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Abstract 

Recent and notable immunotherapeutic successes for the treatments of 
melanoma, lung, and renal cancers have catalyzed wide-spread development of novel 
immunotherapies and combinations for a variety of cancers. Pre-clinical identification of 
efficacious and synergistic drug combinations in vivo remains perplexing.  Among the 
many experimental hurdles, inbred syngeneic replicate mice have been observed to 
display categorically heterogeneous tumor responses, whereby subgroups of inbred mice 
can show different outcomes: resistance, partial response, or complete response, to the 
same immuno-interventions. Statistical analysis is therefore complicated by the various 
ways that a drug combination can be superior to single agents.               

We applied Bayesian statistics to evaluate drug combinations in syngeneic mouse 
tumor experiments, in the presence of heterogeneous categorical responses to treatment. 
Our Bayesian procedure can be applied to compare drug combinations to monotherapies 
in multiple endpoints simultaneously, thereby inferring multiple possible ways that a drug 
combination can be superior to monotherapies.  We propose our Bayesian statistical 
analysis for evaluating immunotherapeutic drug combinations in syngeneic mice.      
 
Key Words: Bayesian, Tumor, Mouse, Drug Combination, Immunotherapy, Synergy, 
Categorical, Mixture 
 
  

1. Introduction 
Immuno-oncology (IO) drugs are designed to modify host immune responses 

against cancerous cells.  Notable IO successes have been realized for the clinical 
treatments of multiple cancer types, encouraging further advances (1).  As a relatively 
new paradigm for anti-cancer treatment, research efforts have been underway to develop 
innovative pharmaceutical systems to scientifically evaluate novel IO agents.  Syngeneic 
mouse allografts are currently the standard in vivo tumor model for IO drug development, 
contributing to proof of efficacy, first in human (FIH) dose projections, safety 
evaluations, as well as clues about drug mechanism of action (MOA) and biomarkers.  
Syngeneic mouse tumor models display mouse immune responses, and lack human 
diversity for translational use (2).  Efforts have been underway to humanize mouse 
immune systems, and consequently, to expand the diversity of available models (3).  
Transgenic models have also been developed to harbor genetic lesions in key driver 
oncogenes, and spontaneously yield tumors in immune competent mice (4–5).  Both 
humanized and transgenic mouse tumor models are as of yet time consuming and 
expensive for widespread use in IO drug development. 
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1.1 IO Drug Combination Development  
IO drug combination drug assessment is among the many strategies currently 

being investigated to enhance IO efficacy (6).  Pre-clinical identification of candidate 
drug combinations remains perplexing at many levels.  To begin with, the term ‘synergy’ 
with respect to drug combinations has many different scientific definitions (7). Preclinical 
in vivo investigations are conducted in: (i) a small collection of replicated tumors, (ii) 
from a limited population of different syngeneic mouse models, (iii) treated in multiple 
ways (8).  Further, syngeneic mouse models are selected for experimentation based on 
experience and/or available biological profiling.  A suitable mouse to scientifically 
evaluate a novel drug combination may not exist in some cases.  By contrast, clinical 
treatment outcomes are summarized over many different patients, treated similarly by 
study arm (9).  While a favorable drug interaction could in theory be inferred clinically, it 
might not be a prerequisite for regulatory approval depending on unmet medical needs. 
Moreover, pharmacological investigations around combination drug doses and schedules 
differ with respect to feasibility and stage (10).      
 
