
 
 

Comparing the equality of K mean vectors on several 
multivariate log-normal distributions 

 
Shu-Hui Lin* 

National Taichung University of Science and Technology 

129 Sanmin Road Sec. 3, Taichung 404, Taiwan. 
 

Abstract 
In this study, we extend our research experience on studying mean vector of one 

and two multivariate log-normal populations to further consider the mean vectors of 
several independent multivariate log-normal populations. The log-normal distribution 
is one of good candidates to describe positive and skewed data. If the data contain 
many characteristic values, the multivariate log-normal distribution is a good choice to 
fit such data. In this stdudy, we will derive the testing procedure to test the equality of 
K-mean vectors based on the generalized variable method (GVM). The proposed 
method will be compared with the classical F-test and the classical 2 - test which are 
available in the literature under under different groups, dimensions and parameters 
configuration. 

 

Keywords: generalized p-value; generalized variable method; K mean vectors; 
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1. Introduction 
 
Traditionally, the statistical analysis of the classical theory is mostly based on the 

assumption that the data are normally distributed. However, if the data are departed 
from bell shape and symmetric, then the techniques of normality are inadequate to 
support inferential tests. In the real world, the data is usually positive and skew; the 
log-normal distribution is one of the potential models to describe such data. For the 
log-transformed data, the mean of a log-normal distribution involves a linear 
combination of the mean and variance of the normal distribution, and thus the 
inference procedures for the log-normal mean are more complicated than mean of the 
normal random variable. Nevertheless, inference procedures concerning the 
log-normal mean are in great demand, thus in the literature, inferences on a single 
log-normal mean, two or several independent log-normal means attract much 
attention. For example, for one population: Zhou and Gao (1997) constructed a 
confidence interval for the log-normal mean; Taylor, Kupper and Muller (2002) 
provided improved approximate confidence interval for the mean of a log-normal 
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random variable; Wu, Wong and Jiang (2003) applied likelihood-based method to 
construct confidence interval for a log-normal mean. For two log-normal populations: 
Zhou, Gao and Hui (1997) and Krishnamoorthy and Mathew (2003) provided 
methods to compare two independent log-normal means; Wu et al. (2002) used 
likelihood analysis on the ratio of two independent log-normal means; Chen and 
Zhou (2006) constructed interval estimation for the ratio and difference of two 
log-normal means; Gupta and Li (2006) provided inference on the common mean of 
two log-normal distributions. For serval populations: Lin (2013) applied higher order 
likelihood method for making inference on the common mean of several log-normal 
distributions; Lin and Wang (2013) used modified method on comparing several 
log-normal means.  

If the data contain more than one characteristic, then single variate inference is 
inadequate to fit the data. Several recent researches focused on comparing the means 
for a bivariate log-normal distribution. For example, Bebu and Mathew (2008) 
compared the means and variances of a bivariate log-normal distribution; Zhou, Gao 
and Tierney (2001) provided inference on testing the equality of means of a bivariate 
log-normal distribution; Hawkins (2002) diagnosed for conformity of paired 
quantitative measurements based on bivaraite log-normal distribution, etc. However, 
if the data contain many characteristic values or the interest is not merely to compare 
these two elements of bivariate log-normal distributions, the properties of 
multivariate log-normal distributions deserve further research. Lin (2014) applied 
generalized variable method to compare the mean vectors of two independent 
multivariate log-normal distributions. Hence, it is of practical and theoretical 
importance to extend the achievement to further develop a procedure for comparing 
the mean vectors of several independent multivariate log-normal distributions. The 
applications of the multivariate log-normal distribution are similar to those of the 
univariate and bivaraite log-normal distributions, and can be applicable to the 
exploration of the size distribution of aerosol particles, airborne fibers, biomedical 
applications, etc.  

Most importantly, the purpose of this study is to develop a procedure for 
comparing the mean vectors of several multivariate log-normal distributions based on 
the concepts of the generalized variable method (GVM) which were derived by Tsui 
and Weerahandi (1989) and Weerahandi (1993), respectively. GVM method has been 
applied to solve many statistical problems involving nuisance parameters and many 
of the results are  satisfactory. The reader is referred to the books by Weerahandi 
(1995, 2004) for a detailed discussion along with numerous examples.  

