

1A
Table 2: MAWA, JAWA and MLE from the Anxiety data

and the JAWA has the form:

e�J =
 

kX
m=1

b��1m
!�1

�
kX

m=1

b��1m r(m) = �e�J12 ; e�J13 ; � � � ; e�J1p; e�J23; � � � ; e�J(1�p)p �0
(14)

where

b�m =
0B@ dV ar(r(m)12) � � � dCov �r(m)12; r(m)(p�1)p�

� � � � � � � � �dCov �r(m)12; r(m)(p�1)p� � � � dV ar(r(m)(p�1)p)
1CA : (15)

and where8>>>>>>><>>>>>>>:

dV ar(r(m)ij) =
�
1� r2(m)ij

�2
nm

dCov �r(m)ij ; r(m)ik�
=

1

nm

n
1
2r(m)ijr(m)ik

�
r2(m)ij + r

2
(m)ik + r

2
(m)jk � 1

�
+ r(m)jk

�
1� r2(m)ij � r

2
(m)ik

�o
for i < j; i < k; j < k; and m = 1; 2; 3; and 4;

(16)
and b�m is the associated asymptotic covariance matrix for each r(m):(Olkin and
Siotani, 1976)
Similarly, the MLE matrix can be written as a vector b�; where

b� = �b�12 ; b�13 ; � � � ; b�1p ; b�23 , � � � ; b�(1�p)p �0 : (17)

Because all of the three studies appear to share a common population correlation
matrix, i.e. P1 = P2 = P3; it is reasonable to pool estimates from the studies to
estimate the common correlation matrix.

Table 2 shows the MAWA, the JAWA, and the MLE from (9). For the MAWA
and the JAWA estimators, each value inside parentheses represents the correspond-
ing relative di¤erence from the MLE. The components of the MAWA are not so
di¤erent from their counterparts in the MLE and their relative di¤erences are rel-
atively small, but the JAWA is quite di¤erent from the MLE. (rJ12 = 0:605 and
rJ23 = �0:653 have the relative di¤erences of 0:111 and 0:115, respectively)
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Case Population Correlations Sample Sizes
1 �12 = �13 = �23 = 0:7 n1 = n2 = n3 = n4 = n5 = 10

2 �12 = �13 = �23 = 0:7 n1 = n2 = n3 = n4 = n5 = 100

3 �12 = 0:7; �13 = 0:6; �23 = 0:4 n1 = n2 = 10; n3 = n4 = 15; n5 = 100

4 �12 = 0:7; �13 = 0:6; �23 = 0:4 n1 = n2 = n3 = 10; n4 = n5 = 15

Table 3: Four Cases Used for Simulation

4.4 Visualization of Likelihoods

We can see level plot, contour plot and likelihood plot of �12 and �13 when �23 =
�0:755; �13 = �0:555 and �23 = �0:355; respectively, from Fig 1, Fig 2 and Fig 3, .
Those �23�s are picked because the MLE of r23�s is -0:555 from Table 2 and we want
to check the behavior of the �slices�of likelihood with respect to �12 and �13 when
�23 changes around the MLE.

In Fig 2, the global maximum of the likelihood is achieved when we take �12 =
0:511, �13 = �0:374 with the �xed value of �23 = �0:555, but the local maximums
are achieved when we take �12 = 0:586, �13 = �0:5 with the �xed value of �23 =
�0:755 and when we take �12 = 0:471; �13 = �0:286 with the �xed value of �23 =
�0:355 in Fig 1 and Fig 3, respectively. The global maximum from Fig 2 is 1184:4
which is far greater than the local maximum 4:7 from Fig 1 and the local maximum
72:2 from Fig 3.

Fig 4 is a comprehensive summary of three di¤erent cases above, which practi-
cally combine contours and corresponding likelihoods.

5. Simulation

In this section, a simple simulation is conducted to compare the accuracies of the
MAWA, the JAWA and the MLE in terms of Mean Squared Error (MSE hereafter).

