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Abstract

Indicator saturation is a generic approach to robust estimation, and to the detection and

quantification of structural breaks. Saturation techniques are inherently high-dimensional

and require automated model selection with non-standard inference. This paper charac-

terizes several roles for saturation techniques and proposes extensions of impulse indicator

saturation that have greater power to detect empirically common structural breaks. A

model for the Brazilian inflation rate illustrates saturation techniques.
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1. Introduction

Impulse indicator saturation is a generic approach to robust estimation; and it pro-

vides a coherent framework for detecting and quantifying crises, jumps, and changes

in regime. Such structural breaks can be persistent, time-dependent, and difficult

to detect, yet have substantive implications for policy analysis. Impulse indicator

saturation helps address these issues, albeit being inherently high-dimensional and

requiring automated model selection with non-standard inference. This paper char-

acterizes several roles for impulse indicator saturation and proposes extensions with

greater power to detect empirically common structural breaks. These saturation

techniques can demonstrate the robustness of a model to a wide range of feasible

alternatives. They can also yield statistical and economic improvements to a model

and thereby provide insights into the practical justification of empirical evidence.

Additionally, saturation techniques provide a framework for creating near-realtime

early-warning and rapid-detection devices, such as of financial market anomalies.

This paper is organized as follows. Section 2 describes the computer-automated

model selection algorithm in Autometrics. That algorithm is central to implement-

ing impulse indicator saturation. Section 3 discusses impulse impulse indicator

saturation and proposes several extensions that are potentially useful for detecting

structural breaks such as crises, jumps, and changes in regime. Section 4 illustrates

impulse indicator saturation with a model for the Brazilian inflation rate from Dées,

di Mauro, Pesaran, and Smith (2007), using the methods detailed in Sections 2 and 3

and drawing on results in Ericsson and Reisman (2012). Section 5 concludes.
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2. Computer-automated Model Selection

In economics, data mining has traditionally been viewed as a pejorative activity–

a necessary evil, with nominal critical values affected; see Lovell (1983), Denton

(1985), and the extensive literature on pre-testing. By contrast, data mining can be

constructive rather than pejorative; see Campos and Ericsson (1999). This section

thus summarizes an approach to constructive data mining as implemented in the

model selection algorithm Autometrics. Section 3 discusses indicator saturation

techniques, which utilize that algorithm in Autometrics. Together, that algorithm

and indicator saturation techniques can aid in detecting crises, jumps, and changes

in regime, as Section 4 shows.

Hoover and Perez (1999) proposed an automated general-to-specific model-

selection algorithm that incorporated many of the features of the “Hendry” or LSE

methodology. Hendry and Krolzig (2001) developed a second-generation algorithm

called PcGets, which extended and improved upon Hoover and Perez’s algorithm;

see also Hendry and Krolzig (1999, 2003, 2005) and Krolzig and Hendry (2001).

Doornik and Hendry (2009) implement a third-generation algorithm called Auto-

metrics, which is part of PcGive version 13; see also Hendry and Doornik (2014).

Autometrics utilizes one-step and multi-step simplifications along multiple paths

following a tree search method. Diagnostic tests serve as additional checks on the

simplified models, and encompassing tests resolve multiple terminal models. Both

analytical and Monte Carlo evidence show that the resulting model selection is rel-

atively non-distortionary for Type I errors. At an intuitive level, Autometrics func-

tions as a series of sieves that aim to retain parsimonious congruent models while

discarding both noncongruent models and over-parameterized congruent models.

This feature of the algorithm is eminently sensible, noting that the data genera-

tion process itself is congruent and is as parsimonious as feasible. At a more formal

level, White (1990, 2009) provides a statistical theoretic basis for this model-building

strategy in which diagnostic test statistics (including encompassing statistics) are

treated as explicit design criteria. See also Hansen, Lunde, and Nason (2011) for a

related discussion on model confidence sets.

The current section summarizes Autometrics as an automated model-selection

algorithm, thereby providing the necessary background for interpreting subsequent

empirical applications. For ease of reference, the algorithm is divided into three

“stages”, denoted Stage 0, Stage 1, and Stage 2. For full details of Autometrics’s

algorithm, see Doornik (2008, 2009) and Doornik and Hendry (2009). Hendry and

Krolzig (2003) and Campos, Ericsson, and Hendry (2005) describe the relationship

of the general-to-specific approach to other modeling approaches in the literature,

and Hoover and Perez (2004) extend the general-to-specific approach to cross-section

regressions.