1.2 IO Drug Combination Evaluation 

Our pre-clinical null hypothesis is  
 

H0: the drug combination is not superior to monotherapies 
 
versus the experimental hypothesis  

 
H1: the drug combination is superior to monotherapies 
 

in a study design of n independent replicated mouse tumors implanted in a single type of 
syngeneic mouse model, randomized to four treatment arms: control, drug A, drug B, and 
A+B (7).  In this experimental set up, we require investigations around combined dosing 
and safety as having been performed, our aim not being to optimize drug development, 
rather to evaluate efficacy.  While we acknowledge that drug synergies and combined 
dosing are related, we treat pharmacological explorations and efficacy evaluations 
separately, to arrive at valid scientific conclusions. Further, while the data between 
different types of syngeneic mouse models could be analyzed jointly, depending on 
available biological profiling suspected biases could be introduced. As a counter 
example, a scientific criteria might require proof of efficacy in one type of mouse model 
and not another, i.e., relying on a biological premise.   

Some common endpoints in murine tumor experiments include the tumor free 
response (TFR) rate, tumor growth delay (TGD) or log cell kill (LCK), tumor growth 
inhibition (TGI), progression free and overall survival (PFS, OS) (11). An important 
consideration when selecting an endpoint is that syngeneic mouse tumors grown in inbred 
mouse strains have been observed to display categorically variable responses to the same 
IO therapeutic intervention, whereby subgroups show different outcomes: resistance, 
partial, or complete response (see also (8,12)).  In Figure 1(a) n=8 longitudinal MC38 
tumor volumes mm3 are shown from mice treated with an isotype control antibody and in 
Figure 1(b) treated with an αCtla4(CTLA4 human, Ctla4 mouse) antibody.  Log-linear 
tumor growth was observed in the control arm.  In Figure 1(b) 2 tumors (black) showed 
little-to-no response (NR) to αCtla4, 4 mice (red) experienced transient tumor regression 
followed by progression/re-growth for a TGD response (DR), and 2 mice (purple) were 
TF though end of follow up.  
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Statistical comparisons of treatments in mice are therefore complicated by the 
various ways that drug combinations can be superior to single agents.  Analysis of the 
overall trend in just one endpoint might be sufficient for making unbiased comparisons if 
mice respond categorically the same to a treatment, e.g., when all mice have DR’s to 
treatment, and otherwise can under or over-estimate a single endpoint if outcomes vary 
categorically, while not necessarily simplifying the analysis in an efficient way. We 
introduce Bayesian analysis in methods evaluating combination drug superiority, but first 
we introduce some basic Bayesian analysis concepts.   
 
1.3 Introduction to Bayesian Analysis of a TFR Rate 

Consider the TFR rate associated with a drug in repeated independent, 
randomized, and uniform experimentation of replicated tumors from a single mouse 
model, denoted θTF, which is unknown and unobservable in the population being the true 
TF frequency of treated animals in endless experimentation. Before collecting data about 
the θTF, the likelihood of the count y of TF events in n trials is specified as y ~ 
Binomial(n, θTF). Bayesian analysis begins by specifying prior probabilistic beliefs about 
θTF through the probability function Pr(θTF), or ‘prior’.  Suppose a priori that θTF was 
assumed equally likely to be any value between 0 and 1, following a Beta(1, 1) 
distribution, with prior uncertainty reflected in Figure 2(a). After observing outcomes 
from a designed experiment, the posterior probability function Pr(θTF | data) is computed 
by Bayes Theorem  

Pr(θTF | data) ∝ Pr( data | θTF)∙Pr(θTF ),    (1) 
 
by updating Pr(θTF) with data.  Pr(θTF | data) tells us what we have learned about θTF 
given empirical observations since the outset.  In this example, the posterior is derived in 
closed form as  

θTF | y, n ~ Beta( 1+ y, 1+ n ‒ y).      (2) 
 

