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Abstract 
Contingency Tables, Measures of Association, Correlation, etc need some theoretical 
developments for three dimensional cases. Attempts have been made here to have statistical 
analyses for three dimensional contingency tables, three-dimensional relative risk and odds 
ratio, three-dimensional correlation coefficient, and the test of equality of several three 
dimensional contingency tables. 
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1. Introduction 
 

Contingency Tables, Measures of Associations and Correlation are being used for 
presenting a between relationship for two or more than two variables. We can term the 
aforesaid tools as the 2D (two dimensional) Measures of Associations. Attempts have been 
made here to develop the three dimensional measures of associations including Three 
Dimensional Contingency Tables, Three-Dimensional Correlation Coefficient, Three-
Dimensional Odd’s Ratio, Three-Dimensional Relative Risk, and the test of equality of 
several three dimensional contingency tables. 
 
 

2. Three Dimensional Correlation 
 

Let (𝑥111, 𝑦111, 𝑧111 ), (𝑥222, 𝑦222, 𝑧222 ), …, (𝑥𝑛𝑛𝑛 , 𝑦𝑛𝑛𝑛, 𝑧𝑛𝑛𝑛 ) be a set of n observations 
each of which represent the realized value of three different variables X, Y, Z. We have the 
data set according to the following format.  
 

Number of 
observations 

𝑿𝒊 𝒀𝒊 𝒁𝒊 

1 𝑥1 𝑦1 𝑧1 
2 𝑥2 𝑦2 𝑧2 

… … … … 
n 𝑥𝑛 𝑦𝑛 𝑧𝑛 

 
The 3 dimensional correlation co-efficient among these 3 variables can be presented as 
below 
 

3 D Correlation Co-efficient, 𝑟𝑥𝑦𝑧 =
∑ [(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)(𝑧𝑖−�̅�)]
𝑛
𝑖=1

[∑ (𝑥𝑖−�̅�)
2(𝑦𝑖−�̅�)

2𝑛
𝑖=1 (𝑧𝑖−�̅�)

2]
1
3

. 
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=
𝐶𝑜𝑣(𝑥, 𝑦, 𝑧)

𝑠𝑑(𝑥)𝑠𝑑(𝑦)𝑠𝑑(𝑧)
 

 
The 3D correlation coefficient ranges from −∞ to +∞. And there are prefect correlation 
when 𝑟𝑥𝑦𝑧 = 0. Since each 3D space has 4 biggest diagonals, there are 4 types of perfect 
linear correlations. But these 4 types of prefect linear correlation lines are the bigger 
diagonals of four 2D diagonal plates which may have different angels with base surface. 
Moreover, these correlation lines for 3D space has been introduced to demonstrate the 
inherent infrastructure and their visualizations of the associations of 3 variables from 
several look/dimensions. Three variables may have overall linear relationship among them, 
but two variables may have nonlinear relationship having various different local linear 
relationship for the change of the levels of another variable. Various types of relationships 
among three variables have been tabulated to get the value of the 3D linear correlation 
coefficient.   

 
x y z 𝒓𝒙𝒚𝒛 
1 1 1 0 
2 2 2 
3 3 3 
    
1 1 3 0 
2 2 2 
3 3 1 
    
1 3 1 0 
2 2 2 
3 1 3 
    
1 3 3 0 
2 2 2 
3 1 1 
    
1 1 1 0.48 
2 2 2 
4 4 4 
    
1 1 4 -0.17 
2 2 2 
4 4 1 
    
1 1 1 12.80 
2 2 2 
40 40 40 
    
1 1 40 -6.17 
2 2 2 
40 40 1 
    
1 1 1 30.65 
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10 10 10 
100 100 100 

    
1 1 100 -13.50 
10 10 10 

100 100 1 
    
1 1 1 331.42 
10 10 10 

1000 1000 1000 
    
1 1 1000 -163.50 
10 10 10  

1000 1000 1 
    

1 1 1 0.13 
2 2 2 
3 3 4 
    
1 1 1 -0.24 
2 2 2 
3 3 2 
    
1 1 1 -0.50 
2 2 2 
3 3 0 
    
1 10 100 0 
2 20 200 
3 30 300 
    
1 1 2 undefined 
2 2 2 
3 3 2 
    
1 1 1 2.40 
2 2 2 
3 3 1000 
    
1 1 10 1.56 
2 10 1 
3 0 0 
    
1 1 10 1.56 
2 10 1 
3 11 11 
    
1 1 10 7.21 
2 10 1 
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3 100 100 
    
1 1 1 -1.41 
4 5 6 
6 5 4 

 
 

3. Three Dimensional Contingency Tables, Relative Risk and Odd’s Ratio 
 

Let we have a contingency table of 8 observations 𝑥𝑖𝑗𝑘 ˅ 𝑖, 𝑗, 𝑘 = 1, 2. The layout of the 
data is described as below. 
 

