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Abstract

The use of programming languages can wax and wane across the decades. We examine the split-

apply-combine pattern that is common in statistical computing, and consider how its invocation or

implementation in languages likeMATLAB andAPL differ fromR/dplyr. The differences in spelling

illustrate how the concept of linguistic relativity applies to programming languages in ways that are

analogous to human languages. Finally, we discuss how Julia, by being a high performance yet

general purpose dynamic language, allows its users to express different abstractions to suit individual

preferences.
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1. Each decade has its own programming languages

Each discipline has its own favorite languages: applied mathematics has MATLAB, web

applications have JavaScript, and high-performance computing still uses Fortran, accompa-

nied by Python (Jones et al., 2001) and even Tcl (Phillips et al., 2014). Statistical computing,

of course, is associated strongly with R. Yet the boundaries of these seemingly absolute fief-

doms in the kingdom of computing turn out to be surprisingly malleable on the time scale

of decades. Statistical computing came to prominence with PL/I in the 70s, APL in the 80s,

and XLISP-STAT in the 90s before the relatively modern advent of S and iR (de Leeuw,

2005). In truth, programming languages come and go beyond the time scale of single years

or even PhD studentships.

So what makes a programming language suitable for the demands of a scientific disci-

pline like statistical computing? Discussing pros and cons of different languages can get

bogged down in absolutist statements about what “can” and “cannot” be done in a language.

On some level such statements are absurd, given that all sufficiently complicated program-

ming languages are Turing complete, and therefore have the same computational power in

the sense of Turing equivalence. Thus anything that can be done in one Turing-complete

language must be doable in another Turing-complete language. Instead, the answer to the

question of suitability must necessarily be ensconced in “softer” concepts about ease of use

and expressiveness, concepts that are hard to define precisely but are nonetheless responsible

for shaping the adoption of programming languages.

This paper explores how the suitability of programming languages is related to expres-

siveness: what abstractions exist in a given programming language that map onto ideas that

a programmer would want to implement? Closely related is the notion of idiomaticness:

would an experienced programmer in a particular language recognize and accept a given

piece of code as “idiomatic”?
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1.1 Linguistic relativity and programming languages

To discuss the suitability of programming languages, I will borrow notions from the study

of human languages, linguistics. In particular, I will adopt the controversial concept of

linguistic relativity (Gumperz and Levinson, 1996), or the Sapir–Whorf hypothesis (Brown,

1976), and argue that the idea that (human) languages determine or even constrain cognition

has its relevance to computer languages and programming.

Some of the original writings of Sapir and Whorf seem particularly relevant to the dis-

cussion. Here are some choice quotations:

Human beings do not live in the objective world alone,[...] but are very

much at the mercy of the particular language which has become the medium of

expression for their society [...] [T]he ‘real world’ is to a large extent uncon-

sciously built up on the language habits of the group. (Sapir, 1929)

Sapir wrote about human languages, in particular contrasting native American languages

like Hopi against Occidental languages like English. Nevertheless, programmers would im-

mediately recognize these words about “language habits” as echoing a parallel worldview

in computer languages, being themselves human constructs designed to abstract away un-

wanted, low level machine details. Some examples of these programming language habits

may include:

“Always put data in a data frame”

“Never write for loops; vectorize your code to gain performance.”

Some “language habits” can be as banal as choosing between 0- or 1-based indexing,

leading to notoriously unproductive flame wars. Others are more subtle. For example, MAT-

LAB treats vectors like columnmatrices, and therefore allow operations on one-dimensional

objects like v[(2,1)] indexing with two numbers, which are disallowed in many other lan-

guages like C. We can trace the different indexing behaviors back to different mathematical

starting points—whereas most languages treat vectors as one-dimensional arrays, i.e. “flat”

sequences of numbers, MATLAB by virtue of treating most objects like matrices, assumes

that vectors by default are column vectors, and therefore behave just matrices with one col-

umn.

The fact that such discussions of language habits tend to be emotionally charged is also

not a coincidence. Whorf wrote:

[E]very person [...] carries through life certain naïve but deeply rooted idea

about talking and its relation to thinking. Because of their firm connection with

speech habits that have become unconscious and automatic, these notions tend

to be intolerant of opposition. (Whorf, 1956b)

Replace “talking” with “writing code”, and the analogy between speech and computer

programs could hardly be plainer. An experienced programmer, practically by definition,

internalizes the boilerplate and design patterns in code as “unconscious and automatic” id-

ioms to be regurgitated on demand (preferably with an editor or IDE that helps reinforce

these idioms automatically). To the fluent Java programmer, wrapping everything in a class

must be second nature, just as the R user is accustomed to seeing data in a data frame, or

whitespace sensitivity to the Pythonista. Allowing for code as a generalization of speech,

one could argue that Whorf’s observation predicted the very phenomenon of flame wars

over programming language design!

