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Abstract 
A missing value resembles not necessarily only the unknown data of an unknown 
probability of distribution but also their unknown characteristics. In this situation, it is 
better to construct a basket of characteristics based on assumed missing values. So, our 
immediate objective will be prudently picking the core characteristics for estimating the 
missing values and we refer this technique a “Missing” Technique.  

 
Key Words: Average Log Likelihood Function, Combination, Dummy Missing Value, 
Likelihood Rate, Simple Random Sample. 

 
 

1. Introduction 
 
Missing data pattern describes which values are observed in the data matrix and which 
values are missing, and missing data mechanism addresses the relationship between 
missing value and the available values in the data matrix. Missing value estimation is a 
common problem in several statistical studies. The problem synchronized a lot when the 
sample size is very small and sensitive. Missing data mechanisms demonstrate the 
dependencies among the missing data and the available data. Rubin (1976) developed a 
device of treating the missing data indicators as random variables along with a distribution. 
The literature on analysis of partially missing data is inaugurated by Afifi and Elashoff 
(1966), Hartley and Hocking (1971), Orchard and Woodbury (1972), Dempster, Laird, and 
Rubin (1977), Litte and Rubin (1983), Little and Schenker (1994), and Little (1997). 
Methods proposed by the aforesaid authors can be grouped into the following categories.  
 
The categories include Procedures Based on Completely Record Units, Weighting 
Procedures, Imputation-Based Procedures and Model-Based Procedures.  
 
When some variables are not recorded for some of the units, the method analyzes only the 
units of the competed data (e.g., Nie et al., 1975). It can lead serious biases, however, and 
it is not usually very efficient, especially when drawing inferences for subpopulations. The 
weighting procedure demonstrates the randomization inferences from sample survey data 
without nonresponse commonly weight sampled units by their design weights, which are 
inversely proportional to their probabilities of selection. The missing values are filled in 
and the resultant completed data are analyzed by standard methods. Commonly used 
procedures for imputation include hot deck imputation, where recorded units in the sample 
are used to substitute values; mean imputation, where means from sets of recorded values 
are substituted; and regression imputation, where the missing variables for a unit are 
estimated by predicted values for the regression on the known variables for that unit. A 
broad class of procedures is generated by defining a model for the observed data and basing 
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inferences on the likelihood or posterior distribution under that model, with parameters 
estimated by procedures such as maximum likelihood. 
 
Broadly there are two ways for estimating missing values. These are Missing Value 
Estimation in Experiment and Missing Value Estimation by Likelihood Based Method. 
Imputation Method, Weighted Methods by Complete Case and Available Case Analysis 
are from class one. And Inference based Likelihood method, Factored Likelihood Method, 
EM Algorithm, Large Sample Inference based Maximum Likelihood Method, Bayesian 
Iterative Simulation Method, Robust Method, Partially Classified Contingency Table 
Method (ML Estimation, Bayes Estimation, Log-linear Model, Logistic Regression 
Method) etc. are from class two.  
 
Missing data estimation in experiments includes Least Square analysis with missing data 
using Yates Method, Allan and Wishart’s (1930) method for the Least square estimate of 
one missing value in the Randomized Block Design and of one missing value in a Latin 
Square Design, Wilkinson’s (1958) method by providing formulas for many designs and 
many patterns of missing value, Hartley’s (1958) non-iterative Method for estimating one 
missing value to be used iteratively for more than one time. The method for one missing 
value involves substituting three different trial values for the missing value, with the 
residual sum of squares calculated for each trial value. Since the residual sum of squares is 
quadratic in the missing value, the minimizing value of the one missing value can be found. 
The method is not as attractive as an alternative method. Healy and Westmacott (1956) 
described a popular iterative method with five steps. In step one, the trial values are 
substituted for all missing values, at step two the complete data analysis is performed, 
predicted values are obtained for the missing values at step three, in step four these 
predicted values are substituted for the missing values, a new complete data analysis is 
performed and so on until the missing values do not change appreciably or equivalently 
until the residual sum of squares essentially stops decreasing. In some cases, convergence 
can be slow and special acceleration techniques have been suggested by Pearce (1965). 
Although these can improve the rate of convergence in some examples, they can also 
destroy the monotone decrease of the residual sum of squares in other examples. A general 
non-iterative method due to Bartlett (1937) is to fill in guesses for the missing values, and 
then perform an analysis of covariance (ANCOVA) with a missing value covariate for each 
missing value. The i-th missing value covariate is defined to be indicator for the i-th 
missing value, that is, zero everywhere except for the i-th missing value where it equals 
one. The coefficient of i-th missing value covariate, when subtracted from the initial guess 
of the i-th missing value, yields the least square estimate of the i-th missing value. 
Furthermore, the residual mean square and all contrast sum of squares adjusted for the 
missing value covariates are their correct values. Although this method is quite attractive 
in some ways, it often cannot be implemented directly because specialized ANOVA 
routines may not have the capability to handle multiple covariates. It turns out, however, 
that Bartlett’s method can be applied using only the complete-data ANOVA routine and a 
routine to invert an m×m symmetric matrix. Least square estimates of missing value by 
ANCOVA using only complete data method, correct least square estimates of standard 
errors and one degree of freedom sum of squares, correct least square sum of squares with 
more than one degree of freedom are some relevant least square estimates for estimating 
missing values in analysis of variance. There are several techniques to estimate missing 
values.  
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2. New Method and Methodology 
 