Absent Absent Present Total 
Absent 𝒙𝟏𝟏𝟏 𝒙𝟏𝟐𝟏 𝑥1.1 
Present 𝒙𝟐𝟏𝟏 𝒙𝟐𝟐𝟏 𝑥2.1 
Total 𝑥.11 𝑥.21 𝑥..1 

 
Present Absent Present Total 
Absent 𝒙𝟏𝟏𝟐 𝒙𝟏𝟐𝟐 𝑥1.2 
Present 𝒙𝟐𝟏𝟐 𝒙𝟐𝟐𝟐 𝑥2.2 
Total 𝑥.12 𝑥.22 𝑥..2 

 
For a 2 × 2 × 2 contingency table, the relative risk will be 
 

3 D Relative Risk, RR = 

[
(
𝑥111
𝑥1.1

)

(
𝑥112
𝑥1.2

)
]

[
(
𝑥211
𝑥2.1

)

(
𝑥212
𝑥2.2

)
]

 .  

 
Moreover, the odd’s ratio will be 

3 D Odd’s Ratio, OR =  

[
(
𝑥111
𝑥121

)

(
𝑥112
𝑥122

)
]

[
(
𝑥211
𝑥221

)

(
𝑥212
𝑥222

)
]

 

 
If all the four components of the one level of the third variable are same or four components 
remain same to all the levels of the third factor, then the three dimensional relative risk and 
odd ratio measures tend the two dimensional relative risk and odd ratio measures.  
 
Therefore, if 𝑥11𝑘, 𝑥12𝑘, 𝑥21𝑘, 𝑥22𝑘 remain same irrespective of 𝑘 at different level of the 
third variable then 

2 D Odd’s Ratio = 3 D Odd’s Ratio 
2     D Relative Risk = 3 D Relative Risk 
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4. Test of Equality of Several Volume Contingency Tables 
 

Adnan (2015) and Sharna et al (2012) developed a class of new parametric test statistics 
for checking the similarity or dissimilarity among the individual (cell) frequencies, 
marginal frequencies and total frequencies of several univariate or joint probability 
distributions. Later Adnan et al (2016) demonstrated an idea of building three dimensional 
volume matrix.  
 
With an aim of finding a test for comparing several contingency tables, let us demonstrate 
our method assuming that we have m population volume contingency tables or matrices 
from m populations and let the hypothesis be 
 

𝐻0: 𝑁1 = 𝑁2 = ⋯𝑁𝑚 
 

⇒𝐻0: (𝑁𝑖𝑗𝑘1)𝑟×𝑐×𝑙
= (𝑁𝑖𝑗𝑘2)𝑟×𝑐×𝑙

= ⋯ = (𝑁𝑖𝑗𝑘𝑚)𝑟×𝑐×𝑙
 

 
∴ 𝐻0: 𝑃1 = 𝑃2 = ⋯ .= 𝑃𝑚 

 

⇒𝐻0: (𝑃𝑖𝑗𝑘1)𝑟×𝑐×𝑙 = (𝑃𝑖𝑗𝑘2)𝑟×𝑐×𝑙 = ⋯ = (𝑃𝑖𝑗𝑘𝑚)𝑟×𝑐×𝑙   
 

where, the  Np (∀ 𝑝 = 1,2, … ,𝑚) is the population frequency volume matrix or 
contingency volume table of the pth population; 𝑃𝑝 is the population probability matrix or 
contingency table of the pth population such that 𝑃 = (𝑝𝑖𝑗𝑘𝑙)𝑟×𝑐×𝑙 , , where  𝑝𝑖𝑗𝑘𝑙 =

𝑁𝑖𝑗𝑘𝑙

𝑁...
  