In this paper, we develop procedures that are readily applicable for testing the 
equality of several independent multivariate log-normal mean vectors. We will first 
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derive the generalized test variable (GTV) to test the equality of K mean vectors, and 
then the proposed method will be compared under different groups, dimensions and 
parameters configuration with the other methods available in the literature. 

The rest of the article is organized as follows. The theory of generalized 
p-values and generalized confidence interval are briefly introduced in Section 2. The 
property of the multivariate log-normal distribution will also briefly reviewed in 
Section 2. The proposed procedure will be presented in Section 3. The classical 
F-test and the classical 2 -test are also briefly introduced in Section 3. The 
numerical study will be presented in Section 4 to compare our proposed method with 
the other two methods in different combinations of sample sizes and parameter 
configurations. Finally, some conclusions are presented in Section 5. 

 

2. Preliminary 
2.1.1 Generalized p-values 

The setup of the generalized p-value and the generalized confidence interval will 
be briefly introduced as follows. Let X  be a random quantity having a density 

function ( | )f X , where ( , )  π  is a vector of unknown parameters and   is 

the parameter of interest, and π  is a vector of nuisance parameters. Suppose we are 
interested in testing  

0 0:H    vs. 1 0:H   ,                          (2.1) 

where 0  is a pre-specified value. 

Let x  denote the observed value of X  and the generalized test variable 

(GTV), ( ; , , )T X x π , which depends on the observed value x  and the parameters 

, and satisfies the following requirements: 

0 0

0 0

(i)  For fixed   and ( , ) , the distribution of  T( ; , , ) is free of the            
     nuisance parameters  .
(ii) The observed value  T( ; , , ) of  T( ; , , ) does not depend on   

   

 

 

x ζ π X x π
π

x x π X x π
(A)

                 
      unknown parameters  .
(iii)  For fixed  and ,  Pr[T( ; , , ) t] is either increasing or decreasing              
       in  for any given t. 











 



π
x π X x π

Under the above conditions, if ( ; , , )T X x π  is stochastically increasing in , then 

the generalized p-value for testing the hypothesis in (2.1) can be defined as 

0

0supPr[ ( ; , , ) ] Pr[ ( ; , , ) ]p T t T t
 

 


   X x π X x π ,         (2.2) 

where 0( ; , , )t T  x x π . 
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2.1.2 Generalized confidence intervals  
Under the same set up, suppose Q( ; , , )X x π  satisfies the following conditions: 

(i)  The distribution of  Q( ; , , ) does not depend on any unknown parameters. 
 

(ii) The observed value Q( ; , , )of  Q( ; , , ) is free of nuisance parameters .


 





X x π
(B)

x x π X x π π

 
Then we say Q( ; , , )X x π  is a generalized pivotal quantity (GPQ). Furthermore, if  

1c  and 2c  are such that  

1 2Pr[ Q( ; , , ) ] 1c c    X x π ,                     (2.3) 

then 1 2: Q( ; , , )c c  x x π  is a 100(1 )%  generalized confidence interval for 

 . Specially, if the value of Q( ; , , )X x π  at X x  is , the parameter of interest,  

and 
 ( ); 1-Q

h
X represents the th100(1 ) percentile of Q( ; , , ),X x π then 

    ( ); / 2 ( );1 / 2,  
Q Q

h h
 x x  is a th100(1 )  confidence interval of  .  

 

2.2 The property of the multivariate log-normal distribution 
Suppose 1( ,..., )nY Y is d-variate multivariate log-normal population. Let 

lnX Y  and so that 1( ,..., )nX X follows d-variate multivariate normal distributions 

with mean vector μ  and covariance matrix Σ , where 

1

d





 
 

  
 
 

μ  and 
11 1

1

.
d

d dd

 

 

 
 

  
 
 

Σ                      (2.4) 

The mean vector and the covariance matrix of jY  are  

1 11exp( / 2)
( )

exp( / 2)
j

d dd

E

 

 

 
 

   
  

Y υ  and  ( ) ,  j stVar e Y Ψ
        

(2.5) 

where   exp ( ) / 2 exp( ) 1st s t ss tt ste          , , 1,..., .s t d  For simplicity, if 

2d  , then the mean vector and the covariance matrix are 1 11

2 22

exp( / 2)
exp( / 2)

