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Abstract 
All the existing regression estimates suffer from scale problem that exaggerate the 

contribution of extreme observation(s) as well as outlier(s). Unlike the traditional fitting 

procedure of a regression line based on the least squares estimates; it uses one dimensional 

transformed deviation for minimizing the total sum of errors. It also suggests some new 

measures of Coefficient of Determination. 

 

Key Words: Absolute Deviation, Fit by Regression, Intercept, Outlier, Relative 

Coefficient of Determination, Slope. 

 

 

1. Introduction 
 

All the existing regression including Simple Linear Regression, Multiple Regression, etc 

use Least Square Method for estimating regression parameters. Unfortunately, the least 

square estimates of regression parameters leave the presence of extreme observations 

and/or outliers exaggerated that mislead a researcher or analyst with significant (or 

insignificant) value of the parameters with insignificant (or significant) effects. So, one 

dimensional distances should be used instead of squared distances for estimating regression 

parameters. But, the one dimensional distances of the data from the fitted regression line 

makes the total sum of errors zero which does not help the mathematicians to differentiate 

with respect to the parameters to calculate least deviation estimate of regression 

parameters. This is due to the fact that sum of positive deviations (positive errors) of the 

dependent variable apart from the fitted regression line nullifies the negative deviations 

(negative errors). As a result, statisticians used least square deviations not only to make the 

deviations apart from the fitted regression line positive but also to make the sum of squares 

of errors differentiable with respect to parameters so that a class of normal equations are 

accessible that result least square estimates. So, there was no way of using the one 

dimensional naïve difference between observed values of the dependent variable and its 

expected or fitted values.  

 

Fortunately, one dimensional transformed differences of the aforesaid values might be used 

for the sake of having the regression estimates free from exaggeration by the presence 

extreme observation and/or outlier(s). For estimating the regression parameters, if we 

retransform the normal equations for fitting the regression line, we should get a fitted 

regression line along with least deviation regression estimates that overcome the problem 

for the presence or extreme as well as outlier(s).  

 

Attempt has been made here to find a proper transformation of the one dimensional concern 

difference so that we can smoothly estimate the regression parameters. It is beneficiary for 

us for considering one dimensional in case of regression estimates since the real 
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observation are in one dimensional form. Using the proper transformation of the one 

dimensional distance from the fitted regression line we have estimated regression 

parameters and checked whether the estimators follow the BLUE properties. The 

performance and the limiting behavior of the parameters have also been observed under 

simulations.  

 

 

2. Estimation Methods for Linear Regression 
  

Let the simple linear regression model is  

 

𝑦 =  𝛽0 +  𝛽1𝑥 +  𝜀              (2.1)  

 

where the intercept  𝛽0 and the slope 𝛽1 are unknown constant known as regression 

coefficients and  𝜀 is a random error component. The errors are assumed to have mean zero 

and unknown variance 𝜎2. Here the errors are uncorrelated. There is a Normal probability 

distribution for y at each possible value for 𝑥 such that  

 

𝐸(𝑦|𝑥) = 𝛽0 + 𝛽1𝑥 
 

and    𝑉(𝑦|𝑥) = 𝑉(𝛽0 +  𝛽1𝑥 +  𝜀) =  𝜎2. 

 

Although the mean of 𝑦 is a linear function of 𝑥 that is the conditional mean of 𝑦 depends 

on 𝑥, but the conditional variance of 𝑦 does not depend on 𝑥.Moreover, the responses 𝑦 are 

uncorrelated since the errors 𝜀 are uncorrelated. Since the parameters 𝛽0 and 𝛽1 are 

unknown, they should be estimated using sample data. Suppose that we have 𝑛 pairs of 

data, say (𝑦1, 𝑥1), (𝑦2, 𝑥2), … , (𝑦𝑛, 𝑥𝑛) obtained from a controlled experimental design or 

from an observational study or from existing historical records. Least Square method 

estimates 𝛽0 and 𝛽1 so that the sum of squares of differences between the observations 

𝑦𝑖and the straight line is minimum. From equation 2.1 we can write 

 

𝑦𝑖  =  𝛽0 +  𝛽1𝑥𝑖 +  𝜀𝑖; 𝑖 = 1, 2, … , 𝑛         (2.2)  

 

Equation 2.1 presents the Population Regression Model and equation 2.2 expresses the 

Sample Regression Model.  

 

2.1 Least Square Method for Simple Linear Regression 
Now the sum of squares of deviations from the true line is  

 

𝑆 =  ∑ 𝜀𝑖
2𝑛

𝑖=1 =  ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥𝑖)2𝑛
𝑖=1        (2.3) 

 

Now the least square estimates of 𝛽0 and 𝛽1must satisfy  

 
𝜕𝑆

𝜕𝛽0
=  −2 ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥𝑖) = 0𝑛

𝑖=1                     (2.4) 

and   
𝜕𝑆

𝜕𝛽1
=  −2 ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥𝑖)𝑥𝑖 = 0𝑛

𝑖=1 .              (2.5) 

 

After simplification the two normal equations are generally found such that 

 

𝑛𝛽̂0 + 𝛽̂1 ∑ 𝑥𝑖 =  ∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
𝑖=1         (2.6) 
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𝛽̂0 ∑ 𝑥𝑖 +  𝛽̂1
𝑛
𝑖=1 ∑ 𝑥𝑖

2𝑛
𝑖=1 =  ∑ 𝑦𝑖𝑥𝑖

𝑛
𝑖=1        (2.7) 

 

The solution to the normal equations is  

𝛽̂0 =  𝑦̅ −  𝛽̂1𝑥̅           (2.8)  

 

and      𝛽̂1 =  
∑ 𝑦𝑖𝑥𝑖−

∑ 𝑦𝑖 ∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑛
𝑖=1

∑ 𝑥𝑖
2𝑛

𝑖=1 − 
(∑ 𝑥𝑖

𝑛
𝑖=1 )

2

𝑛

       (2.9) 

 

where      𝑦̅ =  
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1   and  𝑥̅ =  

1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  

 

Therefore, 𝛽̂0 and 𝛽̂1 are the Least Square estimates of the intercept and slope respectively. 

The fitted Simple Linear Regression Model is  

 

𝑦̂0 =  𝛽̂0 +  𝛽̂1𝑥.        (2.10) 

 

2.2 Least Deviation Estimates for Simple Linear Regression 
For the aforesaid regression model the sum of absolute deviations from the true line is 

 

∑ |𝜀𝑖|𝑛
𝑖=1 =  ∑ |𝑦𝑖 −  𝛽0 −  𝛽1𝑥𝑖|𝑛

𝑖=1 .        (2.11) 

 

Now the least deviation estimates of 𝛽0 and 𝛽1 will satisfy  

 
𝜕 ∑ |𝜀𝑖|𝑛

𝑖=1

𝜕𝛽0
=  0      (2.12) 

 

and      
𝜕 ∑ |𝜀𝑖|𝑛

𝑖=1

𝜕𝛽1
=  0       (2.13) 

 

which are equivalent to  
𝜕 ∑ 𝑙𝑛|𝜀𝑖|𝑛

𝑖=1

𝜕𝛽0
=  −∞        (2.14) 

 

and      
𝜕 ∑ 𝑙𝑛|𝜀𝑖|𝑛

𝑖=1

𝜕𝛽1
=  −∞.      (2.15) 

 

Therefore,     𝛽̂0 =  𝑦̅ −  𝛽̂1𝑥̅       (2.16) 