The MSE of eP of with respect to P is de�ned as:
MSE( eP ) = E ntr h( eP � P )0( eP � P )io = E

24 X
1�i<i�p

(e�ij � �ij)2
35 (18)

where P =
�
�ij
�
is the p�p population matrix and eP = �e�ij� is the estimator matrix

of P . ( eP can be the MAWA or the JAWA or the MLE in this section.)
In the simulation, four di¤erent cases are assumed. The basic information about

the cases is given in Table 3.
Each case consists of �ve studies with the corresponding hypothesized three-

dimensional population correlation matrix and the sample sizes. For example, case
3 has the population correlations �12 = 0:7; �13 = 0:6 and �23 = 0:4 and the �ve
studies have the sample sizes 10; 10; 15; 15 and 100; respectively.

In each case, the MAWA, the JAWA and the MLE is calculated 100 times and
the corresponding MSEs are also calculated.

Table 4 shows the MSEs of the MAWA, the JAWA and the MLE for each case.
The MLE shows consistently the best performance whereas the JAWA shows the
worst performance. Case 2 shows that the three estimators work well when the
sample sizes are large enough. Case 4 shows that all of the estimators have big
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Figure 1: Level plot, contour plot and conditional likelihood I
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Figure 2: Level plot, contour plot and conditional likelihood II
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Figure 3: Level plot, contour plot and conditional likelihood III
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Figure 4: Three-dimensional view of Correlations and their corresponding condi-
tional likelihoods and contours
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Case MAWA JAWA MLE
1 0:0487 0:0836 0:0194

2 0:0021 0:0025 0:0018

3 0:0236 0:0364 0:0111

4 0:0579 0:1026 0:0269

Table 4: The MSE�s from the MAWA, the JAWA and the MLE

errors when sample sizes are small, even though the MLE is still the best among
the three estimators. Interestingly enough, the MAWA is better than the JAWA for
every case.

6. Discussion

In meta-analysis, asymptotic normal approximation approaches have been used to
combine information about population correlation matrices from many di¤erent in-
dependent studies. But these approaches are questionable when we do not have
large enough sample sizes. To overcome this problem, the likelihood approach using
numerical integration to calculate the likelihood is used in this paper.

But the following are two limitations of the methods:
1) In relatively low dimensional spaces, say those for 3 � 3 or 4 � 4 correlation
matrices, numerical integration works very well. But as dimension increases, the
calculation becomes more di¢ cult and cumbersome.
2) Because it is really di¢ cult to get the �rst and second derivatives in a form useful
for Newton�s method of root- �nding, numerical methods using grid points to �nd
the MLE had to be used. Such an approach is computer intensive, especially when
p is large.

Despite these limitations, the approach used in this paper is quite promising.
The main ideas can be summarized as: 1) Derivation of the likelihood function
for the population correlation matrix as a certain integral; 2) Calculation of the
likelihood with numerical integration based on wise choices of grid points to balance
precision of resolution and computational e¤ort; and 3) Use of graphs to visualize
many aspects of the likelihood function. These three steps above can be applied in
many situations provided that we have way to calculate the likelihood at individual
particular points.

7. Future Work

Sometimes it is impossible to get information about r12; r13 and r23 from every
study in the three dimentinal case, then how to combine the information from all
the studies is a natural question for the next step. For example, suppose there are
10 studies having all of r12; r13 and r23; 5 studies having r12 and 5 studies having
r13; and it is desired to combine the information from these 20 studies. Under
the assumption of the same population correlation matrices over all the studies,
this goal can be achieved easily by multiplying the corresponding trivariate and
bivariate likelihoods. Comparison between this approach and the large-sample
approach described by Becker (1992) will be of interest.
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Also, it is quite important to develop computing methods for the likelihood in-
tegral in the multivariate case. Among the three main methods used in multivariate
case, the MC method is the fastest. But MC becomes slower as the dimension
increases. Other methods need to developed to speed up getting the results

Beside the ideas and directions described above, many other good ideas will arise
in the future because the topic in this paper is just at the starting point of research.
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