Let there are (𝑛 − 1) observations and 1 missing observation. We want to estimate the 
missing observation. We know neither the missing value nor the distribution from where 
the observations are drawn. So, we know nothing about the parameters of the distribution 
or other characteristics like skewness, kurtosis, mean, median, mode, variance, higher order 
moments or even the tail behaviors of the distribution. In this situation we will estimate all 
the aforesaid characteristics and their volatility due to the change of sample size. We will 
also measure the deviation of the estimated characteristics from those of the missing value. 
So, we adjust our estimates of various characteristics due to the exact sample size and 
bandwidth of each of the characteristics. Later, all the estimated characteristics will be used 
to find out several relations among themselves to predict the probability distribution. The 
parameters will also be estimated under the predicted probability distribution. Later on, the 
deviation of the theoretically estimated characteristics and practically observed 
characteristics can be found to check how better the predicted distribution was by virtue of 
checking the equivalence of the theoretical and observed characteristics. Maximum 
Likelihood Function and the consistent rate of the mean sum of squares of error can be 
found to be confirmed that the performance of the estimated missing value and the error 
conducted due to the estimated missing value is least. 
 
Let there are 𝑛 observations out of which (𝑛 − 1) non-missing observations and one 
missing observation. Let the observations 𝑥1,𝑥2,…, 𝑥𝑛−1 are non-missing and one 
observation 𝑥𝑛 is missing. We want to estimate 𝑥𝑛. So out of (𝑛 − 1) non-missing 
observations, (𝑛 − 1) samples each of which is of size (𝑛 − 2) can be drawn assuming 
each sample has one missing observation. Assuming one non-missing observation as a 
missing one we can generate (𝑛 − 1) samples each of which is consisting of (𝑛 − 2) non-
missing observations pretending the rest non-missing observations as the missing 
observation. So the (𝑛 − 1) generated samples are as below: 
 
  (𝒏 − 𝟏) samples each of size (𝒏 − 𝟐)    Assumed missing observation 

𝑥1,𝑥2, … , 𝑥𝑛−2    𝑥𝑛−1 
𝑥1,𝑥2, … , 𝑥𝑛−1    𝑥𝑛−2 
        …    … 
𝑥1,𝑥3, … , 𝑥𝑛−2    𝑥2 
𝑥2,𝑥3, … , 𝑥𝑛−1    𝑥1 
 
So we have calculated a class of characteristics (demonstrated in Table A1) to develop and 
observe several relationships among themselves (characteristics). For each of these 
characteristics, we will observe it’s deviation from the same characteristic with the 
presence of dummy missing observation. Let us at first explain the easiest characteristic 
say sample mean and its deviation from the assumed missing value as addressed in Table 
A2. 
 

Now,    𝐿 = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) … 𝑓(𝑥𝑛−1; �̅�, 𝑆2) 

 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) … 𝑓(𝑥𝑛−1; �̅�, 𝑆2)] 
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log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑥𝑛−1; �̅�, 𝑆2)) 

 

∴
1

𝑛−1
log(𝐿) = 1

𝑛−1
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−1

𝑖=1  

 

which can be termed as the average expected log likelihood function or expected log  
likelihood rate. Now, we should generate short incremented (various) values for 𝑥 form the 
following range  

(
1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
,

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 +  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯
+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
). 