 

Moreover,    𝛽̂1 =  (
𝑦

𝑥
)

̅̅̅̅̅
− 𝛽̂0 (

1

𝑥
)

̅̅ ̅̅
      (2.17) 

 

Now putting the value of 𝛽̂0 = 𝑦̅ −  𝛽̂1𝑥̅in equation 2.17 we get, 

 

𝛽̂1 =  (
𝑦

𝑥
)

̅̅ ̅̅ ̅
− (𝑦̅ −  𝛽̂1𝑥̅) (

1

𝑥
)

̅̅ ̅̅ ̅
=  (

𝑦

𝑥
)

̅̅ ̅̅ ̅
−  𝑦̅ (

1

𝑥
)

̅̅ ̅̅ ̅
+  𝛽̂1𝑥̅ (

1

𝑥
)

̅̅ ̅̅ ̅
 

 

∴  𝛽̂1 −  𝛽̂1𝑥̅ (
1

𝑥
)

̅̅ ̅̅ ̅
=  (

𝑦

𝑥
)

̅̅ ̅̅ ̅
−  𝑦̅ (

1

𝑥
)

̅̅ ̅̅ ̅
 

∴  𝛽̂1 [1 −  𝑥̅ (
1

𝑥
)

̅̅ ̅̅ ̅
]  =  (

𝑦

𝑥
)

̅̅ ̅̅ ̅
−  𝑦̅ (

1

𝑥
)

̅̅ ̅̅ ̅
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Therefore,     𝛽̂1 =  
(

𝑦

𝑥
)

̅̅ ̅̅ ̅
− 𝑦̅(

1

𝑥
)

̅̅ ̅̅ ̅

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
         (2.18) 

 

2.3 Least Square Method for Multiple Regression 
Let the simple linear regression model is 

 

𝑦 =  𝛽0 +  𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀      (2.19) 

 

where the intercept  𝛽0 and the slopes 𝛽1, 𝛽2are unknown constant known as regression 

coefficients and  𝜀 is a random error component. The errors are assumed to have mean zero 

and unknown variance 𝜎2. Here the errors are uncorrelated. There is a Normal probability 

distribution for y at each possible value for 𝑥 such that  

 

𝐸(𝑦|𝑥) = 𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 
 

and    𝑉(𝑦|𝑥𝑖) = 𝑉(𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 +  𝜀) =  𝜎2.  

 

Although the mean of 𝑦 is a linear function of 𝑥 that is the conditional mean of 𝑦 depends 

on all 𝑥, but the conditional variance of 𝑦 does not depend on any 𝑥. Responses 𝑦 are 

uncorrelated since the errors 𝜀 are uncorrelated. Moreover, the independent variables are 

mutually independent. 

 

Since the parameters 𝛽𝑖 are unknown, they should be estimated using sample data. Suppose 

that we have 𝑛tuples of data, say (𝑦1, 𝑥11, 𝑥21), (𝑦2, 𝑥12, 𝑥22), … , (𝑦𝑛, 𝑥1𝑛, 𝑥2𝑛) obtained 

from a controlled experimental design or from an observational study or from existing 

historical records. Least Square method estimates 𝛽𝑖 so that the sum of squares of 

differences between the observations 𝑦𝑖 and the straight line is minimum. From equation 

2.19 we can write 

𝑦𝑖  =  𝛽0 +  𝛽1𝑥1𝑖 +  𝛽2𝑥2𝑖 +  𝜀𝑖; 𝑖 = 1, 2, … , 𝑛           (2.20)  

 

Equation 2.19 presents the Population Multiple Regression Model and equation 2.20 

expresses the Sample Multiple Regression Model. Now the sum of squares of deviations 

from the true line is  

 

𝑆 =  ∑ 𝜀𝑖
2𝑛

𝑖=1 =  ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥1𝑖 −  𝛽2𝑥2𝑖)2𝑛
𝑖=1 .    (2.21) 

 

Now the least square estimates of 𝛽𝑖 must satisfy  

 
𝜕𝑆

𝜕𝛽0
=  −2 ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥1𝑖 −  𝛽2𝑥2𝑖) = 0𝑛

𝑖=1 ,      (2.22) 

 

 
𝜕𝑆

𝜕𝛽1
=  −2 ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥1𝑖 −  𝛽2𝑥2𝑖)𝑥1𝑖 = 0𝑛

𝑖=1 ,      (2.23) 

 
𝜕𝑆

𝜕𝛽2
=  −2 ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥1𝑖 −  𝛽2𝑥2𝑖)𝑥2𝑖 = 0𝑛

𝑖=1 .      (2.24) 

 

After simplification the normal equations are generally found such that 

 

𝑛𝛽̂0 + 𝛽̂1 ∑ 𝑥1𝑖 + 𝛽̂2 ∑ 𝑥2𝑖
𝑛
𝑖=1 =𝑛

𝑖=1 ∑ 𝑦𝑖
𝑛
𝑖=1      (2.25) 

JSM 2016 - Business and Economic Statistics Section

307



 
 

 

𝛽̂0 ∑ 𝑥1𝑖
𝑛
𝑖=1 + 𝛽̂1 ∑ 𝑥1𝑖

2𝑛
𝑖=1 + 𝛽̂2 ∑ 𝑥1𝑖𝑥2𝑖

𝑛
𝑖=1 =  ∑ 𝑥1𝑖𝑦𝑖

𝑛
𝑖=1     (2.26) 

 

𝛽̂0 ∑ 𝑥2𝑖
𝑛
𝑖=1 + 𝛽̂1 ∑ 𝑥2𝑖𝑥1𝑖

𝑛
𝑖=1 + 𝛽̂2 ∑ 𝑥2𝑖

2𝑛
𝑖=1 =  ∑ 𝑥2𝑖𝑦𝑖

𝑛
𝑖=1      (2.27) 

 

The solution to the normal equations is  

 

𝛽̂0 =  𝑦̅ −  𝛽̂1𝑥̅1 − 𝛽̂2𝑥̅2,      (2.28)  

 

 𝛽̂1 =  
(∑ 𝑦𝑖𝑥1𝑖 −𝑛𝑦̅𝑥̅1

𝑛
𝑖=1 )(∑ 𝑥2

2−𝑛
𝑖=1 𝑛𝑥̅2

2)−(∑ 𝑦𝑖𝑥2𝑖 −𝑛𝑦̅𝑥̅2
𝑛
𝑖=1 )(∑ 𝑥1𝑥2−𝑛𝑥̅1𝑥̅2

𝑛
𝑖=1 )

(∑ 𝑥𝑖
2𝑛

𝑖=1 −𝑛𝑥̅1
2)(∑ 𝑥2

2𝑛
𝑖=1 −𝑛𝑥̅2

2)−(∑ 𝑥1𝑥2−𝑛𝑥̅1𝑥̅2
𝑛
𝑖=1 )

2 ,    (2.29) 

 

and  𝛽̂2 =  
(∑ 𝑦𝑖𝑥2𝑖 −𝑛𝑦̅𝑥̅2

𝑛
𝑖=1 )(∑ 𝑥1

2−𝑛
𝑖=1 𝑛𝑥̅1

2)−(∑ 𝑦𝑖𝑥1𝑖 −𝑛𝑦̅𝑥̅1
𝑛
𝑖=1 )(∑ 𝑥1𝑥2−𝑛𝑥̅1𝑥̅2

𝑛
𝑖=1 )