For illustration, suppose interest was in evaluating the experimental hypothesis H1: θTF ≥ 
1/2 in a study of an anti-tumor treatment in n=8 mice, and that by study end the treatment 
yielded 5/8 TF mice.  Before observing outcomes to treatment, the prior probability of H1: 
θTF ≥ 1/2 was Pr(θTF ≥ 1/2) = 50% and after observing outcomes the posterior probability 
Pr(θTF ≥ 1/2 | 5/8 mice TF) = 75%.  The resulting posterior mean of θTF equals 0.60. An 
80% equal tail credible interval for θTF is (0.40, 0.79).  The values 0.40 and 0.79 are 
depicted in Figure 2(b), to illustrate the 80% posterior density region with equal 
probability tails.  In Figure 2(c) the posterior 80% credible interval was narrower, if we 
assumed instead that the replicate sample size had been larger, instead, observing 10/16 
mice TF.  In Figure 2(d), the distribution of the non-TFR, or 1‒θTF, is shown; a reflection 
of the posterior density of θTF.  Note that wider credible intervals can be found by 
allowing the tail probabilities to vary from one another in this example, by applying a 
Highest Posterior Density Region (HPD) region calculation.   
 

2. Methods 
 
2.1 Bayesian Semi-Mixture Response Model 

The log tumor volume ytij at time t for mouse tumor replicate j=1,…,ni 
administered treatment i was modeled as       

 
 
 

𝑦𝑦tij = 𝛽𝛽0ij + 𝛽𝛽1ij𝑡𝑡 − 𝛽𝛽2ij ∙ 𝑔𝑔�𝑡𝑡;𝜗𝜗ij� + 𝜀𝜀tij                        (3) 
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where 𝛽𝛽0𝑖𝑖𝑖𝑖 and 𝛽𝛽1𝑖𝑖𝑖𝑖 are the intercept and slope of the log-linear tumor growth component 
of the model, the term 𝛽𝛽2𝑖𝑖𝑖𝑖 ∙ 𝑔𝑔�𝑡𝑡;𝜗𝜗𝑖𝑖𝑖𝑖� accounts for treatment associated decay or tumor 
growth inhibition, and the term 𝜀𝜀tij accounts for unexplained residual noise.  The function 
𝑔𝑔�𝑡𝑡;𝜗𝜗𝑖𝑖𝑖𝑖�  was assumed to be bounded below and monotonically increasing, 
asymptotically in time to an upper limit.  By definition 𝛽𝛽21j = 0 in the control arm, and 
otherwise, 𝛽𝛽2ij was modeled as a mixture: 𝛽𝛽2ij= 0 indicating no tumor inhibition effect 
and 𝛽𝛽2ij > 0 indicating tumor regression followed by tumor progression.  We specified 
g(t| ϑ) as a Gaussian cumulative distribution function, with mean and standard deviation ϑ 
= (µ, ν).  Conveniently, µ defined the tumor growth decay inflection point and ν the shape 
or duration.  In our case studies our choice of g performed well.  Scientific evidence to 
select g would be helpful, if available.  Finally, 𝜀𝜀tij ’s were modeled as independent 
Gaussian random noise with mean 0 and standard deviation σ.     

Mixture modeling can be helpful when a categorical treatment outcome is 
uncertain or multiple outcomes can plausibly be interpreted from variable data.  By 
modeling a probability between 0 and 1 of an uncertain treatment outcome instead of 
attempting a 0/1 prediction, uncertainty can be holistically and transparently modeled 
rather than dealt with in an ad-hoc and possibly biased way.  Our semi-mixture approach, 
modeling probabilities of: TFR, DR, or NR, is introduced as follows.  If mouse j’s tumor 
regressed below 100mm3 after receiving treatment i and did not re-emerge by study end 
we observed mouse j TF, and fixed mouse j’s TF probability 𝜃𝜃𝑇𝑇𝑇𝑇

(𝑖𝑖𝑖𝑖) = 1.  Tumor volumes 
of TF mice were not modeled; the TF outcome being observed and volumes providing 
nothing additional for our analysis, though possibly of interest for other purposes, e.g., 
time to eradication. Otherwise, the TF probability was set to 0, in which case the 
posterior probability 𝜃𝜃𝐷𝐷𝐷𝐷