 
Here k may be 0.50 or 1 or 2 or so on. The increment ℎ can take the value 0.01 or 0.05 or 
0.10 and so on. The values could be as below 
 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
, 

 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
+ ℎ, 

 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
+ 2ℎ, 

 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
+ 3ℎ, 

…………………………………………………, 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 +  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
. 

 
If we assume any of the aforesaid observations as the estimate of the nth pretended missing 
observation, and (if we consider) the available original observations 𝑥1,𝑥2, … , 𝑥𝑛−1 as the 
(𝑛 − 1) other non-missing observations then the consecutive Maximum Likelihood 
Function or Likelihood Rate will be  
 

𝐿′ = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) …  𝑓(𝑥𝑛; �̅�, 𝑆2) 
 

log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) …  𝑓(𝑥𝑛; �̅�, 𝑆2)] 
 

log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑥𝑛; �̅�, 𝑆2)) 
 

1

𝑛
log(𝐿′) = 1

𝑛
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛

𝑖=1  
 
We will search the incremented value of the nth observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  
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1

𝑛−1
log(𝐿) = 1

𝑛−1
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−1

𝑖=1 ≅
1

𝑛
log(𝐿′) = 

1

𝑛
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛

𝑖=1 . 
 
The incremented value of the nth observation for which the likelihood functions are same, 
will be an efficiently-estimated value of the missing observations. 
 
However, if we get more than two estimates of the missing observation, we can check for 
which estimate of the missing value the first two moments are close to those of the original  
(𝑛 − 1) observations. Hence we will find the closer estimate of the missing value. 
Therefore, if we get more than two or three or more estimates of a missing observation, we 
can use all the estimates to estimate that missing value.     
 
So, we have described how (𝑛 − 1) samples have been generated assuming one non-
missing observation as a missing one in each case and calculated their sample averages to 
find out a bandwidth for the missing value. Here the missing value has been determint 
adding the half of the bandwidth of the missing value with the average of all of the available 
non-missing values. Similarly, several sample characteristics and their bandwidth can be 
calculated to find out different characteristics of the missing data as well as the distribution 
from which the sample (consisting of missing value and non-missing value) has been 
drawn. So, sample variance, sample higher order moments, sample median, mode, 
skewness, kurtosis, tail behaviors, etc. can be found using their respective bandwidth. 
Several relationships can be explored from the aforesaid estimated characteristics to 
recognize the pattern of the distribution and its relevant features. The relevant features, 
estimated parameters and the predicted distribution are used to fit the observed sample 
data. So least square fitting or least deviation fitting or any sort of other goodness of fit can 
be used to check the performance of the predicted probabilistic model along-with the 
bandwidth based estimated parameters and the characteristics. After checking the fitting 
performance of the predicted model for the observed data, we can observe whether the 
average log-likelihood function for both the non-missing and missing values is equivalent 
that of the average log-likelihood rate for the all non-missing values.  
 
For more clarification let 𝑛 = 5. So there are 4 non-missing observations and one missing 
observation. The non-missing observations are 𝑥1,𝑥2,𝑥3, 𝑥4 and the missing observation is 
𝑥5. So, assuming one non-missing observation as a missing one we can generate 4 samples 
each of which is consisting of 3 non-missing observations assuming the rest non-missing 
observations as the missing observation. So the 4 samples are as below: 
 
 Samples of size 3    Assumed missing observation 
𝑥1,𝑥2,𝑥3    𝑥4 
𝑥1,𝑥2,𝑥4    𝑥3 
𝑥1,𝑥3,𝑥4    𝑥2 
𝑥2,𝑥3,𝑥4    𝑥1 
 
So we have calculated a class of characteristics (Table A3) to develop and observe some 
relationships among them (characteristics). For each of these characteristics we will 
observe it’s deviation from the same characteristic with the presence of assumed missing 
observation. Let us at first explain the easiest characteristics say sample mean and its 
deviation from the assumed missing value in the Table A4. 
 
Now,    𝐿 = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2) 
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log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)] 
 
log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥3; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥4; �̅�, 𝑆2)) 
 

1

4
log(𝐿) = 

1

4
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))4

𝑖=1  
 
which can termed as the average expected log likelihood or expected log likelihood rate. 
Now, we should generate short incremented various values form the range  
 

(

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
,

1

4
∑ 𝑥𝑖

4
𝑖=1 +  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4

). 