(∑ 𝑥𝑖
2𝑛

𝑖=1 −𝑛𝑥̅1
2)(∑ 𝑥2

2𝑛
𝑖=1 −𝑛𝑥̅2

2)−(∑ 𝑥1𝑥2−𝑛𝑥̅1𝑥̅2
𝑛
𝑖=1 )

2       (2.30) 

 

where   𝑦̅ =  
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ,𝑥̅1 =  

1

𝑛
∑ 𝑥1𝑖

𝑛
𝑖=1  and 𝑥̅2 =  

1

𝑛
∑ 𝑥2𝑖

𝑛
𝑖=1  

 

Therefore, 𝛽̂0 and 𝛽̂1, 𝛽̂2 are the Least Square estimates of the intercept and slopes 

respectively. The fitted Simple Linear Regression Model is  

 

𝑦̂0 =  𝛽̂0 +  𝛽̂1𝑥1 + 𝛽̂1𝑥2.       (2.31) 

 

2.4 Least Deviation Estimates for Multiple Regression 
For the aforesaid regression model the sum of absolute deviations from the true line is 

 

∑ |𝜀𝑖|𝑛
𝑖=1 =  ∑ |𝑦𝑖 −  𝛽0 −  𝛽1𝑥1𝑖 −  𝛽2𝑥2𝑖|𝑛

𝑖=1 .    (2.32) 

 

Now the least deviation estimates of 𝛽0, 𝛽1and 𝛽2 will satisfy  

 
𝜕 ∑ |𝜀𝑖|𝑛

𝑖=1

𝜕𝛽0
=  0,         (2.33) 

 

     
𝜕 ∑ |𝜀𝑖|𝑛

𝑖=1

𝜕𝛽1
=  0,         (2.34) 

 

and      
𝜕 ∑ |𝜀𝑖|𝑛

𝑖=1

𝜕𝛽2
=  0         (2.35) 

 

which are equivalent to  
𝜕 ∑ 𝑙𝑛|𝜀𝑖|𝑛

𝑖=1

𝜕𝛽0
=  −∞           (2.36) 

 

     
𝜕 ∑ 𝑙𝑛|𝜀𝑖|𝑛

𝑖=1

𝜕𝛽1
=  −∞,                   (2.37) 

 

and     
𝜕 ∑ 𝑙𝑛|𝜀𝑖|𝑛

𝑖=1

𝜕𝛽2
=  −∞      (2.38) 

 

Therefore,     𝛽̂0 =  𝑦̅ −  𝛽̂1𝑥̅1 −  𝛽̂2𝑥̅2     (2.39) 
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Moreover,    𝛽̂1 =  (
𝑦

𝑥1
)

̅̅ ̅̅ ̅̅
−  𝛽̂0 (

1

𝑥1
)

̅̅ ̅̅ ̅̅
− 𝛽̂2 (

𝑥2

𝑥1
)

̅̅ ̅̅ ̅̅
            (2.40) 

∴  𝛽̂1 [1 − 𝑥̅1 (
1

𝑥1
)

̅̅ ̅̅ ̅̅
] − [𝑥̅2 (

1

𝑥1
)

̅̅ ̅̅ ̅̅
− (

𝑥2

𝑥1
)

̅̅ ̅̅ ̅̅
] 𝛽̂2-[(

𝑦

𝑥1
)

̅̅ ̅̅ ̅̅
− 𝑦̅ (

1

𝑥1
)

̅̅ ̅̅ ̅̅
] = 0       (2.41) 

 

∴  𝛽̂1 =
[(

𝑦

𝑥1
)

̅̅ ̅̅ ̅̅
− 𝑦̅(

1

𝑥1
)

̅̅ ̅̅ ̅̅
]+[𝑥̅2(

1

𝑥1
)

̅̅ ̅̅ ̅̅
− (

𝑥2
𝑥1

)
̅̅ ̅̅ ̅̅

]𝛽̂2

[1−𝑥̅1(
1

𝑥1
)

̅̅ ̅̅ ̅̅
]

     (2.42) 

   

Again,    
𝜕 ∑ 𝑙𝑛|𝜀𝑖|𝑛

𝑖=1

𝜕𝛽2
=  

𝜕 ∑ 𝑙𝑛|𝑦𝑖− 𝛽0− 𝛽1𝑥1𝑖− 𝛽2𝑥2𝑖|𝑛
𝑖=1

𝜕𝛽2
=  −∞ 

 

∴  𝛽̂2 =  (
𝑦

𝑥2
)

̅̅ ̅̅ ̅̅
− 𝛽̂0 (

1

𝑥2
)

̅̅ ̅̅ ̅̅
− 𝛽̂1 (

𝑥1

𝑥2
)

̅̅ ̅̅ ̅̅
    (2.43) 

 

∴  𝛽̂1 [𝑥̅1 (
1

𝑥2
)

̅̅ ̅̅ ̅̅
− (

𝑥1

𝑥2
)

̅̅ ̅̅ ̅̅
] − 𝛽̂2 [1 − 𝑥̅2 (

1

𝑥2
)

̅̅ ̅̅ ̅̅
]+ [(

𝑦

𝑥2
)

̅̅ ̅̅ ̅̅
− 𝑦̅ (

1

𝑥2
)

̅̅ ̅̅ ̅̅
] = 0,     (2.44) 

 

∴  𝛽̂2 =
[(

𝑦

𝑥2
)

̅̅ ̅̅ ̅̅
− 𝑦̅(

1

𝑥2
)

̅̅ ̅̅ ̅̅
]+[𝑥̅1(

1

𝑥2
)

̅̅ ̅̅ ̅̅
− (

𝑥1
𝑥2

)
̅̅ ̅̅ ̅̅

]𝛽̂1

[1−𝑥̅2(
1

𝑥2
)

̅̅ ̅̅ ̅̅
]

,      (2.45)  

 

Therefore, from (2.40) and (2.43) we get the following equations of 𝛽̂1, 𝛽̂2such that  

 

𝛽̂1 [1 − 𝑥̅1 (
1

𝑥1
)

̅̅ ̅̅ ̅̅
] − 𝛽̂2 [𝑥̅2 (

1

𝑥1
)

̅̅ ̅̅ ̅̅
− (

𝑥2

𝑥1
)

̅̅ ̅̅ ̅̅
] -[(

𝑦

𝑥1
)

̅̅ ̅̅ ̅̅
−  𝑦̅ (

1

𝑥1
)

̅̅ ̅̅ ̅̅
] = 0  

  

𝛽̂1 [𝑥̅1 (
1

𝑥2
)

̅̅ ̅̅ ̅̅
− (

𝑥1

𝑥2
)

̅̅ ̅̅ ̅̅
] − 𝛽̂2 [1 − 𝑥̅2 (

1

𝑥2
)

̅̅ ̅̅ ̅̅
] + [(

𝑦

𝑥2
)

̅̅ ̅̅ ̅̅
−  𝑦̅ (

1

𝑥2
)

̅̅ ̅̅ ̅̅
] = 0   

 

After the cross multiplication we get the following equations 

 

𝛽̂1

− [𝑥̅2 (
1

𝑥1
)

̅̅ ̅̅ ̅̅
− (

𝑥2

𝑥1
)

̅̅ ̅̅ ̅̅
] [(

𝑦

𝑥2
)

̅̅ ̅̅ ̅̅
− 𝑦̅ (

1

𝑥2
)