whereas  𝑁𝑖𝑗𝑘𝑙  is the population frequency of the (i,j,k)th element of the population 
frequency volume matrix Np of the lth population and 𝑁...𝑙 = ∑ ∑ ∑ 𝑁𝑖𝑗𝑘𝑙

𝑙
𝑘=1

𝑐
𝑗=1

𝑟
𝑖=1 ; ∀ 𝑖 =

1,2,… , 𝑟; 𝑗 = 1,2,… , 𝑐; 𝑘 = 1,2,… , 𝑙. q sample contingency tables from each of the m 
population joint frequency distributions (a total of q samples are collected from each 
population) have been collected and on the basis of these samples we want to test whether 
they come from the same population.  After collecting n  sample-frequency matrices or 
tables from each of the m populations, the maximum likelihood estimators of the 
probability matrices are obtained as �̂�𝑙 = (�̂�𝑖𝑗𝑘𝑙)𝑟×𝑐×𝑙    where  �̂�𝑖𝑗𝑘𝑙 =

𝑛𝑖𝑗𝑘𝑙

𝑛…𝑙
  whereas  𝑛𝑖𝑗𝑘𝑙 

is the average frequency of the (i,j,k)th element of the average frequency volume matrix 𝑛...𝑙 
constructed from n sample-frequency tables drawn from the lth population. Here, 𝑛...𝑙 =
∑ ∑ ∑ 𝑛𝑖𝑗𝑘𝑙

𝑙
𝑘=1

𝑐
𝑗=1

𝑟
𝑖=1 ; ∀ 𝑖 = 1,2, … , 𝑟; 𝑗 = 1,2,… , 𝑐; 𝑘 = 1,2,… , 𝑙.  

 
For large  𝑛…𝑙 the asymptotic distribution of each element of transition probability matrices, 
according to the Central Limit Theorem, are distributed as normal such that  
 

�̂�𝑖𝑗𝑘𝑙   
 𝑛...𝑙 → ∞

~
 𝑁 (𝑝𝑖𝑗𝑘𝑙 ,

𝑝𝑖𝑗𝑘𝑙  (1 − 𝑝𝑖𝑗𝑘𝑙)

𝑞𝑛…𝑙
) . 

 

∴∑
(�̂�𝑖𝑗𝑘𝑙 − �̅�𝑖𝑗𝑘.)

2

�̅�𝑖𝑗𝑘.(1 − �̅�𝑖𝑗𝑘.)
𝑞𝑛…𝑙

𝑚

𝑙=1

~𝝌2(𝑚−1)∀ 𝑖 = 1,2, … , 𝑟; 𝑗 = 1,2,… , 𝑐;  𝑘 = 1,2,… , 𝑙 

 

JSM 2016 - Section on Statistical Computing

215



 
 

where  �̅�𝑖𝑗𝑘. =
𝑛𝑖𝑗𝑘1𝑝𝑖𝑗𝑘1+⋯+𝑛𝑖𝑗𝑘𝑚𝑝𝑖𝑗𝑘𝑚

𝑛𝑖𝑗𝑘1+⋯+𝑛𝑖𝑗𝑘𝑚
; ∀ 𝑖 = 1,2,… , 𝑟; 𝑗 = 1,2,… , 𝑐;  𝑘 = 1,2,… , 𝑙.  

 
 
However, we obtain an element-chi-square volume matrix 𝜒2 of the following form 

𝜒2 =

(

 
 
∑

(�̂�𝑖𝑗𝑘𝑙 − �̅�𝑖𝑗𝑘.)
2

�̅�𝑖𝑗𝑘.(1 − �̅�𝑖𝑗𝑘.)
𝑞𝑛…𝑙

𝑚

𝑙=1

)

 
 

𝑟×𝑐×𝑙

 

 
∴ 𝜒2 = (𝜒𝑖𝑗𝑘

2 )
𝑟×𝑐×𝑙

. 
 
The above volume matrix of chi-squares can also be called as element-chi-square-matrix. 
From this matrix we basically can test four types of hypotheses which are as follows: 
 
(i) 

𝐻0: 𝑝𝑖𝑗𝑘1 = … = 𝑝𝑖𝑗𝑘𝑚 
; 

 
or, the hypothesis of testing the equality of the each (i,j,k)th individual probabilities of the 
𝑚 population probability volume matrices (𝑃𝑖𝑗𝑘1)𝑟×𝑐×𝑙 , (𝑃𝑖𝑗𝑘2)𝑟×𝑐×𝑙 , … , (𝑃𝑖𝑗𝑘𝑚)𝑟×𝑐×𝑙. 
 