 
Here k may be 0.50 or 1 or 2 or so on. The increment ℎ can take the value 0.01 or 0.05 or 
0.10 and so on. The values the values could be  
 

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
, 

 
1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
+ ℎ, 

 
1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
+ 2ℎ, 

 
1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
+ 3ℎ, 

…………………………………………………, 
1

4
∑ 𝑥𝑖

4
𝑖=1 +  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
. 

 
If we assume any of the afore said observations as the 5th observation and the four other 
observations are the given original observations 𝑥1,𝑥2,𝑥3, 𝑥4; then the consecutive 
maximum likelihood function or observed likelihood rate will be  
 

𝐿′ = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2) 𝑓(𝑥5; �̅�, 𝑆2) 
 

log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)𝑓(𝑥5; �̅�, 𝑆2)] 
 

log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥3; �̅�, 𝑆2))
+ 𝑙𝑜𝑔(𝑓(𝑥4; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥5; �̅�, 𝑆2)) 

 
1

5
log(𝐿′) =1

5
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))5

𝑖=1  
 
We will search the incremented value of the 5th observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  
 
1

4
log(𝐿) = 1

4
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))4

𝑖=1 ≅
1

5
log(𝐿′) =1

5
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))5

𝑖=1 . 
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The incremented value of the 5th observation for which the likelihood functions are same, 
will be the estimated value of the missing observations. If we get more than two estimates 
of the missing observation (since we get two value of the 5th observation for whom the 
likelihood rates are same), we can check for which estimate of the missing value the first 
two moments are close to those of the original 4 observations. Hence we will find the 
estimate of the missing value.  
 

3. Real Life Examples 
 

We like to simulate a couple of samples each of which is of size 𝑛 from a probability 
distribution with specified parameters. Later we will keep one observation a complete 
missing observation and pull it out from the original sample. Hence the original sample 
turns to a sample of size 𝑛 − 1. Out of 𝑛 − 1available observations of the sample, we will 
draw𝑛 − 1 samples each of which is of size 𝑛 − 2. For each of the 𝑛 − 1 samples of size 
𝑛 − 2, we will assume the absent observation as a dummy missing value of the sample. So, 
for each of the 𝑛 − 1 samples, there are 𝑛 − 2 available observations and one dummy 
missing value. From each of the 𝑛 − 1 samples, we will have one absolute dispersion 
between the average of 𝑛 − 2 available observations and the dummy missing observation. 
So, we will have 𝑛 − 1 absolute between differences for 𝑛 − 1 pairs of averages and 
dummy missing values. Averaging the 𝑛 − 1  absolute differences, we will calculate 
average absolute difference. Based on the average absolute difference, we will generate a 
possible range of the original missing value. We will generate several values of that range 
starting from the lower limit and will get several valued for fixed increment upto to upper 
limit of that range. We will check whether the average log likelihood of the 𝑛 − 1original 
observations is similar for which 𝑛th observed missing value from the generating range and 
the 𝑛 − 1 observations. 
 
Example 3.1 
Let 𝑛 = 10 So there are 9 non-missing observations and one missing observation. The non-
missing observations are 1.729466, 3.547037, 3.6597, 5.814905, 3.817457, 6.333606, 
4.05684, 3.748781, 3.608116 and the missing observation is2.671239.  The average of this 
nine non-missing observations are 4.0351. Now, assuming one non-missing observation as 
a missing one we can generate 9 samples each of which is consisting of 8 non-missing 
observations assuming the rest non-missing observations as the missing observation. So 
the 9 sampleseach consisting of 8 non-missing values are as below (the bold numbers in 
the last row are representing here the assumed missing value for each sample): 

         

1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 3.61 
3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.55 3.55 
3.55 3.55 3.55 3.55 3.55 3.55 3.66 3.66 3.66 
3.66 3.66 3.66 3.66 3.66 5.81 5.81 5.81 5.81 
5.81 5.81 5.81 5.81 3.82 3.82 3.82 3.82 3.82 
3.82 3.82 3.82 6.33 6.33 6.33 6.33 6.33 6.33 
6.33 6.33 4.06 4.06 4.06 4.06 4.06 4.06 4.06 
4.06 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 
3.75 4.06 6.33 3.82 5.81 3.66 3.55 3.61 1.73 