̅̅ ̅̅ ̅̅
] − [1 − 𝑥̅2 (

1

𝑥2
)

̅̅ ̅̅ ̅̅
] [(

𝑦

𝑥1
)

̅̅ ̅̅ ̅̅
−  𝑦̅ (

1

𝑥1
)

̅̅ ̅̅ ̅̅
]
 

 

= 
𝛽̂2

−[𝑥̅1(
1

𝑥2
)

̅̅ ̅̅ ̅̅
− (

𝑥1
𝑥2

)
̅̅ ̅̅ ̅̅

][(
𝑦

𝑥1
)

̅̅ ̅̅ ̅̅
− 𝑦̅(

1

𝑥1
)

̅̅ ̅̅ ̅̅
]−[1−𝑥̅1(

1

𝑥1
)

̅̅ ̅̅ ̅̅
][(

𝑦

𝑥2
)

̅̅ ̅̅ ̅̅
− 𝑦̅(

1

𝑥2
)

̅̅ ̅̅ ̅̅
]
 

 

= 
1

−[1−𝑥̅1(
1

𝑥1
)

̅̅ ̅̅ ̅̅
][1−𝑥̅2(

1

𝑥2
)

̅̅ ̅̅ ̅̅
]+[𝑥̅1(

1

𝑥2
)

̅̅ ̅̅ ̅̅
− (

𝑥1
𝑥2

)
̅̅ ̅̅ ̅̅

][𝑥̅2(
1

𝑥1
)

̅̅ ̅̅ ̅̅
− (

𝑥2
𝑥1

)
̅̅ ̅̅ ̅̅

]
 

 

Therefore,  

∴  𝛽̂1 =
[𝑥̅2(

1

𝑥1
)

̅̅ ̅̅ ̅̅
− (

𝑥2
𝑥1

)
̅̅ ̅̅ ̅̅

][(
𝑦

𝑥2
)

̅̅ ̅̅ ̅̅
− 𝑦̅(

1

𝑥2
)

̅̅ ̅̅ ̅̅
]+ [1−𝑥̅2(

1

𝑥2
)

̅̅ ̅̅ ̅̅
][(

𝑦

𝑥1
)

̅̅ ̅̅ ̅̅
− 𝑦̅(

1

𝑥1
)

̅̅ ̅̅ ̅̅
]

[1−𝑥̅1(
1

𝑥1
)

̅̅ ̅̅ ̅̅
][1−𝑥̅2(

1

𝑥2
)

̅̅ ̅̅ ̅̅
]−[𝑥̅1(

1

𝑥2
)

̅̅ ̅̅ ̅̅
− (

𝑥1
𝑥2

)
̅̅ ̅̅ ̅̅

][𝑥̅2(
1

𝑥1
)

̅̅ ̅̅ ̅̅
− (

𝑥2
𝑥1

)
̅̅ ̅̅ ̅̅

]
    (2.46) 

 

∴  𝛽̂2 =
[𝑥̅1(

1

𝑥2
)

̅̅ ̅̅ ̅̅
− (

𝑥1
𝑥2

)
̅̅ ̅̅ ̅̅

][(
𝑦

𝑥1
)

̅̅ ̅̅ ̅̅
− 𝑦̅(

1

𝑥1
)

̅̅ ̅̅ ̅̅
]+[1−𝑥̅1(

1

𝑥1
)

̅̅ ̅̅ ̅̅
][(

𝑦

𝑥2
)

̅̅ ̅̅ ̅̅
− 𝑦̅(

1

𝑥2
)

̅̅ ̅̅ ̅̅
]

[1−𝑥̅1(
1

𝑥1
)

̅̅ ̅̅ ̅̅
][1−𝑥̅2(

1

𝑥2
)

̅̅ ̅̅ ̅̅
]−[𝑥̅1(

1

𝑥2
)

̅̅ ̅̅ ̅̅
− (

𝑥1
𝑥2

)
̅̅ ̅̅ ̅̅

][𝑥̅2(
1

𝑥1
)

̅̅ ̅̅ ̅̅
− (

𝑥2
𝑥1

)
̅̅ ̅̅ ̅̅

]
     (2.47) 
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3. Properties of the Least Deviation Regression Estimators 
 

Unlike the least square estimates, least deviations estimates may follow other properties 

which might not be BLUE.  

 

Theorem 3.1: If for the simple linear regression model  𝑦 =  𝛽0 +  𝛽1𝑥 +  𝜀, 𝛽0 and 𝛽1are 

the unknown the intercept and the slope constant known as regression coefficients and  𝜀 

is a random error component, and if we have 𝑛 pairs of data, say 
(𝑦1, 𝑥1), (𝑦2, 𝑥2), … , (𝑦𝑛, 𝑥𝑛), then R be the percentage of observations that explains the 

extent fit of the model such that  

0 <
∑ |𝑦̂−𝑦̅|𝑛

𝑖=1

∑ |𝑦𝑖−𝑦̅|𝑛
𝑖=1

 = R < 1. 

 

Here R presents the percentage of observations being explained by the fitted model. The 

proof has been shown in Appendix A1.  

 

Theorem 3.2: If for the simple linear regression model  𝑦 =  𝛽0 +  𝛽1𝑥 +  𝜀, 𝛽0 and 𝛽1are 

the unknown the intercept and the slope constant known as regression coefficients and  𝜀 

is a random error component, and if we have 𝑛 pairs of data, say 

(𝑦1, 𝑥1), (𝑦2, 𝑥2), … , (𝑦𝑛, 𝑥𝑛) obtained from a controlled experimental design or from an 

observational study or from existing historical records, then the estimator of 𝛽1 will be  

𝛽̂1 =  
(

𝑦

𝑥
)

̅̅̅̅̅
− 𝑦̅ (

1

𝑥
)

̅̅ ̅̅

[1 −  𝑥̅ (
1

𝑥
)

̅̅ ̅̅
]
 

such that 𝛽̂1 is an unbiased estimator i.e. 𝐸(𝛽̂1) =  𝛽1. 

 

Therefore, 𝛽̂1 is an unbiased estimator for the Least Deviation Method. The proof has been 

placed in Appendix A2.  

 

Theorem 3.3: If for the simple linear regression model 𝑦 =  𝛽0 +  𝛽1𝑥 +  𝜀, 𝛽0 and 𝛽1are 

the unknown the intercept and the slope constant known as regression coefficients and  𝜀 

is a random error component, and if we have 𝑛 pairs of data, say 
(𝑦1, 𝑥1), (𝑦2, 𝑥2), … , (𝑦𝑛, 𝑥𝑛), then the estimator of 𝛽1 will be  

𝛽̂1 =  
(

𝑦

𝑥
)

̅̅̅̅̅
− 𝑦̅ (

1

𝑥
)

̅̅ ̅̅

[1 −  𝑥̅ (
1

𝑥
)

̅̅ ̅̅
]
 

such that the variance of the estimator 𝛽̂1 will be  

𝑉(𝛽̂1) =  
𝜎2

𝑛

1

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]

2 [(
1

𝑥2

̅
) + (

1

𝑥
)

̅̅ ̅̅ 2

]. 

The proof has been addressed in Appendix A3. 

 

Proposition 3.3.1: The variance of the Least Square estimator and the Least Deviation 

estimators are 𝑉(𝛽̂1) =  {
1

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
}

2
𝜎2

𝑛
[(

1

𝑥2)
̅̅ ̅̅ ̅̅

+ (
1

𝑥
)

̅̅ ̅̅ 2

]and 𝑉(𝛽̂1) =  
𝜎2

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

 

respectively.  