(𝑖𝑖𝑖𝑖) of DR was estimated by Bayesian modeling of longitudinal 
tumor volumes.  The posterior magnitude of treatment durability, i.e., fitted non-linear 
tumor regression and re-growth, was computed simultaneously with 𝜃𝜃𝐷𝐷𝐷𝐷

(𝑖𝑖𝑖𝑖) = 𝑃𝑃( 𝛽𝛽2𝑖𝑖𝑖𝑖 > 0 
|data) by Markov Chain Monte Carlo Reversible Jump, as otherwise mouse tumor j was 
estimated to be unresponsive to treatment (NR) and growing log-linearly with probability  
𝜃𝜃𝑁𝑁𝑁𝑁

(𝑖𝑖𝑖𝑖) = 1 − 𝜃𝜃𝐷𝐷𝐷𝐷
(𝑖𝑖𝑖𝑖).   

   We specified the prior distributions 
𝛽𝛽1ij~TruncNorm(4.5, 0.20; 0,∞)    (4) 
𝛽𝛽2ij~TruncNorm(0.10, 0.01; 0,∞)    (5) 
𝛽𝛽2ij~(1− ξ𝑖𝑖𝑖𝑖) ∙ 1{0} + ξ𝑖𝑖𝑖𝑖 ∙ TruncNorm(3, 0.50; 0,∞)  (6) 
ξ𝑖𝑖𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0.50)      (7) 
𝜇𝜇~N(10 , 5)       (8) 
𝜈𝜈−2~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(50, 100)      (9) 
𝜎𝜎−2~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(10, 0.10),     (10) 

where ξ𝑖𝑖𝑖𝑖 is the mixture indicator, equaling 1 for a DR and 0 for NR.  These priors were 
chosen by experience and historically available MC38 mouse tumor data.  The model was 
programmed and fit in the R language, by Markov Chain Monte Carlo (MCMC) 
Reversible Jump, for 10,000 iterations, discarding the run in of 50 iterations, and thinning 
by 10 iterations.  No borrowing of information was allowed between tumors or arms.  
MCMC outcome counts, i.e., posterior random counts denoted #NR or #DR at each 
MCMC iteration, as well as the given or observed #TF count, were all input into a 
Dirichlet(1+#NR,1+#DR,1+#TF) distribution, to generate response rate aggregates in 
each treatment arm.   
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2.2 Conditional Log Cell Kill 
We introduce what we call the conditional LCK (cLCK) endpoint, a measure of 

treatment durability conditioned on a DR outcome.  LCK summarizes the distribution of 
TGD over all treated tumors, normalized by tumor volume doubling time in the control 
arm, naïve to disparate outcomes (12).  LCK as a global measure of efficacy can be 
misleading.  For instance, two treatments can yield similar LCK, though have different 
NR, DR, and TF outcome frequencies. Differences in LCK may not be reflective of 
differences in treatment durability alone and influenced by NR’s and TFR’s to treatment.  
Precaution should be taken, even when relying on censoring adjustments.                  

Since we do not observe DR with complete certainty, we measure cLCK as a 
weighted average of the fitted posterior LCK for each mouse tumor j =1,.., ni weighted by 
𝜃𝜃𝐷𝐷𝐷𝐷

(𝑖𝑖𝑖𝑖) , which is 0 for eradicated tumors and small for tumors with nascent growth 
inhibition.  In our posterior computation, we sampled cLCK by treatment arms i = 2, …, 
as  

 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
(𝑠𝑠)~

Σ𝑗𝑗(𝛽𝛽2𝑖𝑖𝑖𝑖
(𝑠𝑠)÷log(10)�𝛽𝛽2𝑖𝑖𝑖𝑖

(𝑠𝑠)>0�

Σ𝑗𝑗𝐼𝐼(𝛽𝛽2𝑖𝑖𝑖𝑖
(𝑠𝑠)>0)

     (10) 

 
given posterior samples 𝛽𝛽2𝑖𝑖𝑖𝑖

(𝑠𝑠)  (11).  Our approach requires three assumptions, that the 
treated tumors: (i) achieved overall log-linear progression/re-growth, (ii) progressed/re-
grew parallel to the control arm, and that (iii) tumor progression was not too wavy.  
Censoring adjustments are not necessary, or specification of a target tumor size, if these 
conditions are satisfied.     
 