In the rest of this paper, I will make use of another insight from Whorf:
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Through [linguistic knowledge], the world as seen from the diverse view-

points of other social groups, that we have thought of as alien, becomes intel-

ligible in new terms. Alienness turns into a new and often clarifyign way of

looking at things. (Whorf, 1956a)

I will present a simple, stereotypical data science task and show how solutions may be

implemented in different computer languages, not all of which may necessarily be familiar

to the reader or the typical user of statistical computing. This side-by-side comparison of the

familiar and unfamiliar will hopefully aid to highlight similarities and differences between

the abstractions expressed within the codes.

2. A simple data science task: split, apply, combine

Here is a simple data analysis task that is perhaps emblematic of our house sharing, carpool-

ing times. Suppose I am a data scientist working at a ride sharing company and here are the

user ratings data for the last ten trips taken by a particular driver:

userid 381 1291 3992 193942 9493 381 3992 381 3992 193942

rating 5 4 4 4 5 5 5 3 5 4

Suppose also that I am interested in working out the average rating given by each unique

user. A seasoned R user might immediately recognize this task as a “split-apply-combine”

problem, which could be solved using the dplyr package as follows (Wickham, 2011):

1 library(dplyr);
2 userid = c(381, 1291, 3992, 193942, 9493, 381,
3 3992, 381, 3992, 193942)
4 rating = c(5, 4, 4, 4, 5, 5, 5, 3, 5, 4)
5 mycar = data.frame(rating, userid)
6 summarize(group_by(mycar, userid), avgrating=mean(rating))

# A tibble: 5 x 2
userid avgrating
<dbl> <dbl>

1 381 4.333333
2 1291 4.000000
3 3992 4.666667
4 9493 5.000000
5 193942 4.000000

The key computation is expressed by the summarize function, a higher-order function

which combines the data in the mycar data frame after being split by (grouped by) userid
and had the function mean applied to each group. This function is provided by dplyr and is
perfectly well-suited to the split-apply-combine task. Now let’s look at how the same idiom

can be expressed in other programming languages.

3. MATLAB: split-apply-combine on matrices

MATLAB is more often thought of as a language for scientific computing rather than statis-

tical computing. Nevertheless, MATLAB provides a higher order function, accumarray,
which is perfectly suited to split-apply-combine computations. Even MATLAB seems to
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admit that accumarray is “under-appreciated” (Shure, 2008); nevertheless, the function

does the job admirably:

1 userids = [381; 1291; 3992; 193942; 9493; 381; 3992; 381; 3992;
2 193942];
3 ratings = [5; 4; 4; 4; 5; 5; 5; 3; 5; 4];
4 accumarray(userids,ratings,[],@mean,[],true)

ans =

(381,1) 4.3333
(1291,1) 4.0000
(3992,1) 4.6667
(9493,1) 5.0000

(193942,1) 4.0000

Unlike R, which was designed from the beginning around data frames as one of the

fundamental data structures, MATLAB was originally designed with matrices as the sole

data structure (Moler, 1980, 1982). While MATLAB as of R2013b now provides tables as

a data structure (Shure and Zaranek, 2013), most of the base language is still built around

matrices and does not work with tables. accumarray is one example of the base language

that is designed around matrices.

It can be difficult to determine from the documentation of accumarray (The Math-

Works, Inc., 2016) that it is a function that solves the split-apply-combine problem. The

first complete sentence in the documentation states that A=accumarray(val,subs) “re-

turns array A by accumulating elements of vector val using the subscripts subs”. In other
words, the most basic use of accumarray is to split data in val into subsets grouped by the
values of their corresponding entries in val, with the summation (accumulation) function

applied to each subset. It is clear that the function is generalizable: a different function can

be specified in the fourth positional argument (MATLAB does not support keyword argu-

ments), but in order to do so, a default argument must be specified for the third argument.

Finally, the last argument true specifies that the output should be returned as a sparse ma-

trix, otherwise the result would be a 193942× 1 dense matrix with most of the entries zero.

4. APL: split-apply-combine using array operations

APL is a language that is built around a single data structure, the array.1 APL does not

provide a standard idiom for solving the split-apply-combine problem; instead, the APL

programmer must express split-apply-combine on their own using lower-level array compu-

tations.