 

 

 
  

 
υ  

and 

11 11 11 2 1 22 11 21

1 2 11 22 12 2 22 22

exp[2 ] [exp( ) 1]                   exp[ ( ) / 2] [exp( ) 1]
.

exp[ ( ) / 2] [exp( ) 1] exp[2 ] [exp( ) 1]                    
       

       

        
  

        
Ψ

Since we are interested in making inference for the mean vector υ , which can be 
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obtained equivalently through the parameter η , where 

1 11 1 11/ 2
1 .
2

/ 2d dd d dd

   

   

     
     

       
          

η                     (2.6) 

Based on the log-transformed data lnj jX Y , two sufficient statistics, the sample 

mean vector and sample covariance matrix, are denoted by X  and S , where 

1

1 n

j

jn 

 X X  and 
1

1 ( )( ) .
1

n

j j

jn 

  

S X X X X           (2.7) 

It is easily to verify that  

~ ( ,  / )dN nX μ Σ  and ( 1) ~ ( 1, ),dn W n  A S Σ
            

(2.8) 

where ( ,  / )dN nμ Σ is the d-variate multivariate normal distribution with mean vector 

μ  and covariance matrix / nΣ  and ( 1, )dW n Σ  denotes the d-dimensional 

Wishart distribution with degrees of freedom 1n  and  scale  matrix Σ .  

Besides, since X  and S  are two sufficient statistics and both are affine invariant, 

and thus, we will can make inference of η  based on those two statistics. 

Furthermore, if the covariance matrix Σ  is known, then from (2.8) we can derive 

   1/ 2/ ~ ( ,  )d dn N


 Z Σ X μ 0 I                       
  

(2.9) 

and 

    
1/ 2 1/ 21/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 ~ ( 1,  ),d dW n
 

      B a Σa a Aa a Σa I     (2.10) 

where a  are the observed value of A . Let  
1/ 2 1 1/ 2Ω a B a ,                                     (2.11) 

then it can be easily seen that the observed value of Ω  is Σ  and the distribution of 

Ω  is free of any unknown parameter, thus we can used it to draw the information 
about the nuisance parameter Σ . Next, define 

        

    

1/ 2 1/ 2

1/ 2

1/  /
2

1   = /   
2

n n diag

n diag

     
 

  

T x Ω Σ X μ Ω

x Ω  Z Ω

           

(2.12) 

where  diag Ω  means the diagonal element of Ω , x  represents the observed 
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value of X , and Z  and Ω  are independent distributed. 

It can be seen that T  is a function of the independent random variables Z , Ω , 

and the observed quantities x  and a . The observed value of T  is just the 
parameter of interest η  and its distribution is free of unknown parameters. The 

property of T  is conformed with the requirements of GTV and GPQ, therefore we 

can use it used to perform the hypothesis testing and construct a confidence region for
η . 

 
3. Comparing mean vectors of several multivariate log-normal 

populations 
 

3.1 The proposed method 

Suppose 
111 1( ,..., )nY Y ,…, 1( ,..., )

KK KnY Y are K independent d-variate log-normal 

populations. Let lnij ijX Y , so that 
111 1( ,..., )nX X ,…, 1( ,..., )

KK KnX X follow 

d-variate normal distributions with mean vector 
iμ  and covariance matrices iΣ ,  

where 

1i

i

id





 
 

  
 
 

μ and 
,11 ,1

, 1 ,

,  1,..., .
i i d

i

i d i dd

i K

 

 

 
 

  
 
 

Σ               (3.1) 

The mean vector and the covariance matrix of ijY  are  

1 ,11

,

exp( / 2)
( )

exp( / 2)

i i

ij i

id i dd

E

 

 

 
 

   
  

Y υ and ,( ) ,  ij i i stVar Y e    Ψ
         

(3.2) 

where , , , ,exp 0.5( ) exp( ) 1i st is it i ss i tt i ste                , 1,..., ; ,  1,..., .i K s t d   

In order to compare K means, 1,..., Kυ υ , it can be obtained equivalently through 

comparing 1,..., Kη η , where 
1 ,11

,

0.5
,  1,..., .