2.3 Superiority in Dual Endpoints 
Comparing the drug combination A+B to drug A and drug B can be complicated with dual 
endpoints by the multiple ways A+B can be superior.  To illustrate, let drugs A and B 
have different trade-offs, drug A with a 20%TFR and 0.75cLCK and B with a 40%TFR 
and 0.50cLCK shown in Figure 3.  A+B is superior if it yields better durability and 
activity to drugs A and B alone.  In this example, superiority calls for >40%TFR and 
>0.75cLCK.  An alternative to superiority with dual endpoints is an improvement in just 
one, an event we term partial superiority. Bayesian evaluation is performed by assigning 
a probability to the statement “superiority.” A statistical finding is made by comparing 
Pr( “superiority” | data) > C, a threshold to control error.  If scientific and other 
considerations warranted, the drug combination utility criteria could be defined in various 
other ways, e.g., non-linear / asymmetric trade-offs or decision trees, applicable in a 
statistical framework and not discussed further here.   
 

3. Results 
 
3.1 αCTLA4 Retrospective Case Study 

We conducted a retrospective Bayesian investigation of data from a study 
combining αCtla4 with a small molecule immuno-modulator.  The original study 
included each of n=8 MC38 mice treated with: isotype control antibody, αCtla4, a small 
molecule immuno-modulator, or the combination of αCtla4 and the immuno-modulator.  
Figure 1(c) displays longitudinal tumor outcomes to αCtla4 combined with a small 
molecule immuno-modulator.  Treatment responses were lacking for the small molecule 
alone while activity was observed for the combination.  Fitted tumor volumes and rates of 
TFR, DR, and NR are displayed in Figure 4.  For αCtla4 the posterior distribution of the 
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NR rate (black) had a skewed long right tail with a mode near 0.20.  The posterior 
distributions of the DR (red) and TF (purple) rates were unimodal with modes not 
surprisingly near 0.50 and 0.25.    

Our primary test hypothesis was drug combination superiority to single agents in 
the TFR and cLCK endpoints.  Since Bayesian analysis does not utilize a null distribution, 
we determined the threshold C for making a statistical conclusion of superiority at the 
10% significance level, see Table 1 for operating characteristics.  Our null scenario was 
that the small molecule alone was inactive while single agent αCtla4 achieved 25%TFR 
and 0.75cLCK.  We conducted S=250 simulated data runs for each scenario.  Simulation 
parameters were specified as  

𝛽𝛽1ij~TruncNorm(4.5, 0.10; 0,∞)   (11) 
𝛽𝛽2ij~TruncNorm(0.12, 0.01; 0,∞)   (12) 

                𝛽𝛽2ij~(1− ξ𝑖𝑖𝑖𝑖) ∙ 1{0} +  
   ξ𝑖𝑖𝑖𝑖 ∙ TruncNorm(2.3cLCK, 0.576cLCK; 0,∞)      (13)  

ξ𝑖𝑖𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜃𝜃𝐷𝐷𝐷𝐷)     (14)  
𝜇𝜇i1~N(10 , 1)      (15)  
𝜈𝜈𝑖𝑖2−2~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(10, 100)     (16) 
𝜎𝜎2 = 0.2      (17) 

where cLCK, 𝜃𝜃𝐷𝐷𝐷𝐷, and 𝜃𝜃𝑇𝑇𝑇𝑇 were user defined and allowed to vary between scenarios, in 
Table 1.  The threshold C = 45% provided false positive error control ≤ 10% and 
reasonable power for alternatives listed in Table 1.  For partial superiority a higher 
threshold C = 80% was required to control the false positive rate for either endpoint, also 
at ≤ 10%.         