One implementation of split-apply-combine might look like this:

1 mean←{+/⍵÷⍴⍵}
2 uniqfy←{⍵[⍋⍵]}∪
3 ∇a←v splitby k
4 a←{(⍵⍷k)/v}¨uniqfy k
5 ∇

1Some modern implementations such as Dyalog APL (Dyalog, Ltd., 2016) have nonstandard extensions that

provide support for object-oriented programming in the form of classes, but we won’t consider them here.
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6 summarizeby←{(uniqfy ⍵),[1.5]mean¨(⍺ splitby ⍵)}
7 u←381 1291 3992 193942 9493 381 3992 381 3992 193942
8 r←5 4 4 4 5 5 5 3 5 4
9 ]display r summarizeby u

┌→─────────────────┐
↓ 381 4.333333333│
│ 1291 4 │
│ 3992 4.666666667│
│ 9493 5 │
│193942 4 │
└~─────────────────┘

APL functions can take at most two arguments; further arguments must be specified

in “concealed arguments”, which are variables in global scope. This solution chose to

hard code the function being applied (mean) into the higher-level summarizeby function.

Furthermore, dyadic APL functions must be specified in place, which suggests the name

summarizeby rather than summarize as being more natural to an English speaker. No-

tably, the expression r summarizeby u aligns with the SVO (subject-verb-object) order

of English, which can explain the intuition for why the name summarizeby may be pre-

ferred.

The primary data structure used to implement the “split” stage is the nested array, which

allows for the representation of ragged matrices, or list of lists with unequal lengths. The

nested array has long been used to implement statistical libraries in APL (Anscombe, 1981;

Friendly and Fox, 1994). In this case, the nested array is generated by the (⍵⍷k)/v¨ expres-
sion, which extracts each subset of v by common values k. The splitby function produces
the result

1 ]display r splitby u

┌→──────────────────────────────┐
│ ┌→────┐ ┌→┐ ┌→────┐ ┌→┐ ┌→──┐ │
│ │5 5 3│ │4│ │4 5 5│ │5│ │4 4│ │
│ └~────┘ └~┘ └~────┘ └~┘ └~──┘ │
└∊──────────────────────────────┘

corresponding to the keys

2 ]display uniqfy u

┌→────────────────────────┐
│381 1291 3992 9493 193942│
└~────────────────────────┘

The “apply” stage of the computation uses APL’s built-in diaeresis (¨, “over each”)
function. Finally, the “combine” stage produces a two-column matrix, with the first column

containing the unique keys and the second column containing the required means. This

matrix is produced by the ,[1.5] expression, which “laminates” its two arguments together.

Notably, the APL solution might be considered by some expert programmers to be not

idiomatic. Instead, there is a long tradition of writing concise one-line APL solutions to

various problems, and for this problem, such a solution might look like
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3 {⍵,[1.5]{mean¨{(⍵⍷u)/r}¨⍵}¨⍵}{⍵[⍋⍵]}∪u

To summarize, the three solutions we have seen so far each have different code organi-

zations and work on different data structures. In tabular form:
R/dplyr MATLAB APL

split summarize accumarray splitby

apply (column constructor) (positional argument) ¨

combine summarize accumarray summarizeby

data structure data frame (tibble) matrix array

5. Julia: flexibility of idioms

The last language I will consider here is Julia, a general-purpose programming language that

was originally designed for technical computing (Bezanson, 2015)2. Julia is a language that

is easy for both compilers and programmers to understand, in the sense that it is a high level

dynamic language with language constructs that facilitate compiler analysis and generation

of efficient code.

The result of Julia’s careful design for expressiveness and performance allows for the

different solutions above for the split-apply-combine problem to all be expressible in the

same language. The solution to split-apply-combine in R/dplyr derives its performance

from an underlying implementation of dplyr in C++ (via Rcpp). In contrast, all the Julia

solutions in this section are written in pure Julia. The result is that Julia users can also

be Julia developers without necessarily having to learn another language to work on the

underlying implementation which does all the heavy lifting. Another advantage is that Julia

users can experiment with different idioms and data structures without being confined to

just those that have well-optimized implementations, and enjoy reasonable performance in

many cases.