Stage 0: the general model, impulse indicator saturation, and F pre-search tests.

Stage 0 involves three parts: the estimation and evaluation of the general model,

inclusion of impulse indicator dummies for all observations, and some pre-search

tests aimed at simplifying the general model before instigating formal multi-path

searches.

First, the general model is estimated, and diagnostic statistics are calculated for

it. If any of those diagnostic statistics is unsatisfactory, the modeler must decide

what to do next–whether to “go back to the drawing board” and develop another

general model, or to continue with the simplification procedure, perhaps ignoring

the offending diagnostic statistic or statistics.
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Second, and optionally, Autometrics performs block additions and searches of

impulse indicator dummies for all observations in a process known as impulse indi-

cator saturation. Doing so generates a robust regression estimator, and it provides

a check for parameter constancy. Section 3 discusses impulse indicator saturation

further.

Third, and also optionally, Autometrics attempts to drop various sets of po-

tentially insignificant variables. Autometrics does so by dropping all variables at a

given lag, starting with the longest lag. Autometrics also does so by ordering the

variables by the magnitude of their -ratios and either dropping a group of individ-

ually insignificant variables or (alternatively) retaining only a group of individually

statistically significant variables. In effect, an  pre-search test for a group of vari-

ables is a single test for multiple simplification paths, a characteristic that helps

control the costs of search. If these tests result in a statistically satisfactory reduc-

tion of the general model, then that new model is the starting point for Stage 1.

Otherwise, the general model itself is the starting point for Stage 1.

Stage 1: a multi-path encompassing search. Stage 1 tries to simplify the model

from Stage 0 by searching along multiple paths, ensuring that the diagnostic tests are

not rejected. If all variables are individually statistically significant, then the initial

model in Stage 1 is the final model. If some variables are statistically insignificant,

then Autometrics tries deleting those variables to obtain a simpler model. If a

simplification is rejected, Autometrics backtracks along that simplification path to

the most recent previous acceptable model and then tries a different simplification

path. A terminal model results if the model’s diagnostic statistics are satisfactory

and if no remaining regressors can be deleted.

If Autometrics obtains only one terminal model, then that model is the final

model. However, because Autometrics pursues multiple simplification paths in

Stage 1, Autometrics may obtain multiple terminal models. To resolve such a situa-

tion, Autometrics creates a union model from those terminal models and tests each

terminal model against that union model. Autometrics then creates a new union

model, which nests all of the surviving terminal models; and that union model is

passed on to Stage 2.

Stage 2: another multi-path encompassing search. Stage 2 in effect repeats

Stage 1 (possibly iteratively) by applying the simplification procedures from Stage 1

to the union model obtained at the end of Stage 1. The resulting model is the final

model. If Stage 2 obtains more than one terminal model after applying encom-

passing tests, then the final model is selected by using the Akaike, Schwarz, and

Hannan—Quinn information criteria. See Akaike (1973, 1981), Schwarz (1978), and

Hannan and Quinn (1979) for the design of these information criteria, and Atkinson

(1981) for the relationships between them.

In addition to optional pre-search simplification and impulse indicator satura-

tion, the algorithm requires several other choices: in particular, target size and fixity

of regressors.

Target size. Autometrics requires the modeler to choose which tests are calcu-

lated and to specify the critical values for those tests. In principle, the modeler

can choose the test statistics and their critical values directly, although doing so is

tedious because of the number of statistics involved. To simplify matters, Automet-

rics offers several options for the “target size”, which incorporates pre-designated

selections of test statistics and critical values.
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The “target size” is meant to equal “the proportion of irrelevant variables that

survives the [simplification] process” (Doornik, 2009, p. 100). In empirical analyses,

Autometrics’s target size is often either 5% or 1%–which are values that appear to

approximate the liberal and conservative strategies in PcGets. The liberal strategy

errs on the side of keeping some variables, even although they may not actually

matter. The conservative strategy keeps only variables that are clearly significant

statistically, erring in the direction of excluding some variables, even although those

variables may matter. Which strategy is preferable depends in part on the data

themselves, in part on the class of regressors examined (and, in particular, whether

indicator saturation is considered), and in part on the objectives of the modeling

exercise. Also, the two approaches may generate similar or identical results. In the

empirical analysis below, the target size is 01% (very stringent)

Fixity of regressors. Autometrics offers the option of designating certain vari-

ables as “fixed”. Fixed variables are forced to always be included in regression,

whereas free variables (variables that are not fixed) may be deleted by the algo-

rithm.