0.5

i i

i

id i dd

i K

 

 

 
 

  
  

η                (3.3) 
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Since it is known that iX  and iS  are mutually independent with 

1

1 ~ ( ,  / )
in

i ij d i i i

ji

N n
n 

 X X μ Σ                            (3.4) 

 and  

1
( 1) ( )( ) ~ ( 1, ),  1,..., .

in

i i ij i ij i d i i

j

n W n i K


      iA S X X X X Σ
       

(3.5) 

 

3.2 The generalized p-value 
Comparing the equality of mean vectors of K multivariate independent log-normal 

distributions  

0 1 1: ...  vs. : 's not all the sameK iH H η η η                  (3.6) 

can be equivalently set as testing the hypothesis 

0 1:  vs. : ,H H (C) (C)Gη 0 Gη 0                            (3.7) 

where 

 
 

 
 
 

 

d d

d d

d d

I I 0 0 0
I 0 I 0 0

G

I 0 0 0 I

 and 1( ,..., ).K
 (C)η η η             (3.8) 

It is noted that G  is ( 1)k d kd   matrix, dI  stand for the d d identity matrix, 

(C)η means the “combined” block of 1,..., Kη η and then  

1 2

1 3

1 K

 
 

 
  
 
 
 

(c)

η η

η η
Gη

η η

.                                  (3.9) 

According to (2.12) that the observed value of T  is the parameter of interest η  

and its distribution is free of unknown parameters. Thus the generalized test variable 
can be defined (GTV) as  

      

*
1

1/ 2

( 1)

( ,..., ) '

1   / ,
2

K

K dn diag

  


    

(c)

(c) (c) (c)

T GT G T T

Gx G Ω G  Z G Ω
   (3.10) 

where     
1/ 2 1/

2i i i i i in diag   T x Ω  Z Ω  and 1/ 2 1 1/ 2.i i i i

Ω a B a  It is noted that 

iB  follows ( 1,  )d i dW n  I  distribution, iZ  is ( ,  )d dN 0 I distribution, ia  and ix  
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are the observed values of iA  and iX , accordingly the distribution of *T  is free of 

any nuisance parameter and the observed value of *T does not depend on any 

unknown parameter and thus the property of *T satisfies the requirement of GTV and 

can be used to test (3.7).  

Suppose *T
μ  and *T

S  are the mean and covariance matrix of *T , and *
sT  

represents for the standardized expression of *T with  

* *
* 1/ 2 *( ),s

 
T T

T S T μ                          (3.11)  

then the generalized p-value for testing (3.7) can be obtained through computing  

 *Pr | , ,v s sp  T 0 a x                           (3.12) 

whether * *
1/ 2 ( )s

 
T T

0 S 0 μ . x  means the Euclidean norm of x  with x x x

and (3.7) will be rejected whenever vp  , where   is the significant level. 

 

3.3 The classical F-test 
In the classical procedure, for mathematical tractability practitioners usually 

assume that the covariance matrices among populations are homogenous. That is, we 
will assume 1 K...  Σ Σ Σ and then the hypothesis testing (3.7) is equivalent to   

0 1:  vs. : ,H H (C) (C)Gμ 0 Gμ 0                        (3.13) 

for the fact that under 1 K...  Σ Σ Σ , i jη η  is the same as i jμ μ  and 

1( ,..., ).K
 (C)μ μ μ  Furthermore, the point estimator of (C)Gμ  is Gx , where  

~ ( , ),dN (C)Gx Gμ GΦG                            (3.14) 

1( ,..., )K
  x x x , 

1
1

1
K

n

n





 
  
 

Σ
Φ

Σ
 which stands for the block diagonal of 

1 1 1 1
1 1 1( ,..., )=( ,..., )K K Kn n n n   Σ Σ Σ . If the covariance matrices 'sΣ  are known, 

according to (3.14), we have 

1/ 2
( 1) ( 1)( ) ( ) ~ ( , ).K d K dN

 
  (C)GΦG G x μ Z 0 I             (3.15) 
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Let 
1

1
1

K

n

n



 

 
  
 

S
S

S
 which stands for the block diagonal of 

1 1
1( ,..., )Kn n S S  and S is the pool covariance matrix with 

1

1 ( 1)
K

i i

i

n
N K 

 


S S , 

where  
iS ’s are defined in (3.5) and 

1

K

i

i

N n


 . Hotelling's T-squared statistic 

(Anderson, 2003) is then defined as 

   2 1( ) ( ) ( ) ,t 




  (C) (C)G x μ GS G G x μ               (3.16) 

and then  
2 ( 1) 1 ~ ( ( 1),  ( 1) 1).