 
After using Table A5 and table A6, we obtain the Expected Log Likelihood Rate is 0.720. 
By using the formula shown above, we get the range as (2.4976, 5.5726); where k=1. Let 
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the increment, h=0.1. For each increment we will get average log likelihood rate for 10 
observations. And for the third increment (incremented value=2.7976) we get the same 
value for the Expected Average Log Likelihood and Observed Average Log Likelihood. 
So, our estimated value of the missing observation is 2.7976 
 
Example 3.2 
Let, 𝑛 = 10.So there are 9 non-missing observations and one missing observation. The 
non-missing observations are 1.729466, 3.547037, 3.6597, 5.814905, 3.817457, 6.333606, 
3.748781, 2.671239, 3.608116 and the missing observation is 4.05684.  The average of 
these nine non-missing observations are 3.8811. Now, assuming one non-missing 
observation as a missing one we can generate 9 samples each of which are consisting of 8 
non-missing observations assuming the rest non-missing observation as the missing 
observation. So, 9 samples each consisting of 8 non-missing values are given below (the 
bold red colored numbers in the last row are representing here the assumed missing value 
for each sample ). The range is (2.2363,5.5260); where, k=1 and increment, h= 0.05 

 
Using the calculations of Table A7 and Table A8, we get the Observed Average Log 
Likelihood Rate -0.744. For the incremented values 2.5363 and 5.2363 the value of the 
Expected Average Log Likelihood and Observed Average Log Likelihood are same. The 
average of these two values are 3.8863. Therefore, our estimated missing value is 3.8863 
 

 

Conclusion 
 
The missing technique is a kind of check and balance method in estimating the missing 
value. In each step it checks the fluctuation due to sample size and balance it by capturing 
the dispersion of the estimate of the known data from the assumed unknown data which is 
really known. So this method is trying to find the original rate of change of the deviation 
from the missing value for the exact size of the realized sample. So from two directions, 
one direction from sample size and other direction for the deviation from the missing value, 
the missing technique has been aided to estimate the missing value efficiently maintaining 
a good performance through several goodness of fit tests. We will provide later the 
extended version of the estimation of more than one missing value in the sample in this 
paper. 
 

 

 

 

1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 3.61 
3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.55 3.55 
3.55 3.55 3.55 3.55 3.55 3.55 3.66 3.66 3.66 
3.66 3.66 3.66 3.66 3.66 5.81 5.81 5.81 5.81 
5.81 5.81 5.81 5.81 3.82 3.82 3.82 3.82 3.82 
3.82 3.82 3.82 6.33 6.33 6.33 6.33 6.33 6.33 
6.33 6.33 3.75 3.75 3.75 3.75 3.75 3.75 3.75 
3.75 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 
2.67 3.75 6.33 3.82 5.81 3.66 3.55 3.61 1.73 
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Appendix 
 