In short, Autometrics is general-to-specific, multi-path, iterative, and encom-

passing, with diagnostic tests providing additional assessments of statistical ade-

quacy, and with options for pre-search simplification and robustification. Automet-

rics can be characterized as having two components:

1. Estimation and diagnostic testing of the general unrestricted model (Stage 0);

and

2. Selection of the final model by

(a) pre-search simplification of the general unrestricted model (Stage 0),

(b) impulse indicator saturation (Stage 0), and

(c) multi-path (and possibly iterative) selection of the final model (Stages 1

and 2).

3. Indicator Saturation Techniques

Impulse indicator saturation (IIS) is a general procedure for model evaluation, and

in particular for testing parameter constancy. Section 4 applies IIS to analyze

potential structural breaks in a model of Brazilian inflation. IIS is beneficial more

generally; and it has been employed for model evaluation, model design, and robust

estimation. Moreover, Ericsson (2015) re-interprets existing tests of forecast bias as

special cases of IIS and shows how IIS can be used to detect arbitrarily time-varying

forecast bias.

This section summarizes how impulse indicator saturation provides a general

procedure for analyzing a model’s constancy. Specifically, IIS is a generic test for

an unknown number of breaks, occurring at unknown times anywhere in the sample,

with unknown duration, magnitude, and functional form. IIS is a powerful empirical

tool for both evaluating and improving existing empirical models. Hendry (1999)

proposes IIS as a procedure for testing parameter constancy. See Hendry, Johansen,

and Santos (2008), Doornik (2009), Johansen and Nielsen (2009, 2013), Hendry and

Santos (2010), Ericsson (2011a, 2011b, 2012, 2016), Ericsson and Reisman (2012),

Bergamelli and Urga (2014), Hendry and Pretis (2013), Hendry and Doornik (2014),

Castle, Doornik, Hendry, and Pretis (2015), and Marczak and Proietti (2016) for

further discussion and recent developments.
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Impulse indicator saturation uses the zero-one impulse indicator dummies {}
to analyze properties of a model. For a sample of  observations, there are  such

dummies, so unrestricted inclusion of all  dummies in an estimated model (thereby

“saturating” the sample) is infeasible. However, blocks of dummies can be included,

and that insight provides the basis for IIS. To motivate how IIS is implemented in

practice, this subsection employs a bare-bones version of IIS in two simple Monte

Carlo examples.

Example 1. This example illustrates the behavior of IIS when the model is cor-

rectly specified. Suppose that the data generation process (DGP) for the variable 

is:

 = 0 +   ∼ NID(0 2)  = 1      (1)

where  is normally and independently distributed with mean 0 and variance 
2.

Furthermore, suppose that the model estimated is a regression of  on an intercept,

i.e., the model is correctly specified. Figure 1a plots Monte Carlo data from the

DGP in equation (1) with 0 = 20, 2 = 1, and  = 100. Figure 1b plots the

estimated model’s residuals, scaled by that model’s residual standard error.

The bare-bones version of IIS is as follows.

1. Estimate the model, including impulse indicator dummies for the first half

of the sample, as represented by Figure 2a. That estimation is equivalent to

estimating the model over the second half of the sample, ignoring the first

half. Drop all statistically insignificant impulse indicator dummies and retain

the statistically significant dummies (Figure 2b).

2. Repeat this process, but start by including impulse indicator dummies for

the second half of the sample (Figure 2d), and retain the significant ones

(Figure 2e).

3. Re-estimate the original model, including all dummies retained in the two

block searches (Figure 2g), and select the statistically significant dummies

from that combined set (Figure 2h).

Hendry, Johansen, and Santos (2008) and Johansen and Nielsen (2009) have shown

that, under the null hypothesis of correct specification, the expected number of

impulse indicator dummies retained is roughly  , where  is the target size. In

Figure 2h, five dummies are retained;  = 5%; and  = (5%·100) = 5, an exact
match.