The Bayesian posterior probability of superiority, computed as  
 

   Pr(cLCKA+B > cLCKA ∩ cLCKA+B > cLCKB ∩ 
    TFRA+B > TFRA ∩ TFRA+B > TFRB | data)     (18) 
 
was 36%, and we concluded superiority was not supported by the data, conditionally in 
retrospect.  Joint posterior probability contours are shown in Figure 1(d) for the TFR rate 
and cLCK radiating in descending probability for each treatment arm.  There was a 73% 
posterior probability that the drug combination yielded a superior TFR, while the 
posterior probability of cLCK improvement alone was 42%.  We concluded the 
combination not partially superior conditionally in retrospect at the 10% level.  An 
obvious criticism of this sophisticated approach is the small n.  The alternative scenarios 
listed in Table 1 were large and meaningful in magnitude.  We acknowledge attention to 
statistical considerations in Discussion.        
 
3.2 Immune Agonist Combination Retrospective Case Study 

Immune agonist antibodies denoted A and B were administered alone or in 
combination in a study conducted of n=8 MC38 tumor bearing mice in each of four 
treatment arms, including a control arm, Figure 5.  We retrospectively tested the immune 
agonist combination for superiority.  Visually, mild-to-no treatment responses were seen 
for A, some treatment responsiveness was seen to B, and the combination yielded 2 TF 
mice with some treatment durability, Figure 5.   

In contrast to the previous case study, we tested the drug combination superiority 
hypothesis at the 1% false positive significance level, and partial superiority at the 5% 
level.  These significance levels reflected desire for greater conviction that if statistically 
significant, the findings would have a lower chance of being false positives.  
Investigation of the threshold for making statistical conclusions was performed similar to 
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the previous case study.  Our null scenario was that agonist A was inactive, while single 
agent B achieved a true 10%TFR and 0.25cLCK.  The operating characteristics are listed 
in Table 2.  The posterior probability cut-off C=30% was identified to protect the level 
for the hypothesis test of combination superiority at 1%, while providing reasonable 
power for alternatives.  The respective posterior probability cut-offs were identified to 
protect test levels for partial superiority: C=80% for TFR and C=45% for cLCK, each at 
5%.    

Joint posterior probability contours are shown in Figure 6 for the TFR on the x-
axis and cLCK on the y-axis radiating out as descending probabilities for each treatment 
arm: A (grey), B (tan), and A+B (brick-red).  The joint posterior probability density for A 
is concentrated in the lower left corner of Figure 3, with mean (8%TFR, 0.12cLCK).  
Some growth delay was seen for B, joint posterior mean (16%TFR, 0.28cLCK).  The joint 
posterior mean of A+B was (31%TFR, 0.61cLCK) and the posterior probability of 
superiority was found to be 78%.  We concluded A+B superior to A and B in activity and 
durability, conditionally in retrospect, at the 1% level.   

 
4. Discussion 

 
We developed a Bayesian application to evaluate IO drug combinations in mouse 

studies, in dual endpoints for activity and durability.  Categorically heterogeneous 
outcomes to treatment were seen in our case studies.  In our first case study the drug 
combination was concluded not to be superior or partially superior to single agents, 
though some activity was observed for the combination over αCTLA4 alone.  In our next 
case study, we found the combination of immune agonists statistically superior in both 
activity and durability. Inference in dual endpoints can provide insights into qualitatively 
distinct benefits of IO combinations.  In our case studies, note that the posterior 
distributions of the endpoints were not normally distributed.  While Bayesian findings do 
not depend on a null distribution or rely on normality, we highly recommend that pre-
clinical investigators thoughtfully consider sample size and risk when investigating drug 
combinations, particularly with prior information.  Experimental design with prior 
information is the subject of on-going work, along with robust extensions of our 
modeling framework.         