∴ {
1

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
}

2
𝜎2

𝑛
[(

1

𝑥2)
̅̅ ̅̅ ̅̅

+ (
1

𝑥
)

̅̅ ̅̅ 2

] :
𝜎2

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

 or, 
1

𝑛
[(

1

𝑥2)
̅̅ ̅̅ ̅̅

+ (
1

𝑥
)

̅̅ ̅̅ 2

]: 
[1− 𝑥̅(

1

𝑥
)

̅̅ ̅̅ ̅
]

2

[∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 ]
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∴
[∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1 ]

𝑛
[(

1

𝑥2
)

̅̅ ̅̅ ̅̅
+ (

1

𝑥
)

̅̅ ̅̅ ̅2

]: [1 −  𝑥̅ (
1

𝑥
)

̅̅ ̅̅ ̅
]

2

 

 

 

4. Real Life Examples and Simulation 
 

Various real life examples along with data will be cited to explain the credibility of the 

Least Deviation Estimates over Least Square Estimates. Multiple simulations will be 

backed to simplify and amplify the limiting behaviors of the Least Deviation Estimators 

and Estimates. 

 

Example 4.1 1: Shelf-Stocking Data  
For a given shelf stocking data of size 15 of paired observations of time (minutes), y, and 

cases stocked, x, as referred to the page 50 in the text of Montogomery on Introduction to 

Linear Regression Analysis (fifth edition), we created a scatter plot where we observe that 

almost all paired observations form a linear trend. Two linear regressions lines having 

following equations have been fitted according to the Least Square Method and Least 

Deviation Method respectively as  

 

𝑦̂𝑂𝐿𝑆 = −0.09 + 0.41𝑥, 

 

𝑦̂𝑂𝐿𝐷 = −0.24 + 0.42𝑥. 

 

We also observe the following dispersion measures. 

 

∑(𝑦 − 𝑦̅)2= ∑(𝑦 − 𝑦̂𝑂𝐿𝑆)2+ ∑(𝑦̂𝑂𝐿𝑆 − 𝑦̅)2 < ∑(𝑦 − 𝑦̂𝑂𝐿𝐷)2+ ∑(𝑦̂𝑂𝐿𝐷 − 𝑦̅)2 

 

229.53 = 1.21 + 228.32 < 1.36 + 240.06 

 
∑|𝑦 − 𝑦̅| < ∑|𝑦 − 𝑦̂𝑂𝐿𝑆|+ ∑|𝑦̂𝑂𝐿𝑆 − 𝑦̅| < ∑|𝑦 − 𝑦̂𝑂𝐿𝐷|+ ∑|𝑦̂𝑂𝐿𝐷 − 𝑦̅| 

 

51.82 < 3.51 + 51.95 < 3.46 + 53.27 

 

∑(𝑦 − 𝑦̂𝑂𝐿𝑆)2 < ∑(𝑦 − 𝑦̂𝑂𝐿𝐷)2 but ∑|𝑦 − 𝑦̂𝑂𝐿𝑆| > ∑|𝑦 − 𝑦̂𝑂𝐿𝐷| 
 

𝑅2
𝑂𝐿𝑆= 

∑(𝑦̂𝑂𝐿𝑆−𝑦̅)2

∑(𝑦−𝑦̅)2  = 
228.32

229.53
 = 0.995 < 𝑅2

𝑂𝐿𝐷 = 
∑(𝑦̂𝑂𝐿𝐷−𝑦̅)2

∑(𝑦−𝑦̅)2  = 
240.06

229.53
 = 1.05 

 

𝑅𝑂𝐿𝑆 = 
∑|𝑦̂𝑂𝐿𝑆−𝑦̅|

∑|𝑦−𝑦̅|
 = 

51.95

51.82
 = 1.00 < 𝑅𝑂𝐿𝐷 = 

∑|𝑦̂𝑂𝐿𝐷−𝑦̅|

∑|𝑦−𝑦̅|
 = 

53.27

51.82
 = 1.03 

 

It is evident from the aforesaid dispersion measures that ∑ 𝑒2 is less for OLS method but 

∑|𝑒|  is less for OLD method. Moreover, total variation of the unidimensional data (y), 

being explained by two dimensional co-efficient of determination, is less for OLS fit, and 

also being explained by one dimensional co-efficient of determination, is also less for OLS 

fit. So, one dimensional scaled dispersion not only commit less error but also provide better 

quality of estimation for OLD method compared to OLS method. Therefore, through the 

current example we come to know that Ordinary Least Dispersion Method performs better 

than Ordinary Least Square Method at least for simple linear regression.  
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Example 4.2: Voltage Drop Data having extreme observation(s) and/or 

outlier(s) 
Referring to a given voltage-drop-data of page 232 in the same book a set of 41 paired 

observations of voltage drop, y, and the time (seconds), x. From the scatter plot we observe 

that almost all paired observations form a curvy trend except one/two outliers. Two linear 

regressions lines having following equations have been fitted according to the Least Square 

Method and Least Deviation Method respectively as  

 

𝑦̂𝑂𝐿𝑆 = 39.02 − 0.64𝑥, 

 

𝑦̂𝑂𝐿𝐷 = 9.25 + 1.80𝑥. 

 

We also observe the following dispersion measures. 

 

∑(𝑦 − 𝑦̅)2= ∑(𝑦 − 𝑦̂𝑂𝐿𝑆)2+ ∑(𝑦̂𝑂𝐿𝑆 − 𝑦̅)2 < ∑(𝑦 − 𝑦̂𝑂𝐿𝐷)2+ ∑(𝑦̂𝑂𝐿𝐷 − 𝑦̅)2 

 

682461 = 639411 + 3449 < 689474 + 27230 

 

∑|𝑦 − 𝑦̅| < ∑|𝑦 − 𝑦̂𝑂𝐿𝑆|+ ∑|𝑦̂𝑂𝐿𝑆 − 𝑦̅| < ∑|𝑦 − 𝑦̂𝑂𝐿𝐷|+ ∑|𝑦̂𝑂𝐿𝐷 − 𝑦̅| 
 

1584 < 1646 + 189 < 1609 + 532 

 

∑(𝑦 − 𝑦̂𝑂𝐿𝑆)2 < ∑(𝑦 − 𝑦̂𝑂𝐿𝐷)2 but ∑|𝑦 − 𝑦̂𝑂𝐿𝑆| > ∑|𝑦 − 𝑦̂𝑂𝐿𝐷| 
 

𝑅2
𝑂𝐿𝑆= 

∑(𝑦̂𝑂𝐿𝑆−𝑦̅)2

∑(𝑦−𝑦̅)2  = 
3449

682461
 = 0.005 < 𝑅2

𝑂𝐿𝐷 = 
∑(𝑦̂𝑂𝐿𝐷−𝑦̅)2

∑(𝑦−𝑦̅)2  = 
27230

682461
 = 0.04 

 

𝑅𝑂𝐿𝑆 = 
∑|𝑦̂𝑂𝐿𝑆−𝑦̅|

∑|𝑦−𝑦̅|
 = 

189

1584
 = 0.12< 𝑅𝑂𝐿𝐷 = 

∑|𝑦̂𝑂𝐿𝐷−𝑦̅|

∑|𝑦−𝑦̅|
 = 

532

1584
 = 0.34 

 

It is evident from the aforesaid dispersion measures that ∑ 𝑒2 is less (639411<689474) for 

OLS method but ∑|𝑒| is less (1646>1609) for OLD method. Moreover, total variation of 

the unidimensional data (y), being explained by two dimensional co-efficient of 

determination, is less(0.005<0.04) for OLS fit, and also being explained by one 

dimensional co-efficient of determination, is alsoless (0.12<0.34) for OLS fit. So, one 

dimensional scaled dispersion not only commit less error but also provide acutely better 

quality of estimation for OLD method compared to OLS method. So, the Ordinary Least 

Dispersion Method is behaving sharply better than Ordinary Least Square Method for the 

current example.  