Example 2. This example illustrates the behavior of IIS when there is an un-

modeled break. Suppose that the DGP for the variable  is:

 = 0 + 164 +   ∼ NID(0 2)  = 1      (2)

where 64 is a one-off step dummy that equals 0 ( = 1     63) or 1 ( = 64     100),

and 1 is its coefficient in the DGP. The model estimated is a regression of  on an

intercept alone, ignoring the break induced by the step dummy 64. As in Exam-

ple 1,  is normally and independently distributed with a nonzero mean. However,

that mean alters at  = 64. The model ignores that change in mean (aka a “location

shift”) and hence is mis-specified. Figure 3a plots Monte Carlo data from the DGP

in equation (2) with 0 = 20, 1 = −10, 2 = 1, and  = 100. Figure 3b plots

the estimated model’s residuals. Interestingly, no residuals lie outside the estimated

95% confidence region, even though the break is −10. The model has no “outliers”.
Figure 4 plots the corresponding graphs for the bare-bones implementation of

IIS described in Example 1, as applied to the Monte Carlo data in Example 2. As
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Figure 1: Actual and fitted values and the corresponding scaled residuals for the

estimated model when the DGP does not have a break.
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Figure 2: A characterization of bare-bones impulse indicator saturation with a

target size of 5% when the DGP does not have a break.
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Figure 3: Actual and fitted values and the corresponding scaled residuals for the

estimated model when the DGP has a break and the model ignores that break.
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Figure 4: A characterization of bare-bones impulse indicator saturation with a

target size of 5% when the DGP has a break and the model ignores that break.
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Table 1: Impulse indicator saturation and two extensions, as characterized by the
variables involved.

Name Description Variables Definition

Impulse indicator

saturation

Zero-one

dummies

{}  = 1 for  = 

zero otherwise

Super

saturation

Step

functions

{ }  = 1 for  ≥ 

zero otherwise

Ultra

saturation

Broken linear

trends

{  }  = − + 1 for  ≥ 

zero otherwise

the penultimate graph (Figure 4h) shows, the procedure has high power to detect

the break, even although the nature of the break is not utilized in the procedure

itself.

In practice, IIS as an algorithm may be more complicated than this bare-bones

version, which employs two equally sized blocks, selects dummies by -tests, and is

non-iterative. In Doornik and Hendry’s (2013) Autometrics econometrics software,

IIS utilizes many possibly unequally sized blocks, rather than just two blocks; the

partitioning of the sample into blocks may vary over iterations of searches; dummy

selection includes  -tests against a general model; and residual diagnostics help

guide model selection. Notably, the specific algorithm for IIS can make or break IIS’s

usefulness; cf. Doornik (2009), Castle, Fawcett, and Hendry (2010), and Hendry and

Doornik (2014). IIS is a statistically valid procedure for integrated, cointegrated

data; see Johansen and Nielsen (2009). IIS can serve as a diagnostic statistic, and

it can aid in model development, as discussed in Ericsson (2011a).

Many existing procedures can be interpreted as special cases of IIS in that they

represent particular algorithmic implementations of IIS. Such special cases include

recursive estimation, rolling regression, the Chow (1960) predictive failure statistic

(including the 1-step, breakpoint, and forecast versions implemented in OxMetrics),

the Andrews (1993) unknown breakpoint test, the Bai and Perron (1998) multiple

breakpoint test, tests of extended constancy in Ericsson, Hendry, and Prestwich

(1998, pp. 305ff), tests of nonlinearity, intercept correction (in forecasting), and

robust estimation. IIS thus provides a general and generic procedure for analyz-

ing a model’s constancy. Algorithmically, IIS also solves the problem of having

more potential regressors than observations by testing and selecting over blocks of

variables.

Table 1 summarizes IIS and two extensions of IIS, drawing on expositions and

developments in Ericsson (2011b, 2012) and Ericsson and Reisman (2012). Through-

out,  is the sample size,  is the index for time,  and  are the indexes for indicators,

 is the index for economic variables (denoted ), and  is the total number of

potential regressors considered. A few remarks may be helpful for interpreting the

entries in Table 1.

Impulse indicator saturation. This is the standard IIS procedure proposed by

Hendry (1999), with selection among the  zero-one impulse indicators {}.
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Super saturation. Super saturation searches across all possible one-off step func-

tions {}, in addition to {}. Step functions are of economic interest because

they may capture permanent or long-lasting changes that are not otherwise incor-

porated into a specific empirical model. A step function is a partial sum of impulse

indicators. Equivalently, a step function is a parsimonious representation of a se-

quential subset of impulse indicators that have equal coefficients. Castle, Doornik,

Hendry, and Pretis (2015) investigate the statistical properties of a closely related

saturation estimator–step indicator saturation (SIS)–which searches among only

the step indicator variables {}. Autometrics now includes IIS, SIS, super satu-

ration (IIS+SIS), and zero-sum pairwise IIS (mentioned below); see Doornik and

Hendry (2013).