( 1)
t N d K

F d K N d K
N K d K

  
    

 
      (3.17) 

The p-value for testing (3.13) is  

   1
( 1), ( 1) 1

( 1) 1-value Pr ( ) ,
( )( 1)d K N d K

N d K
p F

d N K K



    

       
  

Gx GS G Gx  (3.18) 

and null hypothesis wii be rejected if -valuep  .  

 
3.4 The classical 2 - test   

On the other hand, the classical 2 - test is also a widely applid method in 

statistical analysis. The classical chi-square method is valid when the 
covariance matrices are known. If the covaricne matrices are unknown, the 
researchers usually use the plug-in method to get the approximated solution.  

In order to test 0 1:  vs. :H H (C) (C)Gη 0 Gη 0  based on the 2 -test, we define 

a statistics 2
chi with 

    2 1( ) ( ) ( ) ,chi chi


   (C) (C)G x μ GS G G x μ           (3.19) 

where 
1

1 1
1chi

K K

n

n





 
  
 

S
S

S
 is the block diagonal of 1 1

1 1( ,..., ).K Kn n S S  If the 

sample sized is large, the distributin of 2
chi is distributed approximately to 

chi-square distribution with ( 1)d K   degrees of freedom. The p-value for 

testing 0 :H (C)Gη 0  is 
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     2 1
( 1)-value Pr ( ) .d K chip  


   Gx GS G Gx               (3.20) 

 
4. Numerical Studies 

In this section, we present simulation studies by using a variety of parameter 
configurations and different settings of sample sizes for K  2 and K  3 to 
perform the hypothesis testing and compare the simulated sizes of the proposed 
procedure with the classical F-test and the classical 2 -test. According to Eigen 

Decomposition Theorem, for any positive definite matrix Σ , there exists an 
orthogonal matrix O  such that O ΣO  is diagonal (Rao, 2001). Thus we choose 

1,..., KΣ Σ  to be diagonal in simulation studies. The results were shown in Table 1 to 

Table 3. 
From the above tables, we find the similar pattern in K  2 and K  3 that the 

type I error rates obtained by the classical F-test is affected by the sample sizes and 
the degrees of homogeneity. When those populations are not homogenous and the 
sample sizes are not all equal, the type I error rates based on the classical F-test 
deteriorate as the degree of heteroscedasticity increases. When K  2 and the 
nominal level is set to be .05, the type I errors rates by the classical F-test are as high 
as .145 when smaller sample sizes are associated with larger variances, and as low 
as .010 when larger sample sizes are associated with larger variances. Furthermore, 
when comparing K mean vectors of several populations, the type I error rates 
obtained by the classical F-test are unstable, they are as high as .294 and as low 
sas .000 when the nominal level is .05. Similarly, the performance of the classical 

2 -test is also not well. The type I error rates obtained by the classical 2 -test are 
all higher than the nominal level .05 in all combinations which means that the 
classical 2 -test tends to reject the true hypothesis in all cases. On the contrary, our 
proposed test has stable and satisfied type I error rates overall. The type I error rates 
obtained by our proposed method are around .05 in all cases regardless of the sample 
sizes, population numbers and heteroscedasticity among groups. 
 

Table 1: Simulated sizes for 0 1: =  vs. :  H H Gη 0 Gη 0 at 2d  and 1 2 2 2,  .a  Σ I Σ I  

1( ,.., )Kn n  (10, 10) 

a 1 5 10 
GP 0.050 0.047 0.048 

Classical F test 0.050 0.063 0.068 
Classical 2 -test 0.088 0.103 0.110 

1( ,.., )Kn n  (10,15) 

a 1 5 10 
GP 0.049 0.044 0.044 
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Classical F test 0.051 0.029 0.025 
Classical 2 -test 0.082 0.085 0.082 