 

Example 4.3: Voltage Drop Data without extreme observation(s) and/or 

outlier(s) 
The set of data has 3 pairs of extreme observations and/or outliers which are (8.33, 0.01), 

(823, 5), (14, 95). After dropping these 3 extreme observations, we have found the 

following features. Two linear regressions lines having following equations have been 

fitted according to the Least Square Method and Least Deviation Method respectively as  

 

𝑦̂𝑂𝐿𝑆 = 9.69 − 0.16𝑥, 

 

𝑦̂𝑂𝐿𝐷 = 7.41 + 0.38𝑥. 
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We also observe the following dispersion measures. 

 

∑(𝑦 − 𝑦̅)2= ∑(𝑦 − 𝑦̂𝑂𝐿𝑆)2+ ∑(𝑦̂𝑂𝐿𝑆 − 𝑦̅)2 < ∑(𝑦 − 𝑦̂𝑂𝐿𝐷)2+ ∑(𝑦̂𝑂𝐿𝐷 − 𝑦̅)2 

 

236 = 203 + 33 < 261 + 179 

 

∑|𝑦 − 𝑦̅| < ∑|𝑦 − 𝑦̂𝑂𝐿𝑆|+ ∑|𝑦̂𝑂𝐿𝑆 − 𝑦̅| < ∑|𝑦 − 𝑦̂𝑂𝐿𝐷|+ ∑|𝑦̂𝑂𝐿𝐷 − 𝑦̅| 
 

83<79 + 31 < 81 + 72 

 

∑(𝑦 − 𝑦̂𝑂𝐿𝑆)2 = 203 ≪ ∑(𝑦 − 𝑦̂𝑂𝐿𝐷)2=261and ∑|𝑦 − 𝑦̂𝑂𝐿𝑆|=79 < ∑|𝑦 − 𝑦̂𝑂𝐿𝐷| = 81 

 

𝑅2
𝑂𝐿𝑆= 

∑(𝑦̂𝑂𝐿𝑆−𝑦̅)2

∑(𝑦−𝑦̅)2  = 
33

236
 = 0.14 < 𝑅2

𝑂𝐿𝐷 = 
∑(𝑦̂𝑂𝐿𝐷−𝑦̅)2

∑(𝑦−𝑦̅)2  = 
179

236
 = 0.76 

 

𝑅𝑂𝐿𝑆 = 
∑|𝑦̂𝑂𝐿𝑆−𝑦̅|

∑|𝑦−𝑦̅|
 = 

31

83
 = 0.37< 𝑅𝑂𝐿𝐷 = 

∑|𝑦̂𝑂𝐿𝐷−𝑦̅|

∑|𝑦−𝑦̅|
 = 

72

83
 = 0.87 

 

∑ 𝑒2 is more less (203<<261) but ∑|𝑒| is slight less (79<81) for OLS method. Moreover, 

total variation of the unidimensional data (y), being explained by two dimensional co-

efficient of determination, is less (0.14<0.76) for OLS fit, and also being explained by one 

dimensional co-efficient of determination, is also less (0.37<0.87) for OLS fit. So, one 

dimensional scaled dispersion not only conductalmost same error but also provide better 

quality of estimation for OLD method compared to OLS method. So, the Ordinary Least 

Dispersion Method worth better estimation compared to Ordinary Least Square Method 

after eliminating the outliers.   

 

Example 4.4: Bacteria in Canned Food: Exponential Data 
In page 203of the same text, a set of 12 paired observations of average number of surviving 

bacteria in a canned food product, y, and the times of exposure to 300 degree of Fahrenheit 

heat (minutes), x, are available. From the scatter plot we observe that the paired 

observations form an exponential trend.  

 

Two linear regressions lines having following equations have been fitted according to the 

Least Square Method and Least Deviation Method respectively as  

 

𝑦̂𝑂𝐿𝑆 = 142.20 − 12.50𝑥, 

 

𝑦̂𝑂𝐿𝐷 = 166.25 − 16.18𝑥. 

 

We also observe the following dispersion measures. 

 

∑(𝑦 − 𝑦̅)2= ∑(𝑦 − 𝑦̂𝑂𝐿𝑆)2+ ∑(𝑦̂𝑂𝐿𝑆 − 𝑦̅)2<∑(𝑦 − 𝑦̂𝑂𝐿𝐷)2+ ∑(𝑦̂𝑂𝐿𝐷 − 𝑦̅)2 

 

22269 = 3348 + 18921 < 5307 + 582 

 

∑|𝑦 − 𝑦̅| < ∑|𝑦 − 𝑦̂𝑂𝐿𝑆|+ ∑|𝑦̂𝑂𝐿𝑆 − 𝑦̅| < ∑|𝑦 − 𝑦̂𝑂𝐿𝐷|+ ∑|𝑦̂𝑂𝐿𝐷 − 𝑦̅| 
 

453 < 150 + 449 < 223 + 582 

 

∑(𝑦 − 𝑦̂𝑂𝐿𝑆)2 = 3348 ∑(𝑦 − 𝑦̂𝑂𝐿𝐷)2= 5307 and ∑|𝑦 − 𝑦̂𝑂𝐿𝑆|= 150<∑|𝑦 − 𝑦̂𝑂𝐿𝐷| = 223 
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𝑅2
𝑂𝐿𝑆= 

∑(𝑦̂𝑂𝐿𝑆−𝑦̅)2

∑(𝑦−𝑦̅)2  = 
18921

22269
 = 0.85> 𝑅2

𝑂𝐿𝐷 = 
∑(𝑦̂𝑂𝐿𝐷−𝑦̅)2

∑(𝑦−𝑦̅)2  = 
582

22269
 = 0.03 

 

𝑅𝑂𝐿𝑆 = 
∑|𝑦̂𝑂𝐿𝑆−𝑦̅|

∑|𝑦−𝑦̅|
 = 

449

453
 = 0.81< 𝑅𝑂𝐿𝐷 = 

∑|𝑦̂𝑂𝐿𝐷−𝑦̅|

∑|𝑦−𝑦̅|
 = 

582

453
 = 1.05 

 

∑ 𝑒2 is more less (3348<<5307) but ∑|𝑒| is not much more less (150<223) for OLS 

method. Moreover, total variation of the unidimensional data (y), being explained by two 

dimensional co-efficient of determination, is greater (0.85>0.03) for OLS fit, and being 

explained by one dimensional co-efficient of determination, is less (0.81<1.05) for OLS 

fit. Although, one dimensional scaled dispersion conduct more error for exponential data, 

but commit better quality of estimation for OLD method compared to OLS method since 

one dimensional coefficient of dispersion is greater for OLD (𝑅𝑂𝐿𝑆= 0.81 < 𝑅𝑂𝐿𝐷 = 1.05). 