For example, the DataFrames.jl package provides two different spellings for the R/d-
plyr approach:

1 using DataFrames
2 df = DataFrame(
3 userids=[381, 1291, 3992, 193942, 9494, 381, 3992, 381, 3992,
4 193942], ratings=[5, 4, 4, 4, 5, 5, 5, 3, 5, 4]);
5 by(df, :userids, df->mean(df[:ratings])) #Same as next line
6 aggregate(df, :userids, mean)

5×2 DataFrames.DataFrame
│ Row │ userids │ ratings_mean │
├─────┼─────────┼──────────────┤
│ 1 │ 381 │ 4.33333 │
│ 2 │ 1291 │ 4.0 │
│ 3 │ 3992 │ 4.66667 │
│ 4 │ 9494 │ 5.0 │
│ 5 │ 193942 │ 4.0 │

The solution to split-apply-combine in R/dplyr derives its performance from an under-

lying implementation of dplyr in C++ (via Rcpp). In contrast, the Julia solutions are written

2All the Julia code presented here is written for version 0.5.0.
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in pure Julia. The result is that Julia users can also be Julia developers without necessar-

ily having to learn another language to work on the underlying implementation which does

all the heavy lifting. Another advantage is that Julia users can experiment with different

idioms and data structures without being confined to just those that have well-optimized

implementations, and enjoy reasonable performance in many cases.

For example, a user who is unfamiliar with data frames and may prefer instead an array-

based solution may choose to implement an APL-style solution using a simple list compre-

hension:

7 userids=[381, 1291, 3992, 193942, 9494, 381, 3992, 381, 3992,
8 193942]
9 ratings=[5, 4, 4, 4, 5, 5, 5, 3, 5, 4]
10 [(u, mean(ratings[userids.==u])) for u in unique(userids)]

5-element Array{Tuple{Any,Any},1}:
(381,4.333333333333333)
(1291,4.0)
(3992,4.666666666666667)
(193942,4.0)
(9494,5.0)

The list comprehension approach is simple and concise, if not particularly fast. Never-

theless, the ability to rewrite a solution multiple different way in Julia allows for Julia users

to experiment with different approaches in order to find one with the most acceptable per-

formance. For example, a Julia user may choose to rewrite the list comprehension solution

by writing out for loops explicitly, something that is discouraged in all the other languages

discussed here (which promote the “vectorize your code” habit). One such implementation

example might look like the following:

11 counts = []
12 uuserids=[]
13 uratings=[]
14 for i in eachindex(userids)
15 j = findfirst(uuserids, userids[i])
16 if j==0 #not found
17 push!(uuserids, userids[i])
18 push!(uratings, ratings[i])
19 push!(counts, 1)
20 else #already seen
21 uratings[j] += ratings[i]
22 counts[j] += 1
23 end
24 end
25 [uuserids uratings./counts]

5x2 Array{Any,2}:
381 4.33333

1291 4.0
3992 4.66667

193942 4.0
9494 5.0
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Finally, a Julia usermay later recognize this code as implementing the split-apply-combine

idiom and choose to refactor this code into a reusable function akin to accumarray. In fact,
accumarray itself can be implemented in Julia with just a few lines of code:

26 function accumarray{Tk,Tv}(
27 subs::AbstractArray{Tk}, val::AbstractArray{Tv},
28 func=sum, fillval=zero(Tv)
29 ; sz=maximum(subs,1), issparse=false)
30

31 counts = Dict{Vector{Tk},Vector{Tv}}()
32 for i = 1:size(subs, 1)
33 counts[subs[i, :]] = #split
34 Tv[get(counts,subs[i, :], Tv[]); val[i...]]
35 end
36

37 A = issparse ? spzeros(sz...) : fill(fillval, sz...) #combine
38 for (key, val) in counts
39 A[key...]= func(val) #apply
40 end
41 return A
42 end

Thus even though accumarray does not exist in the base Julia library, an experienced

user can, without much difficulty, refactor a previous solution into a part that implements

the general purpose accumarray function. Having multiple options gives Julia users the

possibility of choosing the best trade-off between development time and actual execution

time when deployed on large data sets.

6. Conclusion

Many programming languages dictate one preferred way of doing things, which often en-

compasses an unwritten set of “language habits” as well as a choice of preferred data struc-

tures. In particular, “vectorize your code” is an idiom that is common to R, MATLAB and

APL, three languages that are currently or in the past been popular for statistical comput-

ing. One reason high level languages have a preferred way of expression is because those

idioms over a few preferred data structures have highly optimized implementations and are

well integrated into a comprehensive standard library. As a result, these idioms shape the

way experienced programmers think about solving problems in those languages.

The promise of Julia, as a high level dynamic language with reasonable performance,

allows for multiple approaches to the same problem. An experienced user can, without

much difficulty, iterate rapidly from a naïve slow solution to a fast, specialized solution, and

further to a fast, general purpose solution.
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