Table A1: Mean and variance table for (𝑛 − 1) samples  
 

 Sample Mean Sample Variance 

 
𝑥1̅̅ ̅ =

𝑥1+𝑥2+ … + 𝑥𝑛−2

𝑛 − 2
 𝑆1

2 =
(𝑥1 − 𝑥1̅̅ ̅)2 + (𝑥2 − 𝑥1̅̅ ̅)2 + (𝑥𝑛−2 − 𝑥1̅̅ ̅)2

𝑛 − 3
 

 𝑥2̅̅ ̅ =
𝑥1+𝑥2+⋯+𝑥𝑛−1

𝑛 − 2
 𝑆2

2 =
(𝑥1 − 𝑥2̅̅ ̅)2 + (𝑥2 − 𝑥2̅̅ ̅)2 + (𝑥𝑛−1 − 𝑥2̅̅ ̅)2

𝑛 − 3
 

 … … 
 𝑥𝑛−2̅̅ ̅̅ ̅̅

=
𝑥1+𝑥3+⋯+𝑥𝑛−2

𝑛 − 2
 𝑆𝑛−2

2 =

(𝑥1 − 𝑥𝑛−2̅̅ ̅̅ ̅̅ )2 + (𝑥3 − 𝑥𝑛−2̅̅ ̅̅ ̅̅ )2 + ⋯

+(𝑥𝑛−2 − 𝑥𝑛−2̅̅ ̅̅ ̅̅ )2

𝑛 − 3
 

 𝑥𝑛−1̅̅ ̅̅ ̅̅

=
𝑥2+𝑥3+⋯+𝑥𝑛−1

𝑛 − 2
 𝑆𝑛−1

2 =

(𝑥2 − 𝑥𝑛−1̅̅ ̅̅ ̅̅ )2 + (𝑥3 − 𝑥𝑛−1̅̅ ̅̅ ̅̅ )2 + ⋯

+(𝑥𝑛−1 − 𝑥𝑛−1̅̅ ̅̅ ̅̅ )2

𝑛 − 3
 

Average �̅�

=
𝑥1̅̅ ̅ + 𝑥2̅̅ ̅ + ⋯ + 𝑥𝑛−1̅̅ ̅̅ ̅̅

𝑛 − 1
 

𝑆2 =
𝑆1

2 + 𝑆2
2 + ⋯ + 𝑆𝑛−1

2

𝑛 − 1
 

 

 

Table A2: Difference table for (𝑛 − 1) samples  
 

(𝒏 − 𝟏) sample 

means each of 

size (𝒏 − 𝟐) 

Assumed 

Missing 

Value 

Difference |Difference| 

𝑥1̅̅ ̅

=
𝑥1+𝑥2+ … + 𝑥𝑛−2

𝑛 − 2
 

𝑥𝑛−1 𝑥1̅̅ ̅ − 𝑥𝑛−1 |𝑥1̅̅ ̅ − 𝑥𝑛−1| 

𝑥2̅̅ ̅

=
𝑥1+𝑥2+⋯+𝑥𝑛−1

𝑛 − 2
 

𝑥𝑛−2 𝑥2̅̅ ̅ − 𝑥𝑛−2 |𝑥2̅̅ ̅ − 𝑥𝑛−2| 

… … … … 
𝑥𝑛−2̅̅ ̅̅ ̅̅

=
𝑥1+𝑥3+⋯+𝑥𝑛−2

𝑛 − 2
 

𝑥2 𝑥𝑛−2̅̅ ̅̅ ̅̅ − 𝑥2 |𝑥𝑛−2̅̅ ̅̅ ̅̅ − 𝑥2| 

𝑥𝑛−1̅̅ ̅̅ ̅̅

=
𝑥2+𝑥3+⋯+𝑥𝑛−1

𝑛 − 2
 

𝑥1 𝑥𝑛−1̅̅ ̅̅ ̅̅ − 𝑥1 |𝑥𝑛−1̅̅ ̅̅ ̅̅ − 𝑥1| 

Total   |𝑥1̅̅ ̅ − 𝑥𝑛−1| + |𝑥2̅̅ ̅ − 𝑥𝑛−2| + ⋯ +
|𝑥𝑛−2̅̅ ̅̅ ̅̅ − 𝑥2| + |𝑥𝑛−1̅̅ ̅̅ ̅̅ − 𝑥1| 

Average   |𝑥1̅̅ ̅ − 𝑥𝑛−1| + |𝑥2̅̅ ̅ − 𝑥𝑛−2| + ⋯
+|𝑥𝑛−2̅̅ ̅̅ ̅̅ − 𝑥2| + |𝑥𝑛−1̅̅ ̅̅ ̅̅ − 𝑥1|

𝑛 − 1
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Table A3: Mean and variance table for 4 samples  
 