So, the Ordinary Least Dispersion Method worth better estimation compared to Ordinary 

Least Square Method even for the exponential data.   

 
Example 4.5: Delivery time Data: Two independent variables  
A set of 25 paired observations of average number of delivery time, y, and the number of 

cases, 𝑥1, and the distances, 𝑥1, are available in page 74 of the same text. From the scatter 

plot we observe that the 3-tupled observations form a 3D form.  

 

Two linear regressions lines having following equations have been fitted according to the 

Least Square Method and Least Deviation Method respectively as  

 

𝑦̂𝑂𝐿𝑆 = 2.34 − 1.62𝑥1 + 0.01𝑥2, 

 

𝑦̂𝑂𝐿𝐷 = 3.94 + 1.68𝑥1 + 0.01𝑥2. 

 

We also observe the following dispersion measures. 

 

∑(𝑦 − 𝑦̅)2= ∑(𝑦 − 𝑦̂𝑂𝐿𝑆)2+ ∑(𝑦̂𝑂𝐿𝑆 − 𝑦̅)2<∑(𝑦 − 𝑦̂𝑂𝐿𝐷)2+ ∑(𝑦̂𝑂𝐿𝐷 − 𝑦̅)2 

 

5785 = 234 + 5551 > 280 + 4774 

 

∑|𝑦 − 𝑦̅| < ∑|𝑦 − 𝑦̂𝑂𝐿𝑆|+ ∑|𝑦̂𝑂𝐿𝑆 − 𝑦̅| < ∑|𝑦 − 𝑦̂𝑂𝐿𝐷|+ ∑|𝑦̂𝑂𝐿𝐷 − 𝑦̅| 
 

251 < 57 + 257 > 58 + 235 

 

∑(𝑦 − 𝑦̂𝑂𝐿𝑆)2 = 234 < ∑(𝑦 − 𝑦̂𝑂𝐿𝐷)2= 280 and ∑|𝑦 − 𝑦̂𝑂𝐿𝑆| = 150 <∑|𝑦 − 𝑦̂𝑂𝐿𝐷| = 223 

 

𝑅2
𝑂𝐿𝑆= 

∑(𝑦̂𝑂𝐿𝑆−𝑦̅)2

∑(𝑦−𝑦̅)2  = 
5551

5785
 = 0.96 > 𝑅2

𝑂𝐿𝐷 = 
∑(𝑦̂𝑂𝐿𝐷−𝑦̅)2

∑(𝑦−𝑦̅)2  = 
4774

5785
 = 0.83 

 

𝑅𝑂𝐿𝑆 = 
∑|𝑦̂𝑂𝐿𝑆−𝑦̅|

∑|𝑦−𝑦̅|
 = 

257

251
 = 1.02 > 𝑅𝑂𝐿𝐷 = 

∑|𝑦̂𝑂𝐿𝐷−𝑦̅|

∑|𝑦−𝑦̅|
 = 

235

251
 = 0.94 

 

∑ 𝑒2 is less (234<280) for OLS but ∑|𝑒| is not much more (150<223) for OLD method. 

Moreover, total variation of the unidimensional data (y), being explained by two 

dimensional co-efficient of determination, is greater (0.96>0.83) for OLS fit, and also 

being explained by one dimensional co-efficient of determination, is also greater 

(1.02>0.94) for OLS fit. One dimensional scaled dispersion conduct little bit more error 
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and commit less good quality of estimation for OLD method compared to OLS method. 

So, the Ordinary Least Dispersion Method does not worth better estimation compared to 

Ordinary Least Square Method for multiple regression.   

 

 

5. Comparison Between Least Deviation Estimates and Least Square 

Estimates  
 

Performances and potentialities will be better for the Least Deviations Estimates compared 

to those of Least Square Method due to the reason is that the estimators of the regression 

coefficients are maintaining the similar dimension of the true data since they are expressed 

in terms of the mathematical operations with unidimensional scaling. Besides, for the 

presence of extreme values or outliers, the two dimensional scaling of the dispersions of 

the fitted line from the data are being exaggerated. So, the malicious influences of the 

extreme value(s) and/or outlier(s) drastically affects the overall estimation of parameters 

in regression based on Least Square Method. On the other hand, the absolute deviations for 

the dispersion of the observations apart from fitted regression line in regression estimators 

are apathetic to the extreme observation(s) and/or outlier(s) and equi-sensitive to all 

observations. In all of the aforesaid examples (1 to 3), OLD method gives batter estimation 

than the OLS method since one dimensional co-efficient of determination is greater for 

OLD rather than OLS for each case.  

 

Moreover, error and quality estimation are two complementary factors. If error increases 

and quality estimation decreases or vice versa, then it is better to assess the relative 

performance like estimation by error. If for one dimensional data, one dimensional relative 

variation due to regression with respect to total error encountered for fitting the model by 

one method is greater than that of the other method, then it is better to use the first method 

for fitting regression line. Interestingly enough it is observed that the relative fit to the error 

as 

𝐹𝐵𝑅 =
𝐹𝑖𝑡

𝐸𝑟𝑟𝑜𝑟
=

∑|𝑦̂𝑀𝑒𝑡ℎ𝑜𝑑−𝑦̅|

∑|𝑦−𝑦̂𝑀𝑒𝑡ℎ𝑜𝑑|
            (5.1)  

 

is greater for Ordinary Least Deviation Method compared to Ordinary Least Square 

Method for all four cases. That is  

 

𝐹𝐵𝑅𝑂𝐿𝐷 =
𝐹𝑖𝑡𝑂𝐿𝐷

𝐸𝑟𝑟𝑜𝑟𝑂𝐿𝐷
=

∑|𝑦̂𝑂𝐿𝐷−𝑦̅|

∑|𝑦−𝑦̂𝑂𝐿𝐷|
> 𝐹𝐵𝑅𝑂𝐿𝑆 =

𝐹𝑖𝑡𝑂𝐿𝑆

𝐸𝑟𝑟𝑜𝑟𝑂𝐿𝑆
=

∑|𝑦̂𝑂𝐿𝑆−𝑦̅|

∑|𝑦−𝑦̂𝑂𝐿𝑆|
.      (5.2) 

 

In the afore-described three examples, the FBR for OLD is always greater than OLS 

(15.4>14.9, 0.33>0.11, 0.9>0.16).  

 

In example 4 and 5, one dimensional FBR for OLS is greater than one dimensional FBR 

for OLD (2.99>2.61, 4.50>4.04). Two dimensional FBR for OLS is lower than two 

dimensional FBR for OLD (6.65<7.05) for example 4 but higher for example 5 

(23.74>17.08). In example 4, the data follow exponential pattern. As a result, one 

dimensional and two dimensional relative co-efficient of determination (Fit by Error 

[FBR]) are almost equivalent (4.50≈ 4.04, 6.65≈ 7.05). But in example 5, two dimensional 

relative co-efficient of determination for OLS is greater than that for OLD, because in the 

current multiple regression there are two independent variables and the regression model 

is a plane rather that a line in 3D space. The two dimensional co-efficient of determination 

can be described as below 
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𝐹𝐵𝑅 =
𝐹𝑖𝑡

𝐸𝑟𝑟𝑜𝑟
=

∑(𝑦̂𝑀𝑒𝑡ℎ𝑜𝑑−𝑦̅)2

∑(𝑦−𝑦̂𝑀𝑒𝑡ℎ𝑜𝑑)2.            (5.3) 

 

Here we also observe the following inequalities.  