(ii) 

𝐻0: (𝑝𝑖𝑗𝑘1)𝑐×𝑙 = ⋯ = (𝑝𝑖𝑗𝑘𝑚)𝑐×𝑙;  
 

or, the hypothesis of checking the equality of the ith row probability matrix or frequency 
distribution for all populations. Actually, it tests the equity of the frequentness of the ith 
variable of the first category over all cells of the second and third categories of 𝑚 
population contingency volume tables. Indeed the equality of the frequency matrix 
distribution of the ith variable of the 1st category is tested over 𝑚 populations. That is, 𝑚 
(types of) frequency matrix distributions are being tested whether equal or not for same 
variable. So, over a variable the equity of 𝑚 frequency matrix distributions drawn from 𝑚 
populations is being tested.  
     
(iii) 

𝐻0: (𝑝𝑖𝑗𝑘1)𝑟×𝑙 = ⋯ = (𝑝𝑖𝑗𝑘𝑚)𝑟×𝑙 
 

or, the hypothesis of checking the equality of the jth column matrix for all populations. 
Indeed, it tests the equity of the frequentness of the jth variable of the second category over 
all cells/variables of the 1st and 3rd categories of 𝑚 population contingency volume tables. 
The frequency matrix distribution of the jth variable of the 2nd category is tested whether 
equal or not over 𝑚 populations.     
 
(iv) 

𝐻0: (𝑝𝑖𝑗𝑘1)𝑟×𝑐 = ⋯ = (𝑝𝑖𝑗𝑘𝑚)𝑟×𝑐;  
 

or, the hypothesis of checking the equality of the ith layer probability matrix or frequency 
distribution for all populations. Actually, it tests the equity of the frequentness of the kth 
variable of the 3rd category over all cells of the first and second categories of 𝑚 population 
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contingency volume tables. Indeed the equality of the frequency matrix distribution of the 
kth variable of the 3rd category is tested over 𝑚 populations.  
 
(v) 

𝐻0: 𝑃1 = 𝑃2 = ⋯ .= 𝑃𝑚; 
 

 or the hypothesis of testing the equity of the total contingency volume table or volume 
matix for one population is significantly varying to that of the other populations. It tests 
the similarity of 𝑚 populations where each of the 𝑚 populations has joint frequency 
volume distributions over rcl cells or whether the 𝑚 types of sample-joint volume 
frequency distributions or volume matrices or volume tables are drawn from same 
population. 
  
For the aforementioned tests for 𝑚 populations, the concern test statistics are given below 
respectively. 

 
(i) Test of equality of 𝑚 [(i,j,k)th] cell frequencies: Comparing each  𝜒𝑖𝑗𝑘2  with 

the tabulated  𝜒(𝑚−1,.∝)2  of (𝑚 − 1) degree of freedom,  
 

(ii) Test of equality of 𝑚 [ith variable’s] row marginal frequency plate/matrix 
distributions: Comparing each ∑ 𝜒𝑖𝑗𝑘

2
𝑗𝑘  with the tabulated 𝜒(𝑐𝑘(𝑚−1),.∝)2  of 

𝑐𝑘(𝑚 − 1) degrees of freedom, 
 

(iii) Test of equality of 𝑚 [jth variable’s] column marginal frequency plate/matrix 
distributions: Comparing each ∑ 𝜒𝑖𝑗

2
𝑖𝑘  with the tabulated 𝜒(𝑟𝑘(𝑚−1),.∝)2  of 

𝑟𝑘(𝑚 − 1) degrees of freedom, 
 

(iv) Test of equality of 𝑚 [kth variable’s] layer marginal frequency plate/matrix 
distributions: Comparing each ∑ 𝜒𝑖𝑗

2
𝑖𝑗  with the tabulated 𝜒(𝑟𝑐(𝑚−1),.∝)2  of 

𝑟𝑐(𝑚 − 1) degrees of freedom, 
 

(v) Test of equality of 𝑚 joint frequency distributions: Comparing Chi-squares’ 
matrix sum = 𝜒1112 +⋯+ 𝜒1𝑐1