1( ,.., )Kn n  (15,10) 

a 1 5 10 
GP 0.048 0.043 0.042 

Classical F test 0.051 0.119 0.140 
Classical 2 -test 0.084 0.112 0.113 

1( ,.., )Kn n  (50, 30) 
a 1 5 10 

GP 0.048 0.051 0.048 
Classical F test 0.049 0.125 0.145 

Classical 2 -test 0.058 0.068 0.068 

1( ,.., )Kn n  (30, 50) 
a 1 5 10 

GP 0.051 0.047 0.047 
Classical F test 0.051 0.018 0.010 

Classical 2 -test 0.051 0.999 1.000 

Results are based on 5,000 repetitions and 05.0  
 

Table 2: Simulated sizes for 0 1: =  vs. :  H H Gη 0 Gη 0 at 3d  and 1 3 2, diag(1,1, ).a Σ I Σ  

1( ,.., )Kn n  (10, 10) 

a 1 5 10 
GP 0.052 0.049 0.053 

Classical F test 0.050 0.053 0.056 
Classical 2 -test 0.116 0.117 0.122 

1( ,.., )Kn n  (10,15) 

a 1 5 10 
GP 0.050 0.053 0.048 

Classical F test 0.052 0.044 0.038 
Classical 2 -test 0.109 0.104 0.103 

1( ,.., )Kn n  (15,10) 

a 1 5 10 
GP 0.048 0.050 0.045 

Classical F test 0.052 0.074 0.082 
Classical 2 -test 0.104 0.120 0.118 

1( ,.., )Kn n  (50, 30) 
a 1 5 10 

GP 0.052 0.051 0.048 
Classical F test 0.050 0.077 0.090 

Classical 2 -test 0.068 0.068 0.077 

1( ,.., )Kn n  (30, 50) 
a 1 5 10 

GP 0.051 0.053 0.049 
Classical F test 0.052 0.034 0.037 

Classical 2 -test 0.052 0.989 1.000 

Results are based on 5,000 repetitions and 05.0  
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Table 3: Simulated sizes for 0 1: =  vs. :  H H Gη 0 Gη 0 at 1 1 2 2 3 3, diag(1,...,1, ), .d da a a  Σ I Σ Σ I  

1( ,.., )Kn n  (10,10,10) 

1 2 3( , , )a a a  (1, 0.2, 0.2) (1,1,1) (1,4,4) (1,25,25) 

GP 0.050 0.049 0.046 0.048 
Classical F test 0.111 0.055 0.033 0.035 

Classical 2 -test 0.113 0.093 0.090 0.110 

1( ,.., )Kn n  (10,15,20) 

1 2 3( , , )a a a  (1, 0.2, 0.2) (1,1,1) (1,4,4) (1,25,25) 

GP 0.045 0.047 0.054 0.051 
Classical F test 0.213 0.066 0.009 0.003 

Classical 2 -test 0.153 0.119 0.094 0.096 

1( ,.., )Kn n  (20,15,10) 

1 2 3( , , )a a a  (1, 0.2, 0.2) (1,1,1) (1,4,4) (1,25,25) 
GP 0.051 0.050 0.044 0.045 

Classical F test 0.051 0.051 0.089 0.148 
Classical 2 -test 0.102 0.095 0.112 0.131 

1( ,.., )Kn n  (30, 50, 100) 

1 2 3( , , )a a a  (1, 0.2, 0.2) (1,1,1) (1,4,4) (1,25,25) 
GP 0.053 0.048 0.050 0.051 

Classical F test 0.294 0.071 0.003 0.000 
Classical 2 -test 0.105 0.091 0.066 0.067 

Results are based on 5,000 repetitions and 05.0  

 
These simulations support the expected result that the tests based on the 

generalized variable approach assure the level of the accuracy in all cases. Thus, for 
overall comparisons, we conclude that our proposed method is stable and suitable for 
practical use.  

 

5. Concluding remarks 
In this article, we have used the generalized variable approach to compare the 

difference of several independent multivariate log-normal mean vectors. The 
numerical results have shown that the proposed methods assure the level of the 
accuracy and the tests are more robust and efficient than other method that is 
currently available in the literature. Log-normal data are very common in applications, 
and thus our procedures should be of interest whenever multivariate log-normality 
holds. The proposed procedures are applicable regardless of the sample sizes and 
heteroscedasticity. These features should make the generalized variable approach an 
attractive option for application to practical problems involving the multivariate 
log-normal distribution. 
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