 

𝐹𝐵𝑅𝑂𝐿𝑆 =
𝐹𝑖𝑡𝑂𝐿𝑆

𝐸𝑟𝑟𝑜𝑟𝑂𝐿𝑆
=

∑(𝑦̂𝑂𝐿𝑆−𝑦̅)2

∑(𝑦−𝑦̂𝑂𝐿𝑆)2 > 𝐹𝐵𝑅𝑂𝐿𝐷 =
𝐹𝑖𝑡𝑂𝐿𝐷

𝐸𝑟𝑟𝑜𝑟𝑂𝐿𝐷
=

∑(𝑦̂𝑂𝐿𝐷−𝑦̅)2

∑(𝑦−𝑦̂𝑂𝐿𝐷)2         (5.4) 

 

As a result, the distance between any point/data and the fitted plane is a perpendicular plane 

rather than a perpendicular line. So, two dimensional relative co-efficient of determination 

is greater and better for measuring the quality of fit of the model based on OLS estimation 

in example 5. 

 

 

Conclusion 

 
Various Random Effect Models of the Analysis of Variance and Design of Experiment and 

several Time Series Models and multiple Time Series Regression Models and multiple 

Non-parametric Regression Models can be modified using the same concept of Least 

Deviation Method instead of Least Square Method and Weighted Least Square Method or 

Reweighted Least Square Method. The form of Coefficient of Determination, Outlier 

Detection and Cut-off Bandwidth will also be modified for the same method.  
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Appendix A 
 

A1: Proof of Theorem 3.1  

∑|𝑦𝑖 − 𝑦̅|

𝑛

𝑖=1

=  ∑|(𝑦𝑖 − 𝑦̂) + (𝑦̂ − 𝑦̅)|

𝑛

𝑖=1

≤ ∑|𝑦𝑖 − 𝑦̂| + ∑|𝑦̂ −  𝑦̅|

𝑛

𝑖=1

𝑛

𝑖=1

 

∴ 1 ≤  
∑ |𝑦𝑖 − 𝑦̂|𝑛

𝑖=1

∑ |𝑦𝑖 − 𝑦̅|𝑛
𝑖=1

+  
∑ |𝑦̂ − 𝑦̅|𝑛

𝑖=1

∑ |𝑦𝑖 − 𝑦̅|𝑛
𝑖=1

 

∴ 1 −  
∑ |𝑦𝑖− 𝑦̂|𝑛

𝑖=1

∑ |𝑦𝑖−𝑦̅|𝑛
𝑖=1

≤  
∑ |𝑦̂−𝑦̅|𝑛

𝑖=1

∑ |𝑦𝑖−𝑦̅|𝑛
𝑖=1

 = R   

∴ 0 ≤ 𝑅 ≤ 1. 
 

A2: Proof of Theorem 3.2 

𝐸(𝛽̂1) = 𝐸 {
(

𝑦

𝑥
)

̅̅ ̅̅ ̅
− 𝑦̅(

1

𝑥
)

̅̅ ̅̅ ̅

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
} = 

1

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
[𝐸 {(

𝑦

𝑥
)

̅̅̅̅̅
} − (

1

𝑥
)

̅̅ ̅̅
𝐸(𝑦̅)]. 

Now, 

 𝐸 [(
𝑦

𝑥
)

̅̅̅̅̅
] = 𝐸 (

1

𝑛
∑

𝑦𝑖

𝑥𝑖

𝑛
𝑖=1 )= 

1

𝑛
E(

𝑦1

𝑥1
+

𝑦2

𝑥2
+ ⋯ +

𝑦𝑛

𝑥𝑛
) = 

1

𝑛
(

𝛽0

𝑥1
+ 𝛽1 +

𝛽0

𝑥2
+ 𝛽1 + ⋯ +

𝛽0

𝑥𝑛
+ 𝛽1) 

 

= 𝛽0
1

𝑛
∑

1

𝑥𝑖

𝑛
𝑖=1  + 𝛽1 = 𝛽0 (

1

𝑥
)

̅̅ ̅̅
+ 𝛽1 

 

Since,     𝑦~𝑁(𝛽0 + 𝛽1𝑥, 𝜎2), ∴
𝑦

𝑥
~𝑁(

𝛽0

𝑥
+ 𝛽1,

𝜎2

𝑥2) 

 

∴ 𝐸(𝛽̂1)=
1

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
[𝛽0 (

1

𝑥
)

̅̅ ̅̅
+ 𝛽1 −  (

1

𝑥
)

̅̅ ̅̅
(𝛽0 + 𝛽1𝑥̅)]= 

1

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
[𝛽1 −  𝛽1𝑥̅ (

1

𝑥
)

̅̅ ̅̅
]= 𝛽1 . 

 

A3: Proof of Theorem 3.3 

𝑉(𝛽̂1) = 𝑉 {
(

𝑦

𝑥
)

̅̅ ̅̅ ̅
− 𝑦̅(

1

𝑥
)

̅̅ ̅̅ ̅

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
} = {

1

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
}

2

[𝑉 {(
𝑦

𝑥
)

̅̅̅̅̅
} + {(

1

𝑥
)

̅̅ ̅̅
}

2

𝑉(𝑦̅)]. 

Now,  

𝑉 [(
𝑦

𝑥
)

̅̅̅̅̅
] = 𝑉 (

1

𝑛
∑

𝑦𝑖

𝑥𝑖

𝑛
𝑖=1 ) = 

1

𝑛2 𝑉 (
𝑦1

𝑥1
+

𝑦2

𝑥2
+ ⋯ +

𝑦𝑛

𝑥𝑛
) = 

1

𝑛2 (
𝜎2

𝑥1
2 +

𝜎2

𝑥2
2 + ⋯ +

𝜎2

𝑥𝑛
2) 

 

= 
𝜎2

𝑛2
∑

1

𝑥𝑖
2

𝑛
𝑖=1  = 

𝜎2

𝑛
(

1

𝑥2)
̅̅ ̅̅ ̅̅

 

 

𝑉 [𝑦̅ (
1

𝑥
)

̅̅ ̅̅
] =  (

1

𝑥
)

̅̅ ̅̅ 2

𝑉(𝑦̅) = (
1

𝑥
)

̅̅ ̅̅ 2
𝜎2

𝑛
 

 

𝑉(𝛽̂1) = 𝑉 {
(

𝑦

𝑥
)

̅̅ ̅̅ ̅
− 𝑦̅(

1

𝑥
)

̅̅ ̅̅ ̅

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
} = {

1

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
}

2

[𝑉 {(
𝑦

𝑥
)

̅̅̅̅̅
} + 𝑉 {𝑦̅ (

1

𝑥
)

̅̅ ̅̅
}] 

= {
1

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
}

2

[
𝜎2

𝑛
(

1

𝑥2)
̅̅ ̅̅ ̅̅

+ (
1

𝑥
)

̅̅ ̅̅ 2
𝜎2

𝑛
] 

 

∴ 𝑉(𝛽̂1) =  {
1

[1− 𝑥̅(
1

𝑥
)

̅̅ ̅̅ ̅
]
}

2
𝜎2

𝑛
[(

1

𝑥2)
̅̅ ̅̅ ̅̅

+ (
1

𝑥
)

̅̅ ̅̅ 2

]. 
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