2 +⋯+ 𝜒𝑟11
2 +⋯+ 𝜒𝑟𝑐1

2 +…+𝜒1122 +⋯+
𝜒1𝑐2
2 +⋯+ 𝜒𝑟12

2 +⋯+ 𝜒𝑟𝑐2
2 +…+𝜒11𝑘2 +⋯+ 𝜒1𝑐𝑘

2 +⋯+ 𝜒𝑟1𝑘
2 +⋯+ 𝜒𝑟𝑐𝑘

2  
with the tabulated 𝜒(𝑟𝑐𝑘(𝑚−1),.∝)2  of  𝑟𝑐𝑘(𝑚 − 1) degrees of freedom.  

 
Suppose we have two contingency 2 × 3 × 2 tables as given below 
                                                              

𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                      𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               20 16 24
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 19 11 50

            

       
 

𝐻𝑖𝑔ℎ𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                      𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               25 21 29
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 24 16 55

                  

         
and 
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𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               100 56 44
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 19 11 50

 

 
 

𝐻𝑖𝑔ℎ𝑒𝑟 𝐿𝑒𝑣𝑒𝑙              𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               120 76 49
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 29 20 58

 

 
The problem is to gauge whether the two 3-D contingency tables show significant 
dissimilarity, to assess, for example, whether they have a common joint distribution or tri-
variate distribution that is whether two tri-variate samples come from same tri-variate 
distribution. If each of the samples were generated at random, we like to use our proposed 
statistical method for assessing the similarity of two joint frequency distributions. Due to 
a quick unavailability of the replicates of two types of tri-variate samples, we are assuming 
that after observing 30 pairs of tri-variate samples (30 tri-variate samples from each tri-
variate population) from two tri-variate populations we have obtained the two average 
frequency volumes or average frequency volume matrices. So, the tri-variate average 
frequency volumes or volume matrices are  
 

𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                      𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               20 16 24
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 19 11 50

            

     
𝐻𝑖𝑔ℎ𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                      𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               25 21 29
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 24 16 55

                  

         
and 

 

  
𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                      𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               100 56 44
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 19 11 50

 

 
𝐻𝑖𝑔ℎ𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                      𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               120 76 49
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 29 20 58

 

 
Therefore, the average relative frequency volume tables or average probability volume 
tables or matrices are as below 
 

𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                 𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               0.06 0.05 0.08
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 0.06 0.04 0.16

                  

        

  
𝐻𝑖𝑔ℎ𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                      𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               0.08 0.07 0.09
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 0.08 0.05 0.18
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and 
 

  
𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                      𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               0.16 0.09 0.07
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 0.03 0.02 0.08

 

 
𝐻𝑖𝑔ℎ𝑒𝑟 𝐿𝑒𝑣𝑒𝑙                      𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               0.19 0.12 0.08
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 0.05 0.03 0.08

 

 
 
The averages transition probability volume matrices result as follows 
 

The chi square matrix for Lower Level = (502 121 6
158 90 451

)  
and 

     and the chi square matrix for Higher Level = (583 187 21
117 68 440

) 
 

So, p value matrix for lower level = (4.09 × 10
−111 2.98 × 10−28 0.02

3.02 × 10−36 2.78 × 10−21 4.1 × 10−100
)  

 
and 

 

p value matrix for higher level = (6.81 × 10
−129 1.12 × 10−42 4.38 × 10−6

2.43 × 10−27 1.77 × 10−16 9.27 × 10−98
) 

 
The tabulated value of Chi – square at 1% level of significance with 1 degree of freedom 
is 6.634897. There is one calculated value for each of the 12 chi-square test statistics for 
12 types of cells in the volume matrix of chi-squares. For the first cell (mice, not a biter), 
the calculated value (= 502) of chi-square test statistic is greater than the tabulated value 
(= 6.634897) which means the null hypothesis 
 

𝐻0: 𝑝𝑚𝑖𝑐𝑒,   𝑛𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟,   𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 = 𝑞𝑚𝑖𝑐𝑒,   𝑛𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟,   𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙  
 

is rejected at 1 percent level of significance with p value 4.09× 10−11. So, we conclude 
that the joint probability of two populations for the joint occurrence of mice with not a biter 
at lower level is dissimilar and we denote the dissimilarity by a notation “DS”.  
 