 Sample Mean Sample Variance 

  
𝑥1̅̅ ̅ =

𝑥1+𝑥2+𝑥3

3
 

𝑆1
2

=
(𝑥1 − 𝑥1̅̅ ̅)2 + (𝑥2 − 𝑥1̅̅ ̅)2 + (𝑥3 − 𝑥1̅̅ ̅)2

3 − 1
 

 𝑥2̅̅ ̅ =
𝑥1+𝑥2+𝑥4

3
 𝑆2

2

=
(𝑥1 − 𝑥2̅̅ ̅)2 + (𝑥2 − 𝑥2̅̅ ̅)2 + (𝑥4 − 𝑥2̅̅ ̅)2

3 − 1
 

 𝑥3̅̅ ̅ =
𝑥1+𝑥3+𝑥4

3
 𝑆3

2

=
(𝑥1 − 𝑥3̅̅ ̅)2 + (𝑥3 − 𝑥3̅̅ ̅)2 + (𝑥4 − 𝑥3̅̅ ̅)2

3 − 1
 

 𝑥4̅̅ ̅ =
𝑥2+𝑥3+𝑥4

3
 𝑆4

2

=
(𝑥2 − 𝑥4̅̅ ̅)2 + (𝑥3 − 𝑥4̅̅ ̅)2 + (𝑥4 − 𝑥4̅̅ ̅)2

3 − 1
 

Average 
�̅� =

𝑥1̅̅ ̅ + 𝑥2̅̅ ̅ + 𝑥3̅̅ ̅ + 𝑥4̅̅ ̅

4
 𝑆2 =

𝑆1
2 + 𝑆2

2 + 𝑆3
2 + 𝑆4

2

4
 

 
Table A4: Difference table for 4 samples  

Sample Mean of 

size 3 

Assumed 

Missing 

Value 

Difference |𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆| 

𝑥1̅̅ ̅ =
𝑥1+𝑥2+𝑥3

3
 𝑥4 𝑥1̅̅ ̅ − 𝑥4 |𝑥1

̅̅ ̅̅ − 𝑥4| 

𝑥2̅̅ ̅ =
𝑥1+𝑥2+𝑥4

3
 𝑥3 𝑥2̅̅ ̅ − 𝑥3 |𝑥2

̅̅ ̅̅ − 𝑥3| 

𝑥3̅̅ ̅ =
𝑥1+𝑥3+𝑥4

3
 𝑥2 𝑥3̅̅ ̅ − 𝑥2 |𝑥3

̅̅ ̅̅ − 𝑥2| 

𝑥4̅̅ ̅ =
𝑥2+𝑥3+𝑥4

3
 𝑥1 𝑥4̅̅ ̅ − 𝑥1 |𝑥4

̅̅ ̅̅ − 𝑥1| 

Total   |𝑥1
̅̅ ̅̅ − 𝑥4| + |𝑥2

̅̅ ̅̅ − 𝑥3| 
+|𝑥3

̅̅ ̅̅ − 𝑥2| + |𝑥4
̅̅ ̅̅ − 𝑥1| 

Average   |𝑥1
̅̅ ̅̅ − 𝑥4| + |𝑥2

̅̅ ̅̅ − 𝑥3|

+|𝑥3
̅̅ ̅̅ − 𝑥2| + |𝑥4

̅̅ ̅̅ − 𝑥1|

4
 

 

Table A5: Mean and variance table for 9 samples  
 Sample Mean Sample Standard 

Deviation 

 4.07 1.43 
 4.03 1.44 
 3.75 1.10 
 4.06 1.43 
 3.81 1.25 
 4.08 1.43 
 4.10 1.42 
 4.09 1.43 
 4.32 1.10 

Average 4.04 1.34 

JSM 2016 - Section on Statistical Computing

408



 
 

Table A6: Difference table for 9 samples. 
 

Sample mean of size 8 Assumed Missing Value Absolute 

Difference 

4.07 3.75 0.48 
4.03 4.06 0.04 
3.75 6.33 3.88 
4.06 3.82 0.37 
3.81 5.81 3.00 
4.08 3.66 0.63 
4.10 3.55 0.82 
4.09 3.61 0.72 
4.32 1.3 3.89 

Total  13.73 

Average  1.54 

 

 

Table A7: Mean and variance table for 9 samples. 
 

 Sample Mean Sample Standard Deviation 

 4.03 1.44 
 3.90 1.52 
 3.57 1.15 
 3.89 1.52 
 3.64 1.30 
 3.91 1.51 
 3.92 1.51 
 3.92 1.51 
 4.15 1.25 

Average 3.88 1.41 

 
 

Table A8: Difference table for 9 samples. 
 

Sample Mean of 

Size 8 

Assumed Missing Value Absolute 

Difference 

4.03 2.67 2.04 
3.90 3.75 0.22 
3.57 6.33 4.14 
3.89 3.82 0.11 
3.64 5.81 3.26 
3.91 3.66 0.37 
3.92 3.55 0.56 
3.92 3.1 0.46 
4.15 1.73 3.63 

Total  14.79 

Average  1.64 
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