    Anti-cancer immunotherapeutic drug combination development is progressing 
rapidly.  This is a revolutionary time for cancer care, as greater clinical benefits are 
anticipated by combining drugs with multiple modes of action.  Inherent challenges 
include driving promising drugs and combinations to the forefront as quickly and 
efficiently as possible.     
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Figure 1: (a) Isotype control treated tumors, (b) tumor volumes for tumors treated with 
single agent αCtla4 or (c) treated with αCtla4 combined with an immuno-modulator, (d) 
the joint posterior probabilities shown as radiating contours, i.e., descending 
probabilities, comparing αCtla4 (tan), small molecule immuno-modulator (grey), and the 
combination (brick-red). 
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Figure 2: Illustration of Bayesian analysis about the TFR rate with hypothetical 
outcomes: (a) prior to observing data, probabilistic beliefs about the TFR rate are flat 
over the interval (0, 1),  (b) after observing 5/8 TF mice, the posterior density of the TFR 
rate is updated to have a posterior mode near 60% and heavy tails, (c) increasing the 
sample size to 10/16 mice TF, the posterior distribution is more concentrated around 60%. 
(d) posterior density of the non-TFR (1-TRF) rate, reflection of (b).        
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Figure 3: Illustration of dual endpoint criteria in action space: drugs A and B have 
different tradeoffs, drug A with a 20%TFR and 0.75cLCK and B with a 40%TFR and 
0.50cLCK.  A+B is superior if it yields better durability and activity to drugs A and B 
alone.  The point (40%, 0.75) is marked at the superiority boundary. 
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Figure 4: Fitted posterior means of tumor volumes: (a) αCtla4, (b) immuno-modulator, 
(c) αCtla4+immuno-modulator, (middle-row) fitted tumor-wise posterior probabilities for 
NR(black), DR(red),TF(purple): (d) αCtla4, (e) immuno-modulator, (f) αCtla4+immuno-
modulator, and (bottom row) arm-wise aggregated posterior densities of response rates 
NR(black), DR(red),TF(purple): (g) αCtla4, (h) immuno-modulator, (i) αCtla4+immuno-
modulator. 
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Figure 5: Drug combination comparison study, tumor volumes in treatment arms: (a) 
Control, (b) Immune Agonist A (c) Immune Agonist B, (d) Combination A+B. 
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Figure 6: Drug combination comparison study.  Joint posterior probabilities cLCK and 
TFR rate shown as radiating contours for immune agonists A, B, and A+B.  
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Table 1: Detection rates: superiority with belief threshold C = 45% and partial 

superiority, C = 80%, per 250 simulated data sets. 
Scenario* Test Hyp.* TFR cLCK Detection Rate 
null/base PS 0.25 0.75 10% 
null/base S 0.25 0.75 7% 

PS PS 0.25 1.25 88% 
PS PS 0.25 1.5 93% 
PS PS 0.50 0.75 49% 
S S 0.50 1.25 74% 
S S 0.50 1.50 68% 

PS PS 0.75 0.75 86% 
S S 0.75 1.25 92% 
S S 0.75 1.50 98% 

*PS: Partial Superiority, S: Superiority 
 
 
 
 
 
 

Table 2: Detection rates: superiority with belief threshold C=30%, and partial 
superiority, C = 80% TFR and C = 45% cLCK, per 250 simulated data sets. 

Scenario* Test Hyp.* TFR cLCK Detection Rate 
null/base PS 0.10 0.25 5% 
null/base S 0.10 0.25 1% 

PS PS 0.10 0.50 79% 
PS PS 0.10 0.75 96% 
PS PS 0.25 0.25 31% 
S S 0.25 0.50 50% 
S S 0.25 0.75 62% 

PS PS 0.50 0.25 75% 
S S 0.50 0.50 89% 
S S 0.50 0.75 95% 

*PS: Partial Superiority, S: Superiority 
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