Again for the joint frequentness (mice and flagrant biter), the null hypothesis 
 

𝐻0: 𝑝𝑚𝑖𝑐𝑒,   𝑓𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟,   𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 = 𝑞𝑚𝑖𝑐𝑒,   𝑓𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟,   𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 
 

 
is not rejected at the same level of significance. It can be inferred that the frequentness of 
contemporarily happening of mice with no biter for two population joint distributions is 
similar and we denote similarity by a notation “S”. So the resultant decision matrix for the 
12 various cells is given below: 
\ 

the resultant decision matrix for Lower Level  =  (𝐷𝑆 𝐷𝑆 𝑆
𝐷𝑆 𝐷𝑆 𝐷𝑆

) 
and  
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the resultant decision matrix for Higher Level = (𝐷𝑆 𝐷𝑆 𝐷𝑆
𝐷𝑆 𝐷𝑆 𝐷𝑆

) 
Moreover, the calculated value of overall chi – square, the sum of all individual chi-squares 
of the chi-squares’ matrix sum, is obtained as 2745. Therefore, the null hypothesis  
 

𝐻0: 𝑃2×3×2 = 𝑄2×3×2 
 
of the equality of joint probability matrix of two populations’ joint probability distribution 
is rejected at 1 % level of significance (since the tabulated value of the chi-squares matrix 
sum with 12 degrees of freedom is 26.22). So, with an overall point of view, it can be 
concluded that the two population joint distributions are dissimilar or do not belong to the 
same tri-variate distributions.  
 
The sum of chi- squares for the 1st, 2nd and 3rd lower leveled-columns are calculated as 660, 
211 and 457 respectively. The tabulated value of the column wise sum of chi-squares with 
4 degree of freedom is 13.28 at 1 % level of significance. Again, the sum of chi- squares 
for the 1st, 2nd and 3rd higher leveled-columns are calculated as 701, 255 and 461 
respectively. So, all columns are dissimilar for the two populations’ joint distributions, that 
is, 1st column of the one category and that of the same category over same level for the two 
populations are dissimilar and so forth.  
 
The sum of chi- squares for the 1st and 2rd lower-leveled-rows are calculated as 629, 792 
respectively. The tabulated value of the column wise sum of chi-squares with 6 degree of 
freedom is 16.81 at 1 % level of significance. Again, the sum of chi- squares for the 1st and 
2rd higher-leveled-rows are calculated as 699, 625 respectively. So, all rows are dissimilar 
for the two population joint distributions, that is, 1st row of the one category and that of the 
same category over same level for the two populations are dissimilar and so forth.  
 
The sum of chi- squares for the upper layered mice-row plate is calculated as 1421. The 
tabulated value of the upper layered mice-row-plated sum of chi-squares with 6 degree of 
freedom is 16.81 at 1 % level of significance. Again, the sum of chi- squares for the lower 
layered pig-row plate is calculated as 1324. So, all row-plates are dissimilar for the two 
population joint distributions, that is, layer plated row of the one category and that of the 
same category for the two populations are dissimilar and so forth.  
 
The sum of chi- squares for the Not a Bitter-layered column plate is calculated as 1360. 
The tabulated value of the layered column plated sum of chi-squares with 4 degree of 
freedom is 13.28 at 1 % level of significance. Again, the sum of chi- squares for the Mild 
Bitter-layered column plate is calculated as 467 and that of Flagrant Bitter plate is 918.  So, 
all column-plates are dissimilar for the two population joint distributions, that is, layer 
plated column of the one category and that of the same category for the two populations 
are dissimilar and so forth.  
 
So, the marginal frequencies of one category over various row(s) or column(s) or layer(s) 
or plates in one population is dissimilar to those of the same category over the same row(s) 
or column(s) or layer(s) or plates in the another population. The dissimilarity between the 
all row-wise marginal probabilities, column-wise marginal probabilities, row-plate-wise 
marginal probabilities, column-plate-wise marginal probabilities and all most all cell 
probabilities of the two joint frequency volume-matrices is also a potential evidence of 
ensuring the conclusion that the two tri-variate populations are dissimilar.      
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Conclusion 
 
We are trying to develop the mathematical and graphical representation of several types of 
Partial Linear and Non Linear Correlation Plate for the three dimensional case. 
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