Ultra saturation. Ultra saturation (earlier, sometimes called “super duper” sat-

uration) searches across {  }, where the {} are broken linear trends.

Broken linear trends may be of economic interest. Mathematically, the {} are

partial sums of the partial sums of impulse indicators. Broken quadratic trends,

broken cubic trends, and higher-order broken trends are also feasible.

Table 1 is by no means an exhaustive list of extensions to IIS. Other extensions

include sequential ( = 1) and non-sequential (  1) pairwise impulse indicator

saturation for an indicator , defined as  + +; zero-sum pairwise IIS for an

indicator , defined as∆; many many variables for a set of potential regressors

{  = 1    } for    ; factors; principal components; and multiplicative

indicator saturation for the set of . See Ericsson (2011b, 2012) and Castle,

Clements, and Hendry (2013) for details, discussion, and examples in the literature.

Also, the saturation procedure chosen may itself be a combination of extensions;

and that choice may affect the power of the procedure to detect specific alternatives.

For instance, in Example 2 above, the 37 impulse indicators {  = 64     100}

are not a particularly parsimonious way of expressing the step shift that occurs two

thirds of the way through the sample, whereas the single one-off step dummy 64

is.

4. An Empirical Illustration with Brazilian Inflation

Dées, di Mauro, Pesaran, and Smith (2007) develop a global vector autoregression

(GVAR), and Ericsson and Reisman (2012) evaluate that GVAR with impulse indi-

cator saturation. Drawing on Ericsson and Reisman (2012), this section illustrates

IIS with that GVAR’s equation for the Brazilian inflation rate.

IIS for the equation of Brazilian inflation is particularly revealing. IIS detects

14 dummies–all prior to 1995–with an F-statistic of 75.1 [ = 00000] for the

significance of those dummies. As is evident from Figure 5, Brazilian inflation

changed its behavior radically after 1994, resulting in historically very low inflation

rates and much less variability, and in line with marked changes in government

policies. Economically and statistically, IIS for this equation implies that the GVAR

model is inadequate to capture the essential features of Brazilian inflation.
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Figure 5: The quarterly inflation rate for Brazil (∆), as a fraction.

5. Conclusions

Indicator saturation defines a generic procedure for examining empirical model prop-

erties, and it provides a potential mechanism for improving such models. In par-

ticular, indicator saturation provides a mechanism for systematically detecting and

quantifying crises, jumps, and changes in regime. Such structural breaks can be per-

sistent yet time-varying; they can be difficult to detect in a timely fashion; and they

may have substantive implications for policy analysis. The IIS approach aims to

address these issues, with extensions of IIS aiming to characterize systematic prop-

erties across retained impulses. The IIS approach also links directly to techniques

for robustifying forecasts, noting that intercept correction is a variant of super sat-

uration; see Clements and Hendry (1996, 1999, 2002), Hendry (2006), and Castle,

Fawcett, and Hendry (2010). Computer-automated model selection is central to

implementing saturation techniques.

IIS-based tests may detect not only “location shifts”, but also outliers and other

forms of mis-specification, such as changes in the forecast error variance. For outliers

and changes in error variance in particular, retained impulses would not typically be

sequential or (for adjacent impulses) of the same sign and similar magnitude. These

caveats emphasize the usefulness of super saturation and other extended forms of

IIS in characterizing the persistence of structural breaks.

IIS-based tests can serve as diagnostic tools to detect what’s wrong with a

model, and as developmental tools to suggest how that model may be improved.

While rejection of the null doesn’t imply the alternative, the date-specific nature

of IIS-type procedures when applied to time series data can aid in identifying the

sources of a model’s weaknesses, and hence ways in which a model can be improved.
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Use of these tests in model development is consistent with a progressive modeling

approach; see White (1990).

The IIS approach has many potential applications, beyond its initial roles in

model evaluation and robust estimation. As discussed above, it can be used for

detecting crises, jumps, and changes in regime. IIS also provides a framework

for creating near-realtime early-warning and rapid-detection devices, e.g., of finan-

cial market anomalies. Finally, IIS generalizes to systems. In their examination

of computer-automated model selection and saturation techniques, Hendry and

Doornik (2014) elucidate how recent econometric tools and software developments

have made empirical modeling an exciting and vibrant enterprise in economics.

Additional results in the statistical theory of model selection–and corresponding

software implementation–will no doubt further aid this endeavor. The current pa-

per serves to exemplify, extend, and illustrate some aspects of how such empirical

modeling